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Innate lymphocytes:
Role in alcohol-induced
immune dysfunction
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and Derrick R. Samuelson*

College of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care and
Sleep, University of Nebraska Medical Center, Omaha, NE, United States
Alcohol use is known to alter the function of both innate and adaptive immune

cells, such as neutrophils, macrophages, B cells, and T cells. Immune dysfunction

has been associated with alcohol-induced end-organ damage. The role of innate

lymphocytes in alcohol-associated pathogenesis has become a focus of research,

as liver-resident natural killer (NK) cells were found to play an important role in

alcohol-associated liver damage pathogenesis. Innate lymphocytes play a critical

role in immunity and homeostasis; they are necessary for an optimal host

response against insults including infections and cancer. However, the role of

innate lymphocytes, including NK cells, natural killer T (NKT) cells, mucosal

associated invariant T (MAIT) cells, gamma delta T cells, and innate lymphoid

cells (ILCs) type 1–3, remains ill-defined in the context of alcohol-induced end-

organ damage. Innate-like B lymphocytes includingmarginal zone B cells and B-1

cells have also been identified; however, this review will address the effects of

alcohol misuse on innate T lymphocytes, as well as the consequences of innate T-

lymphocyte dysfunction on alcohol-induced tissue damage.

KEYWORDS
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Introduction

A complete immune response requires optimal and timely responses from both tissue-

resident and circulating immune cell populations. Innate immune cells are often found in

peripheral tissues and respond to various infectious challenges, cancers, and allergens

through the expression of toll-like receptors (TLRs) and limit tissue injury via the

production of a wide variety of TLR-dependent effectors. However, there is a growing

appreciation and understanding of the scope and diversity of tissue-resident lymphocytes in

peripheral organs, which suggests that myeloid cells may not be the primary, or only,

immune response prior to the initiation of classical adaptive immunity (1). Innate

lymphocytes are broken into two distinct groups: innate lymphoid cells (ILCs) and innate-
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like T lymphocytes. Innate lymphocytes have been shown to

mediate normal host immune responses to various infectious

challenges, cancers, and allergens, as well as provide immune

regulatory and modulatory effects. Currently, ILCs are classified

into five subsets within three major groups: natural killer (NK) cells,

ILC1 (group 1), ILC2 (group 2), and ILC3 and LTi cells (group 3)

(1). Innate-like T lymphocytes or unconventional T cells are

typically classified as gamma delta (gd) T cells, mucosal

associated invariant T cells (MAIT), natural killer T cells (NKT),

and invariant natural killer T cells (iNKT) and, similar to ILCs,

mediate both immune responses and homeostasis (1). This review

will address our current knowledge regarding the effects of alcohol

misuse on these innate and innate-like lymphocytes (Figure 1), as

well as the consequences of innate lymphocyte dysfunction on

alcohol-induced end-organ damage.
Innate lymphocytes: Role and
function in immune homeostasis

Innate lymphoid cells

ILCs utilize a variety of germline-encoded activating and

inhibitory receptors, as opposed to conventional lymphocytes
Frontiers in Immunology 02
which express rearranged antigen receptors (2). ILCs are

primarily located at epithelial barrier surfaces (i.e., intestine,

lung, and skin) but can also be identified in lymphoid and other

non-lymphoid tissues (3). ILCs are often classified based on their

expression of transcription factors, cell surface markers,

cytokines, and effector molecules. Following tissue injury due

to infection or inflammation, as well as perturbation to the

intestinal commensal microbiota, ILCs produce both

proinflammatory and regulatory cytokines to combat the tissue

insult (1, 3, 4). Nearly every organ has associated tissue-specific

ILCs, which attests to their ability to support many critical

functions necessary for immune homeostasis.

