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Abstract: Recent strides in micro- and nanofabrication technology have enabled researchers to design
and develop new micro- and nanorobots for biomedicine and environmental monitoring. Due to
its non-invasive remote actuation and convenient navigation abilities, magnetic propulsion has
been widely used in micro- and nanoscale robotic systems. In this article, a highly efficient Janus
microdimer swimmer propelled by a rotating uniform magnetic field was investigated experimentally
and numerically. The velocity of the Janus microdimer swimmer can be modulated by adjusting
the magnetic field frequency with a maximum speed of 133 µm·s−1 (≈13.3 body length s−1) at the
frequency of 32 Hz. Fast and accurate navigation of these Janus microdimer swimmers in complex
environments and near obstacles was also demonstrated. This efficient propulsion behavior of the
new Janus microdimer swimmer holds considerable promise for diverse future practical applications
ranging from nanoscale manipulation and assembly to nanomedicine.

Keywords: Janus microdimer; propulsion mechanism; rotating magnetic field

1. Introduction

Micro-/nanoswimmers that can convert various types of energy into kinetic energy overcoming
viscous drag forces and thermal fluctuations have demonstrated different tasks in various
environments [1–9]. Recent strides in nanotechnology have enabled researchers to develop micro- and
nanorobot systems to perform great potential in the fields of drug delivery [10–15], biosensing [16,17],
self-assembly [18–20], micro-manipulation [21–23], environmental detection and remediation [24–28]
and super-resolution optical imaging [29,30]. However, rapid and accurate motion in low Reynolds
number environments requires new specialized techniques. Therefore, it is still of particular
importance to develop micro- and nanorobot by easy fabrication, capable of efficient propulsion
and accurate navigation.

Unicellular living organisms have a distinctive ability to locomote efficiently by non-reciprocal
motion mechanism in different environments [31]. Inspired by the swimming strategies of natural
microorganisms, various functional micro-/nanorobots, which are propelled by several external
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excitations (e.g. chemistry [32–36], light [37–42], magnetic [43–51], ultrasonic [13,52–54] and electric [55])
have been developed in this decade. Among these propulsion methods, magnetic propulsion has
been widely used to power the micro- and nanorobots due to its non-invasive remote actuation and
convenient navigation abilities [56–58]. According to propulsion mechanisms, the magnetic propelled
micro-/nanorobots can be further categorized into two groups: rotating magnetic field propulsion
and oscillating magnetic field propulsion. Inspired by helical bacterial flagella, the first group of
micro-/nanorobots locomotes upon rotation induced by rotating magnetic fields [59]. For example,
Nelson’s group designed and fabricated a variety of magnetic helical micromachines that could
achieve self-propulsion, controllable collective behavior, self-assembly and cargo transport in magnetic
fields [43,59,60]. The helical microswimmers with different surface wettability properties were
fabricated to achieve selective control of individual swimmers with different speed, and the maximum
velocity up to 62 µm·s−1 (≈4.5 body length s−1) [61]. Another type of micro-/nanorobots, as inspired
by the oscillating propulsion of sperm, relays on the asymmetrical shape deformation to break the
spatial symmetry and escape the constraints from scallop theorem [31,62]. For instance, Fischer’s
group investigated the reciprocal motion of symmetric ‘micro-scallop’ microswimmer at low Reynolds
numbers, which can propel microswimmer in shear thickening and shear thinning (non-Newtonian)
fluids [63]. In addition, Li fabricated a new type of magnetic surface walker that can achieve speeds
of up to 18.6 µm·s−1 (≈4.0 body length s−1) in an oscillating magnetic field [44]. However, efficient
propulsion gaits at the nanoscale are still quite limited. In particular, faster microswimmers and
correspondent drive systems need to be developed for a wide range of proposed applications.

Here, we report a highly efficient Janus microdimer swimmers propelled by a rotating uniform
magnetic field. This Janus microdimer swimmer consists of two Ni/SiO2 Janus microsphere connected
by magnetic forces. The microdimer swimmer, which relies on a surface to escape the constraints from
the scallop theorem, can rotate efficiently in low Reynold fluids in response to an external magnetic
field. It is capable of a powerful propulsion up to 133 µm·s−1 (≈13.3 body length s−1) at a driving
frequency of 32 Hz and a magnetic field strength of 5 mT. Furthermore, autonomous navigation of
swimmers in complex environments was also demonstrated. This new Janus microdimer swimmers
can open new possibilities for biomedical operation at the nanoscale.

2. Materials and Methods

2.1. Rotating Uniform Magnetic Field Setup

Figure 1A displays the setup of an external rotating uniform magnetic field, which consists of
a three degrees of freedom Helmholtz coil, a multifunction data acquisition and a three single-channel
output power amplifier. Based on controlling the current and the voltage of Helmholtz coil, an external
rotating uniform magnetic field can be circularly generated in any plane of 3D space to actuate
the microrobots in different motion modes. In order to achieve real-time observation of swimmers,
the external magnetic field setup was placed on the observation platform of the microscope to achieve
real-time observation of swimmers.

2.2. Fabrication of the Janus Microdimer

The preparation process of the Janus microdimer is shown in Figure 1B. The 5, 8 and 10 µm silica
microspheres were first washed three times with deionized (DI) water. Then the SiO2 microspheres were
placed onto glass slides and deposited by an ion-sputtering apparatus (K575XD, Emitech, Laughton,
England) at 90◦ angle of incidence to be coated with a 100 nm nickel layer [12,64]. Different thickness
and coverage area of the Ni layer can be obtained by changing deposition time and the angle of
incidence. After a brief sonication in ultrapure water, the Janus microspheres were released from the
glass slide and dispersed into ultrapure water. The Janus microspheres were stored in ultrapure water
until use.
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As they are exposed to an external magnetic field, the SiO2-Ni Janus microspheres were attracted
to each other because of the magnetic polarization of the Ni layer (Figure 1B), and the attachment can
be changed by controlling the thickness and coverage area of Ni layer on microspheres. Figure 1C,D
showed the microdimers consist of two Janus microspheres with same diameter. These microdimers can
move along specific direction in an external rotating uniform magnetic field, which will be discussed
in more detail later.

2.3. Optical Observation and Tracking

Videos of Janus microdimer swimmers were captured at 25 frame·s−1 by an inverted optical
microscope (IX73, Olympus, Tokyo, Japan) coupled with a 20× objective and a Point Grey CCD camera
(GS3-U3-51S5C/M-C, FLIR, Wilsonville, OH, United States). These video data were analyzed using
ImageJ and MATLAB to obtain the trajectories and velocities of swimmers.

Figure 1. Design and fabrication of Janus microdimer swimmers. (A) schematic of rotating magnetic
field generation system; (B) fabrication of Janus microdimers; (C) optical microscopy image of
microdimers after magnetization; (D) representative microdimers of different sizes.

3. Results and Discussion

3.1. Propulsion of Microdimer Swimmers

Reciprocal motion in low Reynolds number fluids hinders directional driving of symmetry
miniaturized objects. In our experiments, the presence of the surface wall is a key factor for microdimer
swimmers to escape the constraints from the time-reversible symmetry. Figure 2A shows the propulsion
mechanism of microdimer swimmers in a rotating uniform magnetic field. When the magnetic field is
applied, the microdimer swimmer is rolled by the magnetic torque. During the first half of the cycle,
the blue sphere in the microdimer rolls forward and red one rolls backward. However, the viscous drag
due to the proximity of the surface reduces the speed of the red sphere obviously, and causes the center
of mass of the swimmer to move dominantly forward. During the next half of the cycle, the two spheres
switch roles, and the rapid rolling of the red ball prompts a net displacement of the swimmer. The two
spheres alternated back and forth to drive the microdimer swimmer movement along specific direction.
This continuous motion process of 1 s (2 cycles) at a magnetic field strength of 5 mT and a driving
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frequency of 2 Hz was captured and is shown in Figure 2B (Video S1, Supplementary Materials). As can
be seen, the two microspheres constituting the microdimer swimmer alternately rolled forward and
propelled the swimmer ~24 µm (≈1.2 body length) in a straight line within 1 s.

Figure 2. Propulsion of microdimer swimmer under a rotating uniform magnetic field. (A) propulsion
mechanism of microdimer in a rotating magnetic field; (B) time-lapse optical microscopy images
depicting the motion of a microdimer within ~1 s.

Fluidic interaction is another critical factor for triggering the controllable propulsion of microdimer
swimmers [65]. Janus particles will experience a drag force due to the difference of velocity between
particles and surrounding fluids. The fluidic interaction can keep the microdimer swimmers in contact
with the wall surface continuously, and transform the rotation movement of microdimer swimmers
into a linear movement along the water/wall interface. As shown in Figure 3, the fluidic velocity
field induced by a rotating microdimer swimmer adjacent to the wall surface has been simulated and
analyzed. All the simulations were performed within the framework of a large-scale atomic/molecular
massively parallel simulator (LAMMPS), which is a highly parallelized solver for molecular dynamics
simulations [66]. The Lattice Boltzmann method (LBM), which is an efficient and accurate method for
Newtonian flow [67], was employed to solve Navier–Stokes equations. The LBM solver was directly
embedded into LAMMPS as a fix_lb_fluid [68], where fix is a kind of class offered by LAMMPS to
apply external control on the simulation system. Each Janus microsphere was treated as a sphere
with a point dipole shifted from the geometric center of microsphere (Figure 3A) [69]. The anisotropic
magnetic susceptibility was scaled by the experimental hysteresis curve and the dipole–moment shift
was determined by matching the experimentally observed bond angle of the zigzag chain in a static
magnetic field. As shown in Figure 3B, magnetic interactions were determined at each time step
by solving the linear system of equations for each microsphere’s magnetic moment as a function of
the field produced by the other microspheres and the spatially uniform, time-dependent external
field. The movement of a magnetic Janus microsphere was captured by solving Newton’s second law
equation, under the influence of both hydrodynamic force and magnetic force (the field strength at
5mT and frequency at 5 Hz).
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The flow profile shows that the maximal magnitude of the flow field surrounded the rear
microsphere throughout the first half of the motion period. This indicates the faster rotation of rear
microsphere than the front one due to the wall effect. Then, the strong flow took place nearby the front
microsphere by turn during the latter half of motion period, and the rear sphere was alternatively
dragged close to the wall surface by the fluidic interaction and the gravity force of the microdimer.
However, the near-wall sphere was not fixed on the wall. The flow profile in Figure 3C also exhibits
week flow fields behind the near-wall sphere at 0.07 s and 0.17 s. This reveals that the near-wall
microsphere just slid on the wall, which can be further confirmed by the net displacement of microdimer
swimmer. After a complete rotation cycle, the Janus swimmer advanced about a half length of the
microdimer as shown in Figure 3C, which should be one-body length with no-slip condition.

Figure 3. Simulation of microdimer swimmer under a rotating magnetic field and near-wall flow field.
(A) side and top views of the simulation models. Janus microspheres are represented by the blue
and white balls, and the wall surface is depicted in cyan; (B) the applied rotating magnetic field with
frequency of 5 Hz and strength of 5 mT; (C) the sequence profile of near-wall flow field surrounding
the microdimer swimmer.

3.2. Analysis of the Motion Law of Microdimer Swimmers

To investigate the principle behind microdimer motion, we turned our attention to their velocity
under different magnetic field parameters, which is essential for the industrial and medical applications
of microdimers [59]. First, the motion law of single Janus microsphere was investigated. When a single
microsphere was exposed to a rotating magnetic field, the torque induced by rotating magnetic field and
the viscous drag due to the proximity of the surface broke the reciprocal motion of single microsphere
and caused it to roll forward along the surface. The dependence of the velocity of single Janus
microsphere with different sizes on the driving frequency was characterized, as shown in Figure 4A.
The velocity of the 5 µm Janus microsphere increased from 6.5 to 58.6 µm·s−1 (≈10.7 body length
s−1) upon increasing the driving frequency from 2 to 50 Hz. The 8 and 10 µm Janus microspheres
presented the similar speed trends, and their speeds increased to 82.2 µm·s−1 (≈10.3 body length s−1)
and 107.1 µm·s−1 (≈10.7 body length s−1), respectively. This result illustrates that relative speed (body
length s−1) of Janus microspheres is frequency-dependent and is constant over different sizes. Notably,
the speeds of the larger Janus microspheres were higher than those of the smaller one under same
driving frequency. These results show the linear relation between the velocity of Janus microsphere
and driving frequency.
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Then the effect of frequency of the rotating magnetic field on the velocity of microdimer swimmers
was investigated experimentally as well. The driving frequency increased from 2 to 50 Hz with
a magnetic field strength of 5 mT, as shown in Figure 4B. For a 5 + 5 µm microdimer swimmer, the speed
increased linearly with the driving frequency and reached a maximum velocity of 133 µm·s−1 (≈13.3
body length s−1) at 32 Hz, further increasing the frequency reduced the velocity. Such a maximum
synchronized frequency is called step-out frequency which was also commonly observed for many other
types of micromotors in rotating and oscillating magnetic fields [44,70,71]. The reason we speculate
for this variation is the occurrence of out-of-step phenomenon and the increase in drag caused by the
increasing speed. Furthermore, the 8 + 8 and 10 + 10 µm microdimer swimmers obtained the highest
velocities of 110 µm·s−1 (≈6.9 body length s−1) and 89 µm·s−1 (≈4.5 body length s−1) at 22 and 16 Hz,
respectively. This result illustrates that the step-out frequencies of the larger microdimer swimmer
are lower than those of the smaller microdimers under the same conditions, which is similar to the
performance of microdimers in an oscillating magnetic field [44]. Figure 4C displays the trajectories of
microdimer swimmers in different sizes at driving frequencies from 10 to 40 Hz over a period of 1 s.
The microdimer swimmers continuously moved linearly aligning on rotation direction of the magnetic
field, and higher speeds were achieved near the step-out frequency. In order to verify the variation
law of this step-out frequency, the microdimer swimmer speed under different swimmer sizes and
driving frequency was simulated and the step-out frequency was analyzed, as shown in Figure 4D.
In the simulation, the step-out frequencies of the 5 + 5, 8 + 8, 10 + 10 µm microdimer swimmers were
33, 20 and 15 Hz, respectively, which was in good agreement with the experimental results.

In addition to driving frequency, magnetic field strength is also an important parameter of external
rotating magnetic field [72]. Hence, we further studied the effect of magnetic field strength on the
performance of microdimer swimmers, as shown in Figure 4E. At driving frequency of 1 Hz, the velocity
of 8 + 8 µm microdimer swimmer increased from only 13 to 21 µm·s−1 upon increasing magnetic field
strength from 5 to 25 mT, while the velocities of the 5 + 5 and 10 + 10 µm microdimer swimmers were
almost constant. It illustrates that under the current parameters, varying the magnetic field strength has
little effect on the velocity of the microdimer swimmer compared to the driving frequency. We suspect
that at such lower speed, the microdimer swimmers are subjected to a propulsion magnetic force much
larger than the drag, so the increase in magnetic field strength do not effectively improve the rotational
speed of the swimmer which directly determines the net displacement velocity of the swimmers.

Figure 4. Performance of microdimer swimmers under different experimental parameters. The velocity of
(A) single microspheres and (B) microdimers varied with the drive frequency; (C) tracking lines illustrating
the traveled distances of different microdimers over a 1 s period in a rotating uniform magnetic field with
frequencies from 10 to 40 Hz; (D) simulation results of microdimers velocity varied with the drive frequency;
(E) velocity of microdimers at different magnetic field strength with a driving frequency of 1 Hz.
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3.3. Controllable and Flexible Motility Performance of Microdimer Swimmers

The abilities of remote actuation and to avoid obstacles are highly attractive features for micro- and
nano-scale swimmers in the application of precision medical procedures [3,73]. Here, we demonstrate
the remote navigation of Janus microdimer swimmers. Figure 5A illustrates the control strategy of
three-dimensional rotating magnetic field generated by the three degrees of freedom Helmholtz coil.
First, a circularly polarized rotating magnetic field given by H(t) = H0[cos(ωt)ex + sin(ωt)ez] was
applied in the x-z plane, the microdimer swimmer rolled along x axis. Here, H0 is the magnitude of H(t),
ω is the angular frequency of the magnetic field, t is the time, and ex and ez are the unit vector along
the x and z axes, respectively (hereafter, ey is that along the y axis). When the rotating magnetic field
was changed and applied in the y-z plane, given by H(t) = H0[−cos(ωt)ey + sin(ωt)ez], the direction of
microdimer swimmer motion changed to the y axis. The propulsion direction of the microrobot could
be altered by changing the direction of rotating magnetic field, which could be achieved by control
input current manually. First, Figure 5B shows the curved motion of a microdimer swimmer along
the edge of a ribbon obstacle (Video S2, Supplementary Materials). The swimmer’s trajectory fitted
well with the edge of the obstacle, which means that the motor’s direction of motion can be controlled
continuously. Based on the above sensitive magnetic orientation of microdimer swimmers, a swimmer
walked along a predefined star-shape trajectory in the gap of 8 µm non-magnetic microspheres, as
shown in Figure 5C (Video S3, Supplementary Materials). The corners of the ‘star’ track line were
achieved easily by changing the magnetic field angle by ~134◦. Finally, we controlled a microdimer
swimmer to detour around an obstacle that was much larger than their own volume and return to the
original position as shown in Figure 5D (Video S4, Supplementary Materials). The swimmer walked
the optimal path according to the outer contour of the large obstacle to bypass it.

Figure 5. Controllable and flexible motility performance of microdimer swimmers. (A) change
of the direction of movement of the microdimer swimmer caused by changing the magnetic field;
(B) controllable curve motion of microdimer swimmer; (C) ‘star’ trajectory of microdimer swimmer;
(D) how a microdimer swimmer detoured around an obstacle.

4. Conclusions

In summary, we have demonstrated a new propulsion and steering system for a Janus microdimer
swimmer under a rotating uniform magnetic field. A maximum speed of 133 µm·s−1, corresponding to
a relative velocity of 13.3 body length s−1, was obtained by using a rotating uniform magnetic field
with a frequency of 32 Hz and a magnetic strength of 5 mT. On-demand modulation of the speed was
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easily achieved by ramping the magnetic field strength and frequency up and down. Based on the
transformable alignment of the two Janus spheres upon the rotating magnetic field, precise and remote
navigation of microdimer swimmers provided good controllable ability of the locomotion trajectory
and the ability to avoid obstacles. Due to its non-invasive remote actuation and convenient navigation,
the efficient propulsion and steering system can open the door for a wide variety of applications
ranging from nanomanipulation to precise medical treatment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/12/1672/s1:
Video S1: Near-wall motion of micro-dimer swimmer caused by rotating magnetic field, Video S2: Curved motion
of a microdimer along the edge of a ribbon obstacle, Video S3: “Star” trajectory movement of microdimer swimmer,
Video S4: Obstacle avoidance movement of microdimer swimmer.
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