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Coronary artery disease (CAD) and its complication remain the leading cause of mortality in industrialized countries despite
great advances in terms of diagnosis, prognosis, and treatment options. MicroRNAs (miRNAs), small noncoding RNAs, act as
posttranscriptional gene expressionmodulators and have been implicated as key regulators in several physiological and pathological
processes linked to CAD. Circulating miRNAs have been evaluated as promising novel biomarkers of CAD, acute coronary
syndromes, and acute myocardial infarction, with prognostic implications. Several challenges related to technical aspects, miRNAs
normalization, drugs interaction, and quality reporting of statistical multivariable analysis of the miRNAs observational studies
remain unresolved.MicroRNA-based therapies in cardiovascular diseases are not ready yet for human trials but definitely appealing.
Through this review we will provide clinicians with a concise overview of the pros and cons of microRNAs.

1. Introduction

Approximately every 42 seconds, a US American will suffer
a heart attack. Cardiovascular and cerebrovascular diseases
represent the leading cause of death worldwide, even if death
rates have fallen from 1968 to the present [1]. Moreover, the
lifetime risk for coronary heart disease varies drastically as
a function of risk factor profile. With an optimal risk factor
profile, lifetime risk for CHD is 3.6% for men and <1% for
women; with ≥2 major risk factors, it is 37.5% for men and
18.3% for women [2]. Therefore, a correct identification of
those individuals by specific biomarkers related to diagnosis,
screening, staging, monitoring, surveillance, prognosis, and
treatment selectionwould be of pivotal importance. Genetics,
intermediate phenotype, life-style, and other environmental
triggers are directly involved in the pathogenesis of coronary
artery disease (CAD). The estimated heritability of CAD
ranges from 30 to 60% [3, 4]. Recently, several studies
highlighted that the genetics of CAD largely derives from the
cumulative effect of multiple common risk alleles, empha-
sizing the individual but cumulative small effect size rather
than rare variants with large effects on CAD risk. Despite

this finding, there has been less success in understanding
the function of the novel loci; in fact the majority of these
loci are in noncoding regions of the genome [5]. Even if
most of our genome does not encode for proteins and it
is extensively transcribed anyway, generating non(protein)
coding RNAs. Short noncoding RNAs of approximately 22–
24 nucleotides, microRNAs, are widely recognized posttran-
scriptional gene regulator, while longer (>200 nucleotides)
noncoding RNAs are now also recognized to play important
roles in gene regulation and function [6]. MicroRNAs in
cardiovascular disease are gaining momentum as possible
novel biomarkers in the diagnosis and prognosis of coro-
nary artery disease, acute coronary syndrome, and heart
failure. Nowadays, diagnosis of acute coronary syndrome
relies on symptoms, electrocardiogram abnormalities, and
troponin quantification, with much interest in developing
new rule-out and rule-in strategies or possible new promising
biomarkers. In the literature, there is much ado about a
possible clinical role of microRNAs in coronary heart dis-
ease. We aimed to review the pros and cons of microR-
NAs use in coronary heart disease applied to the clinical
setting.
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Figure 1: MicroRNAs biogenesis and function. In the nucleus, DNA is transcribed into pri-miRNA and then cleaved by Drosha to produce
pre-miRNA in the canonical microRNA biogenesis pathway. Noncanonical biogenesis pathways exist. Pre-miRNA is then moved in the
cytoplasm by Exportin-5 where another RNase III, Dicer cleaves it into amicroRNAduplex, to finally obtain a single strandedmicroRNA.The
microRNA can exercise his action internally or in a cell-to-cell interaction, through convergent or divergentmicroRNApathways. Circulating
microRNAs are usually associatedwith lipoprotein, protein, exosome, andmicrovesicles. See text for further details. Ago-2: Argonaute protein
2; miRNA: microRNA; mRNA: messenger RNA.

2. MicroRNAs

2.1. MicroRNA Biology. In 1993, Lee et al. [7] discovered that
the C. elegans gene lin-4 (a gene controlling the nematode
larval development) did not encode for a protein but for small
noncoding RNAs. A longer one (61 nucleotides) was then
cleaved and folded in a stem-loop of 22 nucleotides. This lin-
4 derived RNAs had antisense complementarity to multiple
sites in the 3-UTR of the lin-14 gene, with a final result of
reducing the amount of LIN-14 protein, without changing the
amount of lin-14messenger RNA (mRNA) [8].This short lin-
4 RNA is the foundingmember of themicroRNAs family.The
second member of this family, let-7, had to wait until the year
2000 to be described by Reinhart et al. [9]. Since then the
miRNAs family has markedly expanded and more than 2000
different miRNAs sequences have been described and cata-
logued in miRBase [10]. MicroRNAs function as gene regula-
tors acting on mRNAs translation, with inhibition of protein

synthesis. Basically, different miRNAs may target a given
mRNA in different binding sites (convergent microRNA
pathway) or a single miRNA may target multiple different
mRNAs (divergent miRNA pathway) [11]. There are specific
types of software to predict which mRNAs may be the target
of a specificmiRNA (TargetScan, http://www.targetscan.org/;
miRanda, http://www.microRNA.org/; TarBase (http://www
.microrna.gr/tarbase).

MicroRNAs biogenesis is resumed in Figure 1. Briefly, in
the canonical miRNAs biogenesis pathway, primary miRNAs
(pri-miRNAs) of hundreds or thousands of nucleotides are
synthesized from DNA by the enzyme RNA polymerase II in
the nucleus. Pri-miRNAs, folded in the hairpin structure, are
then cleaved by the ribonuclease III Drosha with the cofactor
DGCR8, to form the microprocessor complex, producing the
preliminary miRNAs (pre-miRNAs) of 70–100 nucleotides.
The pre-miRNAs are transported into the cytoplasm by
Exportin-5 where another ribonuclease III, Dicer, and its

http://www.targetscan.org
http://www.microRNA.org
http://www.microrna.gr/tarbase
http://www.microrna.gr/tarbase
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cofactor TRBP, cleave them into the shorter, double stranded
immature microRNAs. The miRNA-miRNA∗ duplex is then
transferred to the Argonaute protein family (Ago) that
undergoes conformational changes to allow binding of
the miRNAs duplex. In the strand selection process, the
passenger strand or miR∗ is discarded while the leading
strand or miR is incorporated into the RISC (RNA-Induced
Silencing Complex). Into the RISC, the miRNA presents the
seed sequence at an interface where it can interact with a
region of the mRNA within its 3-UTR [12]. Other non-
canonical miRNAs biogenesis pathways have been described
[13].

2.2. Circulating MicroRNA. MicroRNAs can act intracellu-
larly or can be actively secreted by cells and contribute to
intercellular or cell-tissue communication [14]. Circulat-
ing microRNAs are stable despite the high extracellular
RNase activity, due to their packaging in apoptotic bodies,
microvesicles, and exosomes or association with lipoprotein,
protein as the Argonaute family and other RNA binding pro-
teins. Microvesicles and exosomes are fundamentally differ-
ent, the first being smaller and heterogeneous in size, ranging
from 100nm to 1𝜇m, derived from the plasmamembrane and
released by budding and fission of the membrane, while the
latter being formed intracellularly via endocytic invagination
and then released into a multivesicular body [15]. Since the
discovery in 2008 of miRNAs in blood [16], circulating miR-
NAs have been found in blood, urine, breast milk [17], saliva
[18], tears, and other body fluids [19]; their potential use as
serum biomarkers has become more appealing. Biomarkers
should be divided into two different categories, depending
on their possibility to change over time: genetic markers,
stable over time, and dynamic markers, which may change
mainly over time. A biomarker should be noninvasively
obtained and have a high degree of sensitivity and specificity,
permitting early diagnosis of disease. Moreover, a biomarker
should have time-related changes in the disease course, a long
half-life within the sample, allowing rapid and cost-effective
laboratory detection. Some of these essential characteristics
are shared by circulating miRNAs: their small size, a simple
chemical composition, their high stability in boiling water,
their resistance to extreme pH changes, prolonged room
temperature stays or repeated freeze-thawing [19, 20], less
complexity in comparison with proteins, and a cost-effective
quantification by real-time polymerase chain reaction (qRT-
PCR).

3. MicroRNAs in Coronary Heart Disease

3.1. MicroRNAs in Acute Coronary Syndrome. In 2010, five
authors [21–25] independently reported a possible role for
cardiomyocyte-enriched miRNAs in the diagnosis of acute
myocardial infarction (AMI). Specifically, in these studies
taken together, miR-1, miR-133a, miR-133b, miR-208, and
miR-499 were found upregulated in plasma of AMI patients.
Figure 2 resumes the potential miRNAs up- and down-
regulated in AMI with diagnostic and prognostic implica-
tions. More than 30 studies analyzed the possible diagnostic

Acute myocardial 
infarction 

Diagnostic features Prognostic features
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Figure 2: Circulating microRNAs associated with diagnostic and
prognostic features in acute coronary syndrome (ACS). microRNAs
in bigger font have been associatedwithACS inmore than one study.
See Table 1 for further details.

microRNAs signature inAMI andother possiblemiRNAcan-
didates have been proposed, but further validation studies are
needed [26]. Years later, almost the same miRNAs are recog-
nized as cardiac-enriched and proposed as possible biomark-
ers among several other miRNAs by 2 different authors.
In 2014, a meta-analysis [27] of 19 studies evaluated the
specificity and sensitivity of miR-1, miR-133a, miR-208b, and
miR-499 in AMI. Cheng et al. concluded that miR-499 and
miR-133a are possible biomarkers of AMI, showing a sensi-
tivity of 0.88 (95% CI: 0.86–0.90; 𝑝 = 0.0000); a specificity of
0.87 (95% CI: 0.84–0.90; 𝑝 = 0.0000) and a sensitivity of 0.89
(95% CI: 0.83–0.94; 𝑝 = 0.0047); a specificity of 0.87 (95%
CI: 0.79–0.92; 𝑝 = 0.0262), respectively. More recently, in
a systematic review [28] the authors proposed that only
cardiomyocyte-enriched miRNAS, miR-1, miR-133a/b, miR-
145, miR-208a/b, and miR-499(a) in plasma and/or serum
are potential biomarkers for the diagnosis of coronary heart
disease.

Devaux et al. [29] presented the largest multicenter study
on miRNAs in 1155 unselected patients with acute chest pain.
miR-208b provided the highest diagnostic accuracy in AMI
but still this was lower than that of the fourth-generation or
high-sensitivity cardiac troponin T (cTnT). None of the six
miRNAs provided added diagnostic value when combined
with cTnT.

The prognostic role of miRNAs is encouraging. Few
studies [29–34] have evaluated the role of miRNAs as prog-
nostic biomarkers with controversial results; see Table 1 for
further details. Very recently Karakas et al. [34] found for
the first time that peripheral-blood miRNAs (miR-132, miR-
140-3p, and miR-210) could predict CV mortality in a large
cohort of ACS and stable CAD patients, while none of the
cardiomyocyte-enriched miRNAs evaluated by Devaux et al.
[29] predicted long-term mortality at 2-year follow-up, nei-
ther miR-208b nor miR-499 were significant predictors of
mortality [33, 35]. Widera et al. [31, 34] found that miR-133a
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and miR- 208b levels were significantly associated with the
risk of death in ACS patients, but in adjusted analysis their
independent association with outcome was lost. Matsumoto
et al. [32, 36] proposed 2 different sets of miRNAs with
prognostic implications at 1-year follow-up post-AMI, but
validation studies are needed for both.

3.2. Controversies in the Role of miRNAs as Biomarkers of
AMI. The role of miRNAs has novel biomarkers in the early
diagnosis of AMI is debated.The index test is high-sensitivity
cardiac troponin, which is widely used in clinical practice and
shows high accuracy in AMI diagnosis; therefore, it is very
difficult for new biomarkers to demonstrate significant added
value on top of cardiac troponins.Moreover, the 3rd universal
definition of AMI relies on symptoms and detection of
troponin-positive myocardial necrosis, even if the unspe-
cific elevation of troponin levels can be present in case of
nonischemic heart failure (HF), renal failure, myocarditis,
arrhythmias, and pulmonary embolism due to myocardial
injury [37]. Wang et al. [25] reported that, in AMI patients,
miR-208 levels were not altered by chronic kidney disease or
trauma, as it happens for troponins. Actually miRNAs can
reduce this gap and provide additional accuracy in the diag-
nosis of AMI, as some miRNAs became detectable when ini-
tial troponin was still negative or within 3h of symptom onset
[38]. De iure miRNAs become detectable earlier than high-
sensitivity troponin, theoretically allowing a faster rule-in/
rule-out of chest pain patients; one of the major limits of
cTnT is that multiple dosage at different time is needed and
patients are ordered to stay in the emergency room for 3–6 h
after arrival. De facto measurement of circulating miRNAs
requires qRT-PCR, which is a time-consuming technique,
in comparison with detection of hs-cTnT (approximately 30
min) and the 2015 ESC guidelines recommend the use of a
rapid rule-out protocol (0 h and 1 h or 0 and 3 h) when hs-
cTnT is available [39]. The use of qRT-PCR is currently the
limiting factor in terms of rapid detection of circulating
miRNAs. In the future, the availability of newer, faster, and
cost-effective techniques may overcome this limit.

3.3. MicroRNAs in Coronary Artery Disease. The ability to
distinguish stable from unstable angina pectoris patients
would be a great advance in CAD management, but this
promise is far from being fulfilled, as concluded by
D’Alessandra et al. [40]. Several miRNAs, as cardiomyocyte-
enriched (miR-133, miR-208a) [41], endothelial cell-enriched
(miR-126, miR-17-92a cluster), vascular smooth cell (miR-
143/145) and inflammatory cell-enriched (miR-155), and
platelet-enriched (miR-199a) miRNAs, were associated with
CAD, while lipometabolism-related miR-122 and miR-370
increased as the severity of CAD quantified by the Gensini
score increased [42]. Previously, miR-126 has been proposed
as a prognostic marker of incident myocardial infarction
in the general population [43], result partially confirmed
by Jansen et al. [44] who reported that only microvesicles-
associated miR-126 and miR-199a predict the occurrence of
CV events in patients with stable CAD. A more comprehen-
sive review has been recently published [45].

4. Technical Aspects of miRNAs Quantification

The sensible differences and heterogeneous results reported
in ACS and CAD studies can be partly explained by some
technical aspects and drugs interaction. Quantification of
miRNAs transcripts by qRT-PCR implicates data normaliza-
tionwith endogenous and exogenous reference genes for data
correction. Data from qRT-PCR can be analyzed using abso-
lute or relative quantification. Absolute quantification defines
expression levels in absolute numbers of copies by relaying
the PCR signal to a standard curve. Relative quantification
determines fold changes in expression between two samples,
normalizing the gene of interest for a housekeeping gene in
the same sample to obtain a fold change. One of the most
frequently used normalizers is the small noncoding RNA
RNU6, which is not a miRNA and could not perfectly reflect
the miRNAs biochemical characteristics. miR-16 is another
frequently used normalizer because it is highly expressed and
relatively invariant. The choice of the reference gene can be
challenging as an optimal normalization strategy is missing.
Consequently, the choice of which miRNAs should be used
as internal controls for circulating miRNAs assessment could
lead to ambiguous data interpretation, misleading conclu-
sions, and erroneous biological predicted effect, impairing
comparison between studies and meta-analysis of data. The
use of more than 1 reference gene increases the accuracy
of quantification; for example, the combined use of miR-16
and other miRNAs could reduce the potential bias compared
to the use of a single reference gene [46]. Some authors
stated that, in the lack of a shared housekeeping miRNA,
miRNAs expressions do not require an internal control and
could be normalized to serum volume [47]. However, this
strategy has been demonstrated to increase the risk of bias
and should be avoided. In addition, while searching for the
ideal normalization gene candidate, it is pivotal to apply
standardization across laboratories for sample preservation,
storage, and stability.

Another potentially confounding factor is drug admin-
istration. Statins [42], anticoagulation [48], and antiplatelet
drugs [49] can affect quantification of miRNAs in blood
samples andmust be taken into accountwhen assessing circu-
lating miRNAs [50]. To overcome the potential confounding
effect of heparin, Kaudewitz et al. suggested normalizingwith
exogenous C. elegans spike-in control [51]. Other options to
treat plasma from patients subjected to heparin treatment
include digestion with heparinase on purified RNA rather
than plasma, optimization of the starting plasma volume,
and enrichment of miRNA on silica [52, 53]. To success-
fully translate miRNA signature in clinical practice it is
mandatory to develop and apply a standardization of the
operative procedures related to circulating miRNAs analysis.
Standardization needs to be applied at several stages, from
blood withdrawal to plasma/serum centrifugation, to sample
collection and banking, and to RNA extraction and microR-
NAs quantification, in order to dramatically reduce interlab-
oratory differences that could generate huge incoherencies in
miRNAs analyses. Consequently, bias in the selection, extrac-
tion, and quantification of miRNAs generating unexplained
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Table 2: Items reviewed on observational studies assessing the value of microRNAs as potential biomarkers for coronary artery disease and
acute coronary syndrome. Table adapted by authors from [55].

Item Issue Question
(1) Model assumption and goodness-of-fit How far away from the data is the selected model?
(2) Interaction analysis Is there any potential variable that can modify the estimated effect?
(3) Sensitivity analysis Are the findings sufficiently robust, considering the process used to obtain them?

(4) Crude and adjusted effect estimate How much does the studied effect change when other variables are taken into
account?

(5) More than one adjusted model specified Does the estimated effect differ between the different adjusted models, settings,
specifications, and so forth?

contrasting results is widespread in most studies and repre-
sent a major limitation to perform a meta-analysis.

5. Quality Reporting in Circulating
MicroRNAs Observational Studies in
Coronary Heart Disease

Several authors reported that the biggest limitation for use
of miRNAs as biomarkers is the small sample size of pub-
lished studies [48, 54]. Not only small sample size, but also
the quality of reporting of observational studies is a major
issue, due to the lack of randomized double blind trials.
Controlling for already mentioned confounders is a crucial
step in microRNAs observational studies, to avoid mis-
leading conclusion. To overcome this problem, the use of
multivariable models as statistical adjustment techniques is
widely encouraged and the validation of assumption of the
multivariable regression models should be clearly stated in
the methodology. To our knowledge, a quality report on
statistical methodology in circulating miRNAs studies has
not yet been performed.We reviewed the quality of statistical
reporting of 56 studies (see Supplementary Figure S1 and
Table S1 for included studies in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/2150763) on
circulating miRNAs in coronary heart disease (ACS, AMI,
and CAD). A list of the Real et al. items reviewed in full-text
studies is presented in Table 2, based on Real et al. methods
[55]. See SupplementaryMaterials for complete methods and
statistical analysis. Results are resumed in Table 3. The large
majority of studies are in fact cohort studies of small sample
size (median size 115 patients). Of note, significant differences
exist between small (<100 patients) and large sample size
(>500 patients) studies in terms of quality reporting of
multivariable regression models. A multiple regression was
run to predict a quality score >2 from adoptedmodel, journal
impact factor, citation/year, and sample size. Among these
variables, only sample size statistically significantly predicted
quality score, 𝐹(5, 50) = 22.201, 𝑝 < 0.0001, 𝑅2 = .689. The
totality of larger sample size studies scored at least 3 over 5
checked items, demonstrating a solid methodology and
control for confounders. In fact, somemiRNAs lost statistical
significance when adjusted for confounders [29, 34, 43]. It
is highly possible that among the authors of large sample

size study a methodologist is included. Small sample size
studies without adjustment for confounders of the results
contribute to increase heterogeneity and introduce possible
bias in the literature. No significant differences exist in terms
of article citations per year; highly cited articles can have a
robust or a weak methodology. Obviously the first reports
were small sample size studies but great breakthroughs in
microRNAs biology and function were therefore highly cited.
Studies with weak methodology can present contrasting
results and then be cited in contrast to more robust studies,
creating confusion. Nevertheless, the journal impact factor
has definitely a role in assessing the methodological quality
of the study and even if it does not reach the full significance
in our results, the trend is in favor of a positive correlation
between impact factor and high methodological score.

6. MicroRNA-Based Therapeutics

Up-to-date microRNAs-based therapies are in their infancy,
thus experimental and animal studies are in favor of a poten-
tial role in the treatment of CV diseases. In nonhuman pri-
mates, inhibition of miR-33a andmiR-33b by an anti-miRNA
oligonucleotide increased hepatic expression of ABCA1, a key
regulator of high density lipoprotein (HDL) biogenesis, and
induced a sustained increase in plasma HDL levels over 12
weeks, with reduction of very low density lipoprotein (VLDL)
levels [56]. Another study assessed the role of locked nucleic
acid-modified antisense miR-92a (LNA-92a) in a model
of ischemia/reperfusion injury in pigs and revealed cell-
protective, proangiogenic, and anti-inflammatory effects of
LNA-92a with reduction of infarct size and improved recov-
ery of cardiac function [57]. Unfortunately these promising
results have not yet progressed to human trials. After the
seminal studies on miR-21 by Thum [58], a key target in CV
diseases would be reduction/inhibition ofmyocardial fibrosis
associated with postischemic cardiopathy, drug-induced or
primitive cardiomyopathies [59], but the question is far
from being resolved yet [60, 61]. In other fields of medicine
miRNA-based therapies are a step forward. In patients with
chronic hepatitis C, subcutaneous administration of an anti-
sense oligonucleotide for miR-122 led to successful results
with negligible side effects in phases 1 and 2a trial [62] and
at long-term follow-up [63].

http://dx.doi.org/10.1155/2016/2150763
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7. Conclusion

Translational research represents a stem of scientific research
that helps to make findings from basic science useful for
practical applications that enhance human health and well-
being. Deeply established onmultidisciplinary collaboration,
translational research has the enormous potential to move
applied science forward. Accordingly, in the cardiovascu-
lar system, miRNAs fine-tune complex molecular signaling
networks by acting on key target proteins involved in a
variety of pathways and cellular processes. Therefore, in the
past decade, several studies emphasized the importance of
miRNAs as diagnostic and prognostic role in cardiovascular
disease and the road travelled so far seems promising for a
specific role in coronary heart disease. At present, circulating
miRNAs have not entered yet the clinical arena, due to
contrasting results, possible confounding factors, presence of
small or moderately sized studies of different methodology,
sometimes challenging each other, technological require-
ments, and unstandardized normalization. This complex
scenario, in which bordering results contradict themselves,
may push researchers, clinicians, and also patients in different
directions providing dissimilar effect estimates with mixed
results andwith benefits ranging fromabsent to transient and,
at most, marginal. In the future, the role of long noncoding
RNAs may add novel insight into the posttranscriptional
regulation changing thewaywithwhich investigators identify
novel signal transduction pathways and functional cross-
talks developing new therapeutic strategies and micro-RNA
based therapies might make the way for human trials with
important therapeutic implications. Cliniciansmust be aware
of the pros and cons of microRNAs advent and read critically
the fore coming literature.
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