Group 1 ILCs
NK cells and type 1 ILCs (ILC1), which are defined based on

the secretion of interferon (IFN)-g, are the prototypical group 1

ILC. Group 1 ILCs are highly responsive to interleukin IL-15, IL-

18, and IL-12 and are typically characterized by the expression of

the surface receptors NKp46 and NK1.1 (mice) or CD56

(humans) (5). ILC1s are often considered to be more tissue

specific/resident than NK cells and express higher levels of

CD103, CD49a, and CD69, all of which are considered

markers of tissue residency (1). Conversely, NK cells typically

express surface markers that facilitate circulation, such as CCR7,
frontiersin.org
FIGURE 1

An overview of innate and innate-like immune cells examined in this review.
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S1PR, and CD62L (6). Likewise, NK cells are more cytolytic than

ILC1s, as they have a higher expression of both perforin and

granzymes (7). However, ILC1s also have the potential to be

cytolytic via the production of the tumor necrosis factor-related

apoptosis-inducing ligand. Innate lymphoid cell precursor

(ILCP) differentiation into ILC1 requires the transcription

factors T-bet and Hobit (8, 9); conversely, differentiation of

precursor NK cells into mature NK cells is dependent on the

transcription factors Eomes and T-bet (10). While these

transcription factors are widely accepted for cellular

development in rodents, the transcriptional profile for human

ILC1s and NK-cell development is less defined. Eome expression

is found in intestinal intraepithelial ILC1s (11) but, until

recently, was not believed to contribute to liver-resident NK

cells (12). Interestingly, however, it has been shown in humans

that a liver-resident Eomeshi NK-cell population does exist (13).

In fact, it appears that Eomes expression in humans is a factor

for NK retention. Cuff et al. examined liver transplants from

donors which were HLA mismatched (HLA-A2 or HLA-A3

mismatches). This allowed them to distinguish between donor

liver–derived and recipient-derived leucocytes via antibody

staining for the specific donor-recipient HLA mismatch. They

found that Eomeslo NK cells circulate freely whereas Eomeshi NK

cells were only observed in the liver and not found in blood

samples. Cuff et al. went to further establish that liver NK-cell

replenishment from the circulation can occur, possibly via

Eomeslo NK cells being induced to upregulate Eomes

expression. These data suggest that Eomeshi expression may be

a characteristic of mature liver NK cells; however, the role of

Eomes expression in NK development remains clouded. For

example, some authors have described Eomes expression as part

of NK-cell development but have also argued that the Eomeshi

state is associated with immature NK cells. They argue instead

that mature NK cells are more associated with an abundance of

T-bet (14). Whatever the case may be, NK cells and ILC1s are

best known for their critical role in the normal immune

responses to viral infection through secretion of IFN-g.

Group 2 ILCs
The secretion of the classical type-2 cytokines amphiregulin,

IL-13, IL-9, and IL-5 in response to IL-33, IL-25, and TSLP

secreted by parenchymal cells is one key defining feature of

group 2 ILCs (3, 4, 15). ILC2s are also classically defined by the

expression of CRTH2, KLRG1, ST2, and CD25 (16, 17).

Interestingly, the expression of CD44 and CD161 on ILC2

seems to differ between mice and humans, as mouse ILC2s are

CD44+ CD161-, while human ILC2s are CD44- CD161+ (18).

Differentiation from ILCPs into mature ILC2s depends on the

transcription factors GATA3 (also required for effector

function), RORa, and TCF-1 (19–23). Recently, ILC2s have

been sub-characterized via their ability to respond to IL-33

(natural ILC2s) and IL-25 (inflammatory ILC2s), or their
Frontiers in Immunology 03
ability to secrete IL-10 (ILC210) (24–26). The ILC2-mediated

secretion of IL-13 and amphiregulin is critical for the repair of

tissue damage following helminth or viral infections. IL-13 is

also important for host-mediated removal of helminths.

Group 3 ILCs
Group 3 ILCs (innate counterparts of Th17 T cells) typically

produce IL-22 and IL-17A following activation by IL-1b and IL-

23. Furthermore, ILC3 can also secrete TNF-a and GM-CSF in

response to stimulation (27, 28). ILC3 development from ILCPs

is primarily driven by three key transcription factors: 1) aryl

hydrocarbon receