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Abstract
Modern whole-genome prediction (WGP) frameworks that focus on multi-environment trials (MET) integrate large-scale
genomics, phenomics, and envirotyping data. However, the more complex the statistical model, the longer the computational
processing times, which do not always result in accuracy gains. We investigated the use of new kernel methods and
modeling structures involving genomics and nongenomic sources of variation in two MET maize data sets. Five WGP
models were considered, advancing in complexity from a main-effect additive model (A) to more complex structures,
including dominance deviations (D), genotype × environment interaction (AE and DE), and the reaction-norm model using
environmental covariables (W) and their interaction with A and D (AW+DW). A combination of those models built with
three different kernel methods, Gaussian kernel (GK), Deep kernel (DK), and the benchmark genomic best linear-unbiased
predictor (GBLUP/GB), was tested under three prediction scenarios: newly developed hybrids (CV1), sparse MET
conditions (CV2), and new environments (CV0). GK and DK outperformed GB in prediction accuracy and reduction of
computation time (~up to 20%) under all model–kernel scenarios. GK was more efficient in capturing the variation due to A
+AE and D+DE effects and translated it into accuracy gains (~up to 85% compared with GB). DK provided more
consistent predictions, even for more complex structures such as W+AW+DW. Our results suggest that DK and GK are
more efficient in translating model complexity into accuracy, and more suitable for including dominance and reaction-norm
effects in a biologically accurate and faster way.

Introduction

Historically, utilizing the best linear-unbiased prediction
(BLUP) has been useful for predicting the performance of
unobserved maize hybrids utilizing pedigree or molecular
marker relationships of all crosses (Bernardo 1994, 1996).
The assessment and prediction of hybrid performance have

two main sources of variation: the estimated additive (A)
effects among lines based on the variance of the general
combining ability of the two parents, and the dominance (D)
(and/or epistatic) effects among lines based on the variance of
the specific combining ability of the cross between parents
(Alves et al. 2019). These two sources are fundamental for
prediction based on either pedigree or genome-wide marker
information (or both) of the lines forming the single cross.
Multi-environment testing (MET) of single crosses facilitates
sampling of genotype × environment interactions (GE), as
well as additive × environment (AE) and dominance × envir-
onment (DE) interactions, and it allows hybrids unobserved in
field evaluation to be predicted based on existing data from
other observed hybrids derived from related lines.

Prediction-based strategies employing genomic-assisted
data (Meuwissen et al. 2001) are responsible for the greatest
leaps in genetic gain and reduction of time between selec-
tion cycles in both animal- and plant-breeding programs
(Crossa et al. 2017; Voss-Fels et al. 2019). Whole-genomic
prediction (WGP) focuses on modeling genomic effects due
to dense molecular markers related to quantitative-genetics

Associate editor: Yuan-Ming Zhang

* José Crossa
j.crossa@cgiar.org

1 Department of Genetics, “Luiz de Queiroz” Agriculture College,
University of São Paulo, São Paulo, Brazil

2 Biometrics and Statistics Unit, Genetic Resources Program, and
Global Wheat Program, International Maize and Wheat
Improvement Center (CIMMYT), Mexico, Mexico

Supplementary information The online version of this article (https://
doi.org/10.1038/s41437-020-00353-1) contains supplementary
material, which is available to authorized users.

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-020-00353-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-020-00353-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41437-020-00353-1&domain=pdf
http://orcid.org/0000-0003-1137-6786
http://orcid.org/0000-0003-1137-6786
http://orcid.org/0000-0003-1137-6786
http://orcid.org/0000-0003-1137-6786
http://orcid.org/0000-0003-1137-6786
http://orcid.org/0000-0003-4310-0047
http://orcid.org/0000-0003-4310-0047
http://orcid.org/0000-0003-4310-0047
http://orcid.org/0000-0003-4310-0047
http://orcid.org/0000-0003-4310-0047
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-9429-5855
mailto:j.crossa@cgiar.org
https://doi.org/10.1038/s41437-020-00353-1
https://doi.org/10.1038/s41437-020-00353-1


concepts, such as additive and nonadditive variation. WGP
studies conducted over the last decade include BLUPs
based on different prediction methods, i.e., Ridge Regres-
sion and the Genomic Best Linear Unbiased Predictor
(GBLUP, VanRaden 2008). These methods have been
extensively and intensively employed in maize and wheat
hybrid prediction (Windhausen et al. 2012; Lehermeier
et al. 2014; Technow et al. 2014; Acosta-Pech et al. 2017;
Zhang et al. 2017; Basnet et al. 2019).

However, most genomic hybrid prediction studies ignore
GE interaction and do not incorporate environmental cov-
ariables to model similarities between environments. In
maize, Acosta-Pech et al. (2017) incorporated GE and
marker information to predict hybrid performance. A recent
study on hybrid wheat investigated the genomic-enabled
prediction of single-cross wheat hybrids using models with
various combinations of pedigree, markers, and/or their
interaction with environments (Basnet et al. 2019). This
study on hybrid wheat showed that hybrid prediction
accuracy increases when environmental covariables are
incorporated, and when additive × environmental covari-
ables and dominance × environmental covariables are
included in the GBLUP reaction-norm model (Jarquin et al.
2014). Thus, selection guided by genomic-enabled predic-
tion in multiple environment trials (WGP–MET) can result
in optimization of the breeding pipeline by increasing the
number of possible hybrids and evaluated environments,
especially when aiming to choose the best hybrids for cer-
tain environmental conditions, i.e., capable of capturing the
effects of the GE. Usually, the WGP–MET models in maize
have integrated mainly A and its interaction with the
environment (AE). However, more recently, some authors
have suggested that the inclusion of dominance effects and
their interaction with environments (D and DE) may lead to
more accurate WGP-based selection in MET (Wang et al.
2017; Dias et al. 2018; Ferrão et al. 2020).

On the other hand, the use of data derived from environ-
mental typing analysis (e.g., environmental covariable, W)
can be an important source to bridge the gap between phe-
notypic and genomic correlations across MET (Cooper et al.
2014). WGP models including the so-called envirotyping (Xu
2016) analysis can be used to mimic the linear response of the
phenotypic performance of genotypes over a certain type of
environmental gradient (envirotype), i.e., the reaction norm
(Jarquín et al. 2014; Crossa et al. 2017), in which the GE
effects are studied as an extension of the GBLUP. The the-
oretical basis of this modeling approach relies on assuming
that the differential envirotype-to-phenotype dynamics for
different genotypes drives the GE variation over MET (Millet
et al. 2019; Costa-Neto et al. 2020; Porker et al. 2020). In this
context, there is a genomic background impacting the phe-
notypic responses across environments. As the genotypes
differ in terms of their allelic constitution, the number of

copies of an allele (additivity) and intra-allelic interactions
(dominance) are expected to have different degrees of influ-
ence on how genotypes respond to environmental variations
and how meaningful AW and DW interactions are. For this
reason, efforts have focused on a more in-depth search for the
genomic causes that are linked to the ecophysiological
responses of cultivation, either through genomic association
studies (Li et al. 2018) or by genomic prediction considering
reaction-norm kernels (Jarquín et al. 2014; Morais Júnior
et al. 2018) or whole-genome × envirotyping-based factorial
regression models (Ly et al. 2018; Millet et al. 2019).

As already mentioned, the GBLUP (GB) (VanRaden
2008) uses a linear kernel. Other methods consider the
complete genetic values of individuals, including both addi-
tive and nonadditive (dominance and epistasis) effects,
thereby estimating the genetic performance of the lines or
hybrids (Crossa et al. 2017). The complexity of applying
genomic-based prediction breeding is influenced by various
factors acting at different levels. Some of the statistical
complexities can be addressed by using semiparametric
genomic regression methods to account for nonadditive var-
iation (Gianola et al. 2006, 2011; Gianola and Van Kaam
2008; Morota and Gianola 2014). These methods have been
used to predict complex traits with promising practical results
(González-Camacho et al. 2012; Pérez-Rodríguez et al. 2012).
Semiparametric models often used nonlinear kernel methods
for addressing complex gene actions, thus capturing nonlinear
relationships between phenotype and genotype. A commonly
used kernel is the Gaussian kernel (GK) based on molecular
markers (Gianola et al. 2014). Cuevas et al. (2016, 2018) and
Souza et al. (2017) showed that using the GK within the
multi-environment genomic GE model of Jarquín et al. (2014)
led to higher prediction accuracy than the same method with
the linear kernel GB. Parametric alternatives for modeling
epistasis have also been broadly discussed in the literature
(Jiang and Reif 2015; Martini et al. 2016).

Recently, Cuevas et al. (2019) introduced the arc-cosine
kernel (AK) function for genome-enabled prediction. The
nonlinear AK is defined by a covariance matrix that emulates
a deep-learning model with one hidden layer and a large
number of neurons. A recursive formula allows altering the
covariance matrix stepwise, thus adding more hidden layers to
the emulated deep neural network. The AK kernel method has
been used in both single-environment and multi-environment
models, including genomic × environment interaction (GE)
(Crossa et al. 2019; Cuevas et al. 2019). The results of these
authors show that AK genomic-enabled prediction accuracy is
similar to that of the GK, but AK has the advantage over GK
that it is computationally more straightforward, since no
bandwidth parameter is required, while performing similarly
or slightly better than GK. The tuning parameter “number of
layers” required for AK can be determined by a maximum
marginal likelihood procedure (Cuevas et al. 2019). Because
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the AK emulates the action of the deep-learning method, we
also name the AK kernel method as Deep kernel (DK)
(Crossa et al. 2019). In this paper, we will use AK and DK
interchangeably.

Based on the previous studies and on the advantage of
using several linear and nonlinear kernel relationships
between the covariables (markers and environmental cov-
ariables), in this study, we tested the practical aspects of five
WGP models. There are only three main-effect models,
including environments (E), additive (A), dominance (D),
and envirotype (W) (EA, EAD, and EADW), and two are
main-effect models plus GE and GW interactions (EAD+
GE, EADW+GW) accounting for different genomic and
GE and GW covariance structures and using three-kernel
methods (GB, GK, and DK). Note that the GE interaction
includes EA+ ED, whereas GW includes AW+DW. First,
we compare the differences between WGP and kernel
methods to explain the sources of variation and reduction
error variance in MET. Next, we check the computational
efficiency of running these models under a Bayesian fra-
mework. Finally, we compute the accuracy of each
model–kernel method combination using three prediction
problems faced by most hybrid maize-breeding programs:

● Predicting hybrids untested in any environment (CV1).
● Predicting hybrids across incomplete trials (the so-called

sparse testing, CV2).
● Predicting hybrids in entirely novel environments (CV0).

The three-kernel methods were used on the two types of
covariables employed: (1) dense molecular markers, and (2)

dense environmental covariables collected in all the envir-
onments considered in the two data sets.

Materials and methods

The “Materials and Methods” are organized as follows.
First, in sections “Environmental Typing” and “Maize
Data,” we describe the maize data sets used, including
genomic and phenotypic data (grain yield, tons per ha), and
how environmental data were collected and processed.
Next, in sections “Kernel methods” and “Statistical Mod-
els” we describe the combinations of the five MET–WGP
models, including different structures to accommodate
genomic and envirotypic data, and the three-kernel methods
used to model them (GB, GK, and DK). Finally, in
“Assessing prediction accuracy by cross-validation,” we
present the statistical efforts used in testing each combina-
tion of the model–kernel method under different experi-
mental network scenarios (CV1, CV2, and CV0).

Environmental typing

Environmental typing (envirotyping) is a core of procedures
used to collect, process, and integrate environmental factors
as nongenomic covariates into genetic-informed studies
(Cooper et al. 2014; Xu 2016). In this study, a total of 16
environmental factors was used to create what we call
envirotype covariable matrix W (Table 1).

First, daily environmental data were obtained from
NASA orbital sensors (Sparks 2018). Next, additional

Table 1 List of environmental
factors considered in the study,
estimated from NASA orbital
sensors (Sparks 2018) and
processed using concepts from
Allen et al. (1998) and Soltani
and Sinclair (2012).

Source Environmental factor Unit

NASA Power Top-of-atmosphere insolation MJ m−2 d−1

Average insolation incident on a horizontal surface MJ m−2 d−1

Average downward longwave radiative flux MJ m−2 d−1

Wind speed at 10 m above the surface of the earth m s−1

Minimum air temperature at 2 m above the surface of the earth °C d−1

Maximum air temperature at 2 m above the surface of the earth °C d−1

Dew-point temperature at 2 m above the surface of the earth °C d−1

Relative air humidity at 2 m above the surface of the earth %

Rainfall precipitation (P) mm d−1

Calculateda Effect of temperature on radiation-use efficiency –

Evapotranspiration (ETP) mm d−1

Atmospheric water deficit P-ETP mm d−1

Deficit of vapor pressure kPa d−1

Slope of saturation vapor-pressure curve kPa C° d−1

Temperature range °C d−1

Global solar radiation based on latitude and Julian Day MJ m−2 d−1

aEnvironmental data were collected, processed, and organized by time intervals (phenology) using the
functions get_weather(), summaryWTH(), and W.matrix() from the EnvRtype package.
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variables describing ecophysiological processes (e.g., eva-
potranspiration, the impact of air temperature on radiation-
use efficiency) were computed as extensively described by
Allen et al. (1998) and Soltani and Sinclair (2012). Finally,
to capture the temporal variation of the environmental
information across crop development, the crop cycles were
divided into five time intervals:

● From 0 DAE (emergence day) to 14 DAE (appearance
of the first leaf, V1).

● From 15 DAE (V1) to 35 DAE (appearance of the fourth
leaf, V4).

● From 36 DAE (V4) to 65 DAE (tasseling stage, VT).
● From 66 DAE (VT) to 90 DAE (kernel milk stage, R3).
● From 91 DAE (R3) to 120 DAE (physiological maturity).

These time intervals were defined based on agronomic
knowledge of how tropical maize grows in Brazil’s envir-
onments. For each variable–phenology combination, we
calculated the first (25%), second (50%), and third (75%)
percentiles of each combination of environmental vari-
able × time interval across different environments. By using
three percentiles, we hope to better capture the statistical
distribution of each environmental variable in order to better
represent the similarities between environments. In this
sense, each combination of environmental variable × time
interval × quantile has become an envirotype descriptor of
the environmental relatedness. Finally, quality control was
done by removing covariables with more than 3 ± SD,
where SD is the standard deviation of the covariables across
environments (Morais Júnior et al. 2018). This envirotyping
pipeline was developed using the core of functions present
in the R package EnvRtype (available at https://github.
com/allogamous/EnvRtype [verified 05 July, 2020]).

Maize data

The phenotypic data consisted of grain yield (ton/ha) records
collected from two data sets of tropical maize hybrids in
Brazil (HEL and USP). Both sets include data from Souza
et al. (2017) that have been used in previous proof-of-concept
studies. Details about the experimental design, cultivation
practices, and fundamental statistical analysis are given in
Souza et al. (2017) and Alves et al. (2019). Below, we
summarize the number of hybrids, the number of environ-
ments, and the genomic and envirotyping data used.

Phenotypes, genotypes, and environmental
covariables for the HEL data set

The HEL data set is based on the germplasm developed by
the Helix Seeds Company (HEL) in South America. It
includes a set of 247 maize hybrids from a core of 452

F1 hybrids obtained by crossing 106 inbred lines. Those
hybrids were evaluated in 2015 in five sites in Brazil
(S1–S3 in the southern region and S4–S5 in the mid-west
region). Parent lines were genotyped with an Affymetrix
Axiom Maize Genotyping Array of 616 K SNPs (single-
nucleotide polymorphisms) (Unterseer et al. 2014). Then,
standard quality controls (QC) were applied to the data, by
removing markers with a call rate ≥0.95. After this process,
the remaining missing data in the lines were imputed with
the Synbreed package (Wimmer et al. 2012) using the
algorithms from the Beagle 4.0 software (Browning and
Browning 2008). Finally, markers with a minor allele fre-
quency (MAF) of ≤0.05 were removed, resulting in a total
of 52,811 high-quality SNPs. Souza et al. (2017) described
both phenotypic and genomic data of inbred lines credited
to the Helix Seeds Ltda. Company. According to the geo-
graphic coordinates, environmental data were collected for
each of the five sites (Supplementary Table S1). At the end
of the process described in the “Environmental typing”
section, 243 envirotype covariables were obtained (combi-
nations of environmental variables × time intervals ×
percentiles).

Phenotypes, genotypes, and environmental
covariables for the USP data set

The USP data set is based on the germplasm developed by
the Luiz de Queiroz College of Agriculture of the Uni-
versity of São Paulo (USP), Brazil. From 2016 to 2017, a
partial diallele experiment involving 49 inbred lines
resulting in 906 F1 hybrids was conducted, and 570 of those
hybrids were evaluated across eight environments (E1–E8),
involving an arrangement of 2 locations, 2 years, and 2
nitrogen levels. The two sites used in this study involved
two distinct biomes with different edaphoclimatic patterns,
i.e., Piracicaba (Atlantic Forest, clay soil) and Anhumas
(Savannah, silt–sandy soil). At each site, two contrasting
nitrogen (N) fertilization levels were used. One experiment
was conducted under ideal N conditions and received
100 kg ha−1 of N (30 kg ha−1 at sowing and 70 kg ha−1 in a
coverage application at the V8 plant stage), while the sec-
ond experiment under low N conditions received only
30 kg ha−1 of N at sowing. As described in the HEL data
set, the parent lines were genotyped with an Affymetrix
Axiom Maize Genotyping Array of 616 K SNPs. Markers
with a minor allele frequency (MAF) of ≤0.05 were
removed. After all QC procedures, a total of 54,113 high-
quality SNPs was available for predictions. Environmental
data were collected for each of the two sites and 2 years
according to the planting date and geographic coordinates
(Supplementary Table S1). A nitrogen-management vari-
able was inserted, designating the amount of nitrogen
applied in the development cycle (ideal N= 100; low
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N= 30). At the end of the process described in the
“Environmental typing” section, a total of 248 envirotype
covariables was obtained.

Kernel methods

In this study, we tested three methods to estimate the rela-
tionship kernels for additive effects (KA), dominance
deviations (KD), and envirotype-informed environmental
relatedness (KW). The additive effects were modeled from
the molecular data, assuming A= {0= A2A2; 1= A1A2;
2= A1A1}. Dominance deviations were computed by recod-
ing the matrix of molecular markers for each individual as
D= {−2fl

2= A2A2; 2f(1− fl)= A1A2; −2f(1− fl)
2= A1A1}

(Vitezica et al. 2013), where fl is the frequency of the
favorable allele at locus l. Finally, the envirotyping-based
matrix W (q environments × k covariables), with w ~
N(0,1), was constructed by mean-centering and scaling the
environmental information (Environmental typing section).
Each of the three-kernel methods is detailed below.

Benchmark genomic best unbiased predictor

The first method is the traditional GBLUP (GB), where we
obtained the covariance matrix from the following expres-
sion:

GB : K ¼ XX0

trace XX0ð Þ=nrow Xð Þ ;

where K is a generic representation of the relationship
kernel (KA, KD, and Kw), and X is a generic representation
of the molecular or envirotyping-informed matrix (A, D,
and W). By nrow(X), we denote the number of rows in the
X matrix. The GB method was also used as a benchmark for
comparisons with the following two methods.

Gaussian kernel

The nonlinear Gaussian Kernel (GK) method was the sec-
ond type of kernel method used in this study. Unlike GB,
this kernel is estimated from an exponential relation based
on the Euclidean distance D2

ii0 ¼
P

k xik � xi0kð Þ2 matrix for
each pairwise element in X= {xi, xi′} pondered by its
median (a scalar variable, Q) and a bandwidth parameter (a
scalar variable, h) that controls the rate of decay of the
covariance between individuals, resulting in

GK: K ¼ exp hD2
ii0=Q

� �
;

where the diagonal of the GK-based covariance matrix is
equal to 1. The bandwidth parameter (h) was estimated for
each relationship kernel (KA, KD, and KW) following the
marginal function described in Pérez-Elizalde et al. (2015).

Deep kernel

The arc-cosine kernel (referred to here as DK) is the third
kernel method tested in this study. Cuevas et al. (2019) and
Crossa et al. (2019) introduced the use of deep kernels in
genomic prediction for multiple environments based on the
additive relationship effects. Here we introduce the frequent
use of DK for the joint modeling of additive, dominance,
and reaction-norm kernels.

The general formulation of the DK method is based on
the proposition of Neal (1996) for a Bayesian method for
deep artificial neural networks (ANN). After that, Wil-
liams (1998) and Cho and Saul (2009) established the
relationship between the DK method and a deep neural
network with one hidden layer. In this context, the DK
method aims to emulate a deep-learning approach,
exploring the relationship between individuals within an
X matrix of inputs (e.g., molecular markers, near-infrared
data) through the angle (θi,i′) between two designed vec-
tors of individuals (xi ⋅ xi′):

θi;i0 ¼ cos�1 xi � xi0
kxikkxi0 k

� �
;

where ⋅ denotes the inner product, and ||xi|| is the norm of
hybrid i. Cuevas et al. (2019) described a maximum
marginal likelihood method used to select the number of
hidden layers (l) for the DK kernel. As described by Cuevas
et al. (2019), the following kernel is positive semidefinite
and related to an ANN with a single hidden layer, in which
Cho and Saul (2009) describe the activation function as

DK1 xi; xi0ð Þ ¼ 1
π
kxikkxi0 kJ θi;i0

� �
;

where π is the pi constant and J(θi,i′) is computed by
J(θi,i′)= [sin(θi,i′)+ (π− θi,i′)cos(θi,i′)]. The DK1 is the
base kernel defined by a symmetric positive semidefinite
matrix, capable of preserving the norm of the entries such
as DK(xi, xi)= ||xi||

2, and DK(xi,− xi)= 0 models the
nonlinear and orthogonal relationships. Cho and Saul (2009)
and Cuevas et al. (2019) present a recursive relationship
approach to shape a basic DK1 into a final DK-emulating
ANN hidden layer (l), repeating l times the interior product

DK: K ¼ DK lþ1ð Þ xi; xi0ð Þ ¼ 1
π

DK lð Þ xi; xið ÞDK xi0 ; xi0ð Þ
h i1

2
J θ lð Þ

i;i0

� �
;

where θ lð Þ
i;i0 ¼ cos�1 DK lð Þ xi; xi0ð Þ DK lð Þ xi; xið ÞDK xi0 ; xi0ð Þ� 	


�1
2g. Thus, computing DK(l+1) at level (layer) l+ 1 is done

from the previous layer DK(l). To select the number of
hidden layer l to fill this process for each relationship kernel
(KA, KD, and KW), at each cross-validation fold, we adopted a
maximum likelihood method described by Cuevas et al. (2019).
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Statistical models

The merit of including additive effects (KA), dominance
deviation (KD), GE interaction (KAE and KDE), and
envirotyping-based kinships (KW, KAW, and KDW) to esti-
mate reaction norms in MET was assessed using five WGP
models. A description of each model structure is given
below.

Model 1: main additive-effect model (EA)

The main additive-effect model (EA) is our benchmark
baseline; it is also the simplest modeling structure for WGP
in multi-environment trials, following:

y ¼ 1μþ ZEβþ ZAuA þ ε; ð1Þ
where y= [y1,⋯,yn]′ are the vectors of observations
collected in each of the q environments with p hybrids,
and 1μ+ZEβ is the general mean and the fixed effect of the
environments with the incidence matrix ZE. Genetic
variations are modeled by the main additive effects (uA),
with uA ~ N(0,Jq⊗KAσ2A), where ZA is the incidence matrix
for additive effects (absence= 0, presence= 1), Jq is a q × q
matrix of 1 s, σ2A is the variance component for additive
effects, and ⊗ denotes the Kronecker Product. Residual
deviation (ε) was assumed as ε ~N(0, Inσ2), where n is the
number of genotype–environment observations.

Model 2: main additive plus dominance effects
(EAD)

Model EAD (Eq. 2) is a version of model (1) that includes
the dominance-deviation effects, as follows:

y ¼ 1μþ ZEβþ ZAuA þ ZDuD þ ε; ð2Þ
where ZD is the incidence matrix for dominance effects. Note
that ZA and ZD are the same incidence matrix for genotypic
effects. However, we included the respective acronyms A
and D to facilitate the understanding that we are modeling
two different genetic-based sources: additive random varia-
tion (as described in 1), and dominance random variation
(uD), with uD ~N(0,Jq⊗KDσ2D), where σ2D is the variance
component for dominance effects.

Model 3: main-effect EAD plus GE deviation
(EAD+GE)

The third model (EAD+GE, Eq. 3) is an update of model
(2) accounting for the main effects (uA and uD) plus gen-
otype × environment interaction (GE). The inclusion of two
multiplicative effects modeled these GE effects, one for
additive × environment (AE= uAE) interaction and the

second for dominance × environment (DE= uDE) interac-
tion:

y ¼ 1μþ ZEβþ ZAuA þ ZDuD þ uAE þ uDE þ ε; ð3Þ
where uAE � N 0;KAEσ2AE

� �
and uDE � N 0;KDEσ2DE

� �
,

where KAE ¼ ZEIqZ0
E � ZAKAZ0

A and KDE ¼ ZEIqZ0
E�

ZDKDZ0
D, and where σ2

AE and σ2
DE are the variance

components for AE and DE interaction effects, respectively,
as suggested by Jarquín et al. (2014), Lopez-Cruz et al.
(2015), and Souza et al. (2017); Iq is an identity matrix
denoting a lack of environmental relatedness, and ⊙ denotes
the Hadamard product.

Model 4: main-effect EAD with main envirotype
information (EADW)

The next two models are updates of models 2 and 3,
including nongenetic information (W) from envirotyping
data. Jarquín et al. (2014) introduced a strategy to integrate
these data in WGP by using environmental covariables to
estimate an environmental relatedness kinship (KW) for q ×
q environments. Thus, the objective of including the W
effects is to bridge the gap between the pure genomic
information and phenotypic variation observed across the
environments. In this context, we tested the incorporation of
some envirotype–phenotype relations as the main effects
(model 4, Eq. 4) and for GE effects (model 5, Eq. 5 in the
next subsection)

y ¼ 1μþ ZEβþ ZAuA þ ZDuD þ uW þ ε; ð4Þ
where uW � N 0; Jp � KWσ2

W

� �
, σ2

W is the variance com-
ponent related to the variation due to envirotype data, and
Jp is a matrix of 1 s with dimension p × p.

Model 5: main-effect EADW plus reaction norm for
GE (EADW+GW)

The last model (EADW+GW) is an update of (Eq. 3)
reaction-norm variation based on the genomic × envirotype
effects (GW). In model EADW+GW, we perform the tra-
ditional genomic-enabled reaction norm, but discriminating
the reaction norm due to additive effects (AW= uAW) and
dominance deviations (DW= uDW) as follows:

y ¼ 1μþ ZEβþ ZGuA þ ZGuD þ uW þ uAW þ uDW þ ε;

ð5Þ

where uAW � N 0;KAWσ2AW
� �

and uDW � N 0;KDWσ2DW
� �

,
with KAW ¼ ZEKWZ0

E � ZAKAZ0
A and KDE ¼ ZEKWZ0

E�
ZDKDZ0

D, where σ2AW and σ2DW are the variance components
for AW and DW interaction effects. Note that in (Eq. 3) we
described how to estimate the GE kernels using the Hadamard
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product between fixed environment and genomic sources. At
that point, the GE kernels are estimated using a block diagonal
matrix of genomic effects. In contrast, now in (Eq. 5), we
replace the identity matrix Iq with the envirotype-informed
kinship KW, in which a dense matrix models GW kernels. Then
it is possible to assume that now there are different relationship
levels between genotypes across environments according to the
envirotyping-based kinships.

Assessing prediction accuracy by cross-validation

In this study, three cross-validation schemes were used to
evaluate the predictive ability (PA) of each model–kernel
method combination. The first scheme aimed to quantify the
accuracy of WGP models when predicting new genotypes
within the experimental network, i.e., maize hybrids not yet
tested in any environment. This validation scheme is called
CV1, which was run 50 times using random samplings of
70% of phenotypic information, while the remaining data
were predicted. The second scheme aimed to quantify the
predictability of WGP models under sparse experimental
network conditions. In contrast to CV1, in this scheme
(CV2), the sparse phenotypic information of one genotype
not evaluated in one environment, but evaluated across
other different environments, can help increase PA. For this
scheme, 50 random repetitions were also used, but sampling
70% of the phenotypic information (genotype–environment
combinations) as the training population, and the remaining
30% as the test population. Finally, the third scheme aimed
to quantify WGP models’ ability to predict new environ-
mental conditions. For this, we adopted a leave-one-
environment-out scheme (CV0).

PAs were evaluated at two levels: (1) the model level, in
which we computed Pearson’s correlation between
observed (y) and predicted values (by) and, finally, for CV0,
the general average of these correlations, and (2) the gen-
otype level, in which we computed the predictability related
to the observed and predicted performance of a genotype in
all environments. The standard error (SE) was computed for

each average PA following SD ¼ SD�
ffiffiffiffiffiffiffiffiffiffiffi
1
n þ n2

n1

q
, where SD

is the standard deviation of the correlations, n= pq for p
genotypes (hybrids) and q environments, and n1 and n2
denote the size of the training and testing populations for
each CV scheme (Bouckaert and Frank 2004).

Hierarchical Bayesian modeling

Genomic predictions were performed using the Bayesian
Genotype plus Genotype × Environment (BGGE) package
(Granato et al. 2018). This package contains a function
called “BGGE()” that solves mixed linear models through
hierarchical Bayesian modeling. Below, we briefly describe

the main distributions and priors used by this package. First,
each variance–covariance matrix (K) is reparametrized
using an eigen-decomposition procedure suggested by De
Los Campos et al. (2010), K=USU′ where S is a diagonal
matrix with n nonzero eigenvalues and U is an orthogonal
matrix with eigenvectors; hence, an orthogonal transfor-
mation suggested by Cuevas et al. (2014). In this transfor-
mation, the phenotypic parametrization is represented as
d=U′y, and any kernel-based random effect (b=U′u) and
error variation (e=U′ε) is now represented into a repar-
ameterized normal distribution as b � N 0;U0KUσ2u

� � ¼
N 0; Sσ2u
� �

and e � N 0;U0U2
ε

� � ¼ N 0; Iσ2ε
� �

. Both pro-
cesses are employed to increase the computational effi-
ciency of the subsequent steps. Thus, the distribution of the
transformed data is now given by

f djb; σ2ε
� � ¼ Yn

i¼1

N dijbi; σ2ε
� �

;

where the acronym i now denotes each random effect
(variance–covariance) considered (e.g., for additive, dom-
inance, and envirotyping data). As this Bayesian linear
model assumes p ujσ2u

� � ¼ N uj0;Kσ2u
� �

, the conditional of

any bi is given as p bijσ2u
� � ¼ N bij0; σ2usi

� �
, where si are the

eigenvalues. Thus, the BGGE package assumes that
conjugate prior distribution of σ2u and σ2ε is given by inverse
chi-squared with p σ2u

� � � χ�2 νu; Scuð Þ and p σ2ε
� � �

χ�2 νε; Scεð Þ, respectively, in which vu and vε denote the
degree of freedom, and Scu and Scε the scale factors for u
and e. Then, the joint posterior distribution J ¼ b; σ2u; σ

2
ε

� �
,

given the parameters (P= d, vu, vε, Scu, Scε and S), is

pðJ j PÞ /
Yn
i¼1

N di j bi; σ2ε
� �

N bi j 0; σ2usi
� �( )

� χ�2 σ2u j vu; vuScu
� �� χ�2 σ2ε j vε; vεScε

� �
Finally, BGGE uses the Markov chain Monte Carlo

(MCMC) procedure to generate the conditional distributions
through a Gibbs sampler. Details of this package and
functions are given in Granato et al. (2018). For all com-
binations of model and kernel methods tested in this study,
the MCMC through a Gibbs sampler was performed for
10,000 iterations with the first 1000 cycles removed as
burn-in with thinning equal to 2.

Results

Differences in explaining the sources of variation

When including new sources of variation, as well as when
modeling these sources by different kernels, it is expected
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that differences in the proportion of variance explained by
WGP can be detected (Fig. 1 and Supplementary Tables S2
and S3).

Additive effects (A) are the main source of genomic
variation in all models. In the EA model, the A effects are
best explained by the DK (HEL set) and GK (USP set)
kernels. The inclusion of D effects increased the genomic
prediction ability to explain phenotypic variation. In the
additive-dominant model (EAD), the use of GK was more
efficient in capturing dominance effects (D, light-blue color
in Fig. 1) in both data sets. For the HEL set, using the DK
kernel to model dominance effects resulted in an increase in
the additive genomic variance and a reduction in the resi-
dual variance. In the USP set, the dominance effects were
better modeled by GK, while the traditional GB kernel
captured the total genomic effects (A+D) better.

The biggest differences between kernel methods were
observed in the most complex models involving GE inter-
action and envirotyping data. In GB, it is possible to verify
that the interaction between home and environment (DE,
light-green color in Fig. 1) was an important variation to
describe the phenotypic variance in the tests. In general
terms, in models with GE interaction (GE=AE+DE), the
GK kernel was more efficient in explaining the main additive
and dominant effects in both sets. However, for the HEL set,
the DK kernel was more efficient in reducing the residual
variance by capturing the effects of additive × environment
interaction (green color in Fig. 1) better. Upon comparing
GB with GK and DK, these last two kernels increased the
variance explained by the genomic prediction model.

Reaction-norm models tend to capture a large amount of
variance and drastically reduce the residual error. The
inclusion of the main effect of envirotyping-informed rela-
tionships (W, orange color in Fig. 1) produced similar
results as those observed for models with EAD+GE
effects. There was a drastic reduction in the residual var-
iation of EADW benchmarked with the EAD model for all
models and kernels. In models involving the reaction norm

for the effects of GW=AW+DW (model 4, EADW+
GW) for the HEL set, there was an increase in the capacity
of the models to explain D effects using GB and GK,
especially in the reaction norm for dominance (DW, purple
colors in Fig. 1) using GB. When a reaction norm for AW+
DW is integrated, most of the phenotypic variance is
explained by nongenomic effects from W. For the USP data
set, the DK kernel was more conservative in modeling W
effects; in contrast, it was better able to model the main A,
D, and AW interaction. Despite this, it was the model
whose proportion of residual variance was the highest.

Computational efficiency

The processing time of the models is a key issue for their
widespread use in WGP–MET. All the benefits of complex
models involve different genomic and environmental
structures, but are computationally costly and unlikely to
achieve wide approval by plant breeders. Here we calcu-
lated the processing time of a Bayesian Markov chain
involving 10,000 iterations for each model and kernel
method combination involving all the phenotypic data of
p hybrids in q environments in both data sets (Table 2).

As expected, more complex models tend to take more
processing time, which can range from 47 s (EA) to 330 s
(EADW+GW) in smaller data sets like HEL (q= 5, p=
247), or 660 s (EA) and up to 4368 s (EADW+GW) in
larger data sets, such as USP (q= 8, p= 570). In the sim-
plest model (EA), GB is faster than GK and DK in both
sets. However, as the complexity of the models increases,
GB becomes increasingly slower than DK and GK. The DK
kernel is significantly faster than GB and GK, even running
the same Markov chain in 39% less time than GB. It is
possible to run more complex models using GK and DK in

Fig. 1 Partition of the variance components related to the different
genetics, environmental, and residual sources of variation. Each
panel is based on the combination of the five WGP models (vertical
titles) built with the three different kernel methods (x axis) over HEL
and USP data sets (horizontal titles).

Table 2 Total time (in seconds) to execute a Markov chain containing
10,000 iterations using the BGGE package for each combination of
genomic prediction model, kernel method, and maize data set.

Set Model GB GK DK

HEL EA 47 58 (+19%) 54 (+13%)

EAD 97 101 (+4%) 88 (−10%)

EAD+GE 134 139 (+4%) 126 (−6%)

EADW 175 139 (−26%) 126 (−39%)

EADW+GW 330 294 (−12%) 280 (−18%)

USP EA 660 718 (+8%) 655 (−1%)

EAD 1442 1341 (−8%) 1360 (−6%)

EAD+GE 1684 1585 (−6%) 1600 (−5%)

EADW 2440 1884 (−30%) 2202 (−11%)

EADW+GW 4368 3800 (−15%) 4087 (−7%)

Values in parentheses denote the relative gain/reduction in computa-
tional time using GK and DK in comparison with the same model
based on GB.
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similar time as simpler models using GB. For the USP set, it
was possible to see that GK was faster than DK under most
scenarios, even running a more complex model with
environmental data and additive-dominant effects (EADW)
at almost the same speed as a traditional GE interaction
model via GB.

Accuracy in the HEL set

Table 3 presents the results from the three cross-validation
schemes (CV1, CV2, and CV0) for each model–kernel
method combination in the HEL set. For CV1 and CV2, the
simplest model structures (EA and EAD) were unable to
produce an accurate prediction of grain yield concerning the

most complex models (EAD+GE, EADW, and EADW
+GW). The inclusion of D effects (EAD) led to an increase
in PA for CV1 schemes. In contrast, there was a reduction
in PA for CV2 when the main D effects were included
(EAD model). For the EA and EAD models, there were no
great differences in PA between the three-kernel method
adopted in both CV1 and CV2 schemes.

For the most complex models, however, there was a drastic
difference between kernel methods. For model 3 (EAD+
GE), the GB was unable to reproduce the GE effects of AE
and DE interactions. On the other hand, the GK and DK
kernels satisfactorily exploited the AE+DE effects, trans-
lating model complexity in PA, with increments ranging from
54% (DK at CV1) to 73% (GK at CV2) compared with the
baseline EA model. EAD+GE outperformed the best GB-
based models for both CV1 and CV2 schemes (EADW, with
r= 0.832 for CV1 and r= 0.839 for CV2) based on GK (r=
0.871 in CV1 and r= 0.892 in CV2). The reaction-norm
models (EADW and EADW+GW) using DK were similar
to the GB models for both CV1 and CV2, but it took less
computational time to run them (see Table 2).

The results for CV0 are presented in the last part of Table 3.
As expected, the PA values were higher than CV1 and CV2
because this scheme uses much more phenotypic informa-
tion than the other schemes. However, in CV0, it faced the
problem of predicting the performance of the hybrids in an
entirely new environment. All GK- and DK-based models
outperformed the GB models. The use of complex struc-
tures from environmental data was useful for GB kernels,
but in contrast, modeling structures based on GK and DK
led to a similar result just by the inclusion of dominance
effects (EAD for DK) and GE interaction (EAD for GK and
DK). In summary, it was possible to achieve the same
results for reaction-norm GB using dominance effects or GE
interaction in DK.

Accuracy in the USP set

Table 4 shows the results from the three cross-validation
schemes (CV1, CV2, and CV0) for each model–kernel
method combination in the USP set. As expected, the PA
values were higher for CV0, followed by CV2 and CV1. In
this last scheme, the inclusion of D effects led to an
increment in PA for all kernels, except GK. As observed in
the HEL set, model 3 (EAD+GE) based on GB was not
satisfactory in exploring GE interaction. PA values were
higher in models including nongenetic effects derived from
envirotyping data (EADW and EADW+GW) than in pure
genomic models (EA, EAD, and EAD+GE). In CV1, the
best GB model (EADW+GW) was the same as the EAD
+GE model using GK and DK. This last kernel led to
greater PA values when some envirotyping data were used
(r= 0.822 for EADW and r= 0.818 for EADW+GW).

Table 3 Average correlations between predicted and observed values
for grain yield (tons per ha) using five statistical models, three kernel
methods, and cross-validation schemes (CV1, CV2, and CV0) for a
HEL maize set with 247 hybrids in five environments.

CV Kernel Model

EA EAD EAD+GE EADW EADW+GW

CV1 GB 0.247 0.345 0.220 0.832 0.819

(0.028) (0.023) (0.037) (0.007) (0.006)

– 28% −12% 70% 70%

GK 0.306 0.350 0.871 0.831 0.824

(0.024) (0.021) (0.006) (0.016) (0.007)

– 13% 65% 63% 63%

DK 0.305 0.338 0.669 0.822 0.819

(0.016) (0.020) (0.019) (0.008) (0.007)

– 10% 54% 63% 63%

CV2 GB 0.231 0.208 0.132 0.839 0.824

(0.033) (0.026) (0.041) (0.007) (0.007)

– −11% −75% 73% 72%

GK 0.240 0.197 0.892 0.838 0.835

(0.029) (0.025) (0.008) (0.017) (0.007)

– −22% 73% 71% 71%

DK 0.209 0.172 0.734 0.839 0.836

(0.022) (0.031) (0.006) (0.009) (0.009)

– −21% 72% 75% 75%

CV0 GB 0.402 0.558 0.551 0.567 0.537

(0.059) (0.045) (0.046) (0.041) (0.046)

– 28% 27% 29% 25%

GK 0.505 0.560 0.569 0.568 0.567

(0.055) (0.047) (0.034) (0.041) (0.042)

– 10% 11% 11% 11%

DK 0.533 0.570 0.571 0.572 0.569

(0.064) (0.049) (0.036) (0.042) (0.041)

– 7% 7% 7% 6%

Standard error values (SE) and the predictability gains in relation to the
baseline model (EA) are given parentheses and %, respectively. Bold
numbers denote the best models for each kernel method.
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The DK method was also efficient in exploring the main
D effects (r= 0.338 in EAD) and GE interaction (r= 0.669
in EAD+GE, an increment of 54% compared with the EA
model). However, in the CV2 scheme, it was possible to see
how the DK method was efficient in providing a more
computationally efficient approach that captures AE+DE
effects better. Model EAD+GE based on DK achieved the
highest PA value for all CV schemes (r= 0.891), while the
best GB model (EADW+GW) had a PA value equal to r=
0.731. GK was also efficient in exploring genomic AE+DE
effects (r= 0.733) and the inclusion of nongenomic
reaction-norm effects (r= 0.751). Finally, in CV0, it was
possible to measure the models’ ability to predict novel

environments. The DK outperformed the GK and GB ker-
nels and produced more precise predictions incorporating
D, GE effects, and envirotyping data.

Resolution of genomic prediction for specific
hybrids

Most studies involving WGP–MET only assess the accu-
racy of the models in predicting the entire data set over a
specific cross-validation scenario, as presented in the pre-
vious sections. Here we introduce the concept of resolution
of the WGP models by evaluating the models’ ability to
reproduce the phenotypic performance of specific maize
hybrids within MET. The phenotypic data used as a training
set in these models were obtained from (q− 1) environ-
ments, where the one-environment-out is a novel growing
condition in which the hybrid was not tested (CV0). Thus,
the following results are a scenario in which maize breeders
have already evaluated the genotypes across MET, but are
interested in making predictions of the phenotypic perfor-
mance of desirable target hybrids.

Figure 2 presents the PA values for specific hybrids
(rows) (Fig. 2a) and the typology (distribution pattern) of
those predictions for each model–kernel method

Table 4 Average correlations between predicted and observed values
for grain yield (tons per ha) using five statistical models, three kernel
methods, and cross-validation schemes (CV1, CV2, and CV0) for a
USP maize set with 570 hybrids in eight environments.

CV Kernel Model

EA EAD EAD+
GE

EADW EADW+
GW

CV1 GB 0.306 0.328 0.287 0.658 0.669

(0.019) (0.018) (0.020) (0.010) (0.009)

– 7% −7% 53% 54%

GK 0.324 0.323 0.673 0.671 0.689

(0.018) (0.017) (0.009) (0.010) (0.009)

– 0% 52% 52% 53%

DK 0.305 0.338 0.669 0.822 0.819

(0.016) (0.02) (0.009) (0.008) (0.007)

– 10% 54% 63% 63%

CV2 GB 0.339 0.367 0.316 0.714 0.731

(0.015) (0.012) (0.016) (0.005) (0.006)

– 8% −7% 53% 54%

GK 0.370 0.362 0.733 0.730 0.751

(0.013) (0.012) (0.005) (0.005) (0.005)

– −2% 50% 49% 51%

DK 0.349 0.349 0.891 0.724 0.745

(0.014) (0.014) (0.008) (0.007) (0.006)

– 0% 61% 52% 53%

CV0 GB 0.335 0.425 0.427 0.489 0.515

(0.014) (0.015) (0.016) (0.088) (0.105)

– 21% 22% 32% 35%

GK 0.406 0.429 0.456 0.498 0.493

(0.015) (0.015) (0.021) (0.098) (0.090)

– 5% 11% 19% 18%

DK 0.403 0.428 0.458 0.526 0.566

(0.015) (0.016) (0.034) (0.098) (0.092)

– 6% 12% 23% 29%

Standard error values (SE) and the predictability gains in relation to the
baseline model (EA) are given in parentheses and %, respectively.
Bold numbers denote the best models for each kernel method.

Fig. 2 Resolution of the genomic-enabled models and kernel
methods in predicting genotypes in novel environments. a Pre-
dictive ability of specific hybrids (each row) involving (q− 1) tested
environments plus a one novel environment for sets HEL and USP,
respectively; b typology of predictive abilities for sets HEL and USP,
respectively. Predictive ability values are represented from warm
colors (red, worst results) to cold colors (blue and purple, better
results).
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combination (Fig. 2b) and each data set (HEL and USP).
For both data sets, it is possible to observe that different
model–kernel method combinations can predict different
hybrids (Fig. 2a). The same hybrid can be well predicted by
a simpler model, but not predicted by a more complex
model. In contrast, the inclusion of more complex struc-
tures, such as the reaction norm, may not always lead to a
better description of a target hybrid. For this reason, we
analyzed the typology of those predictions (Fig. 2b), aiming
to observe which model–kernel method combinations are
more accurate in reproducing most of the hybrids.

The simplest modeling structures (EA and EAD) are
incapable of reproducing the performance of almost 50% of
the hybrids in both sets (green colors in Fig. 2a and red
colors in Fig. 2b). For those models, the use of any kernel
method has led to almost the same result. The greatest
differences are observed when genotype × environment
(GE) interaction effects are included (EAD+GE). GB was
the worst kernel method for exploring the GE effects and
translating them into a higher resolution of WGP. GK was
the best kernel method, as shown in the blue color of Fig. 2a
and yellow bars in Fig. 2b. DK was very efficient in the
USP set, but it was not observed in the HEL set. An
explanation of that may be that the DK was overfitted for
the HEL set, with a smaller sample of phenotypic data.

The higher resolution of WGP was achieved by the
inclusion of envirotyping-based data to model the main
environmental effects (EADW) or reaction-norm variation
(EADW+GW) into the additive-dominance models. For
the HEL set, the EADW model with DK was the best
modeling approach, with the highest PA values (blue and
dark-blue colors in Fig. 2a) and with less than 4% of the
hybrids not well predicted (values above 0, red bars in Fig. 2b).
The most frequent PA type had values from 0.26 to 0.50
(green colors in Fig. 2b). For the USP set, all kernel
methods drastically improved the resolution of WGP for
both EADW and EADW+GW models (Fig. 2a). The
model–kernel method differences were better represented in
the EADW and EADW+GW panels in Fig. 2b. GK out-
performed GB in increasing the frequency of higher PA
values (green and blue bars in Fig. 2b). In the same way,
DK outperformed GK for both EADW and EADW+GW
models. The typology of the EADW+GW model based on
DK presents negative PA values at a frequency of less than
3%. Conversely, the predominant type is between 0.26 and
0.50 (~50% of the hybrids) and values between 0.51 and
0.75 (~20% of the hybrids).

Accuracy trends for novel environments

Based on the results presented in the previous section, we
selected six model–kernel method combinations to be
jointly evaluated in terms of their capacity to predict novel

environments (Fig. 3). It was difficult to determine which
models were better in the less predictable environment (S4,
from the HEL set). However, as the predictability of
environments increases, it is possible to better understand
how different kernel methods and models can reproduce the
phenotypic information of a novel environmental condition.
The use of the main-effect additive-dominant GB (GB-
EAD, red dotted line in Fig. 3) was the most unstable fra-
mework in CV0. In contrast, the incorporation of envir-
otypic data (GB-EADW, green dotted line in Fig. 3) was
responsible for increasing the PA for less predictable
environments and stabilizing the response of the additive-
dominant model in reproducing novel environments.

The GB-EADW model had a similar performance as
models DK-EADW (solid green line in Fig. 3) and GK-
EAD+GE (golden dashed line in Fig. 3). In contrast to the
other models, the inclusion of the AW and DW effects (blue
lines) combined with the GK (dashed blue line) and DK
(solid blue line) kernels increased the PA for all environ-
ments, especially for E2, E3, and E6, corresponding to ideal
N conditions in Piracicaba in 2016, low N conditions in
Anhumas in 2016, and ideal N conditions in Piracicaba in
2017. Between these two reaction-norm models, the GK
outperformed the DK and achieved higher PA values for
most of the environments.

Discussion

In this study, we presented the first report on (1) the joint
modeling of additive and dominance effects with reaction-
norm variation, (2) the modeling of these effects performed
by Gaussian Kernel and Deep Kernel, and (3) their com-
parison with benchmark GBLUP-based modeling. We

Fig. 3 Joint accuracy trends of best combinations of kernel method
and model in predicting novel environments (CV0) for both maize
data sets (HEL and USP). On the X axis, the environments were
ordered from less predictable (S4) to higher predictable (S3). Envir-
onments with the acronym S denote sites (from 1 to 5, in the HEL set)
and with E denoting environments (from 1 to 8, in the USP set).
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reported that the Gaussian Kernel and Deep Kernel out-
performed GBLUP in reducing the computational time, and
increased the PA for all testing scenarios in tropical maize.
Below, we discuss how the use of dominance effects and
envirotyping-aided reaction-norm modeling is the main
bottleneck for increasing PA in GBLUP-based models over
MET. In addition, we suggest that the Gaussian Kernel is
the best alternative to model dominance variation and
translate it into PA gains. Finally, we discuss that Deep
Kernels also have greater potential to be used on large-scale
genomics and “enviromics” (the core of envirotyping-based
big data). They are faster, capture better additive and
dominance effects, and have greater predictive accuracy
than other kernels under several prediction conditions faced
by maize breeders in the development of hybrids.

Importance of dominance effects in GBLUP

In all the predicted scenarios evaluated (CV1, CV2, and
CV0), the models integrating both genomic and envir-
otyping data tended to have better ability to reproduce the
phenotypic performance of maize hybrids. As reported in
other studies in plants, the inclusion of dominance effects in
traditional WGP–MET resulted in increased predictive
accuracy in models based on GBLUP compared with other
methods. Azevedo et al. (2015) showed that GBLUP-based
models outperform methods such as Ridge Regression (e.g.,
BayesA, Bayes/LASSO) in modeling A+D genetic effects
in simulated populations. Dias et al. (2018) demonstrated
that GBLUP models containing A+D effects doubled the
predictive capacity for grain yield in maize under diverse
environmental conditions, such as environments with lim-
ited water availability (i.e., drought-stress screening trials).
In a study based on simulations for a pine-breeding popu-
lation, De Almeida Filho et al. (2016) suggest that the gains
in predictive capacity obtained by the A+D model com-
pared with the model based only on A are only relevant if
the D effects explain at least 20% of the phenotypic var-
iation. Here we show that not only the main D effects but
also their interaction with the environment (D+DE and D
+DW) was responsible for 25–40% of the phenotypic
variation in both maize sets. This can explain the excellent
results found in this study, especially when the GK and DK
kernels, better able to capture such effects, are used in the
prediction. Despite the aforementioned factors, the inclu-
sion of D effects is essential for the accurate modeling of
phenotypic variation in species with some degree of het-
erosis (Technow et al. 2014), such as in this study using F1
single crosses.

For the prediction of new environments (CV0) in our
study, we observed a leap in accuracy from 0.402 to 0.558
(+39%) in HEL, and from 0.335 to 0.425 (+27%) in USP,
which can be explained by the fact that dominance effects

are important for controlling the stability and adaptability of
single-maize hybrids, making them more predictable.
However, without any envirotyping data, the possible
accuracy achieved by those models for grain yield is lim-
ited. This trait is quantitatively inherited, controlled by
many genes of small effects, and has strong epistatic rela-
tionships with several other traits highly influenced by the
environment, such as the number of grains per ear and ear
size. In this sense, within MET, the use of dominance
effects produced by a covariance-based kinship may not be
enough. Details about how dominance effects were better
modeled using Gaussian kernel and Deep kernel are dis-
cussed in the next few sections.

Envirotyping data are a limit breaker for MET
GBLUP

For the prediction of novel maize hybrids, the greatest leap
in accuracy in GBLUP was due to the ability to integrate the
envirotyping information in the modeling of the reaction
norm at the level of additive effects (AW) and dominance
deviations (DW). This fact suggests that dominance effects
are indispensable for a deep understanding of the genomic
causes driving genomic × environment (GE) interaction for
each hybrid. In the HEL data set, the models including only
the main effects (EADW) had a performance similar to that
of the models containing GW effects (EADW+GW). This
can be explained by the fact that, in this data set, GE
interaction was not as important as in USP; therefore, the
inclusion of envirotyping data was enough to adjust the
genomic responses according to the degree of similarity
between environments.

In contrast to the reaction-norm models (EADW and
EADW+GW), the GBLUP was not efficient in reproducing
GE interactions in the models assuming that environments
are not related (EAD and EAD+GE). Thus, the inclusion of
envirotyping data (W and GW) may be the only alternative
to breaking the limits of PA achieved in MET–WGP
employing the benchmark GBLUP kernel in maize. The
prediction of novel environments is restricted to models
including envirotyping data, even if the dominance effects
are taken into account. However, despite the higher accu-
racy gains achieved by including W or GW effects, those
models are computationally expensive and were out-
performed by other kernel methods employing the same
molecular and envirotyping data.

DK and GK better model interaction effects

In contrast to GBLUP, both Gaussian kernel and Deep
kernel methods were successful in reproducing genomic ×
environment (GE) interaction, even in those models that
assume that environments are not related. In the case of the
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Gaussian kernel, its higher efficiency in capturing interac-
tion effects from intra-allelic (dominance) and whole GE
interaction may be because such effects are better under-
stood in terms of nonlinear relationships and Euclidean
distances, and not as linear covariances as given in GBLUP.
The use of covariances to estimate an existing relationship
between individuals has its origins in the work of VanRaden
(2008), which focused on modeling pedigree and
additive–genomic effects. On the other hand, the Gaussian
kernel assumes a diagonal equal to 1.0 and an off-diagonal
based on the Euclidean distance regulated by a bandwidth
factor. Thus, the genetic sense of this matrix property for an
F1 hybrid individual is that the effects of dominance are the
highest within an individual. The relationship between
individuals depends on the distance between the effects of
intra-allelic interaction shared between related individuals.
Similarly, the GE interaction corresponds to whole-
genomic effects being differentially activated/deactivated,
for each genotype, as a function of the total existing
environmental inputs (E→GE). The inclusion of envir-
otyping data leads to a deeper understanding of this
dynamic, which is converted as a function of the known
environmental inputs, and of how a particular genomic
response of different genotypes is distanced. On the other
hand, the use of a Deep kernel seeks to model the genomic
relationship matrix based on emulating hidden layers cap-
able of capturing different levels of depth of the same
genomic effect. In this work, we introduced simultaneous
and independent modeling of hidden layers for additive and
dominance effects, which capture different relationship
patterns between individuals based on the phenotypic
information provided in the training set. Unlike the Gaus-
sian kernel, the diagonal elements of the Deep kernel are
not identical (Supplementary Fig. S1–S3), for they express
heterogeneous variances of the genetic and environmental
effects. This may be why the Gaussian kernel overcame the
Deep kernel in the EAD+GE models in CV1 and CV0. As
for CV2, the Deep kernel benefited from the fact that the
borrowing of phenotypic information across multiple
environments helped shape the covariance structure carried
out by the hidden layers.

Approaching envirotype-to-phenotype modeling

In this work, we also introduce the use of the nonlinear
methods (Gaussian kernel and Deep kernel) in the modeling
of genomic and nongenomic (environmental) kinships.
Since the first report of a genomic-enabled prediction con-
sidering the reaction norm, as proposed by Jarquín et al.
(2014), the environmental relationship kernel (KW) was
modeled by the benchmark GBLUP approach. Here we
show that the similarity among environments is better
modeled in terms of Gaussian processes than the

covariance, as traditionally done in GBLUP for modeling
the dominance effects. The use of Deep Kernels is also
favored because the environmental kinship accounted for
based on environmental distances due to nongenomic cov-
ariables, is regulated by the phenotypic information in the
training set, thereby resulting in more accurate modeling of
the envirotype-to-phenotype (E-to-P) dynamics in the pre-
diction of new genotypes and new environments. This
stems from the fact that indirectly, in the phenotype pro-
vided in the training population set, there is a genomic
similarity relationship that determines the E-to-P relation-
ship, part of which is captured by the genomic kernels and
the rest by the environmental kernel. Despite these advan-
tages, both the Gaussian Kernel and the Deep Kernel are
faster, more accurate, and have a better resolution in pre-
dicting specific genotypes than the GBLUP models. In
contrast with other reaction-norm proposals, such as the use
of factorial regression to dissect E–P in secondary traits, the
use of crop-growth models, and the use of envirotyping data
to group environments and target WGP models, here we can
use in a faster way the large-scale envirotypic data
(enviromics) to explore alternative kinships across the
benchmark genomic data.

Large-scale genomics and enviromics with GK or DK

We demonstrate that the use of several sources of genomic
variation (additive+ dominance+GE interaction) guided
by envirotyping is useful for increasing model accuracy.
The use of the Gaussian kernel or Deep kernel makes it
possible to capitalize on these effects, translating them into
a drastic increase in PA, reduction of computational pro-
cessing time, a greater explanation of phenotypic variation,
and reduction of residual variation. New sources of non-
genomic variation can be incorporated into WGP models
through GK or DK to seek greater gains in PA under
WGP–MET, as they are efficient in dealing with large-scale
data. Here we also show that the use of environmental
information through distribution quantiles is efficient for
characterizing environments and, consequently, gives the
kernels the ability to reproduce environmental similarities
that can be explored in prediction. The field of large-scale
enviromics still has a long pathway, but strategies that
integrate E-to-P modeling are a bottleneck to overcome in
genomic prediction, which benchmark GBLUP models are
unable to achieve.

Data repository

All data (phenotypic, genotypic, and envirotypic), Supple-
mentary Material, and codes used in this study are available
at https://github.com/gcostaneto/KernelMethods [verified
27 July, 2020].
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On the previous link, there is a simplified tutorial of
how the kernel methods and statistical models were pro-
grammed in R. We also connected the repositories of
CIMMYT Dataverse [https://data.cimmyt.org/dataset.
xhtml?persistentId=hdl:11529/10887, verified 20 May,
2020] and Mendeley [https://data.mendeley.com/datasets/
tpcw383fkm/3, verified 20 May, 2020] where the full data
sets of HEL and USP are available, respectively.

Data availability

All analyses were conducted using R statistical software (R
Core Team 2019). Data and codes are available at https://
github.com/gcostaneto/KernelMethods [verified 27
July 2020].
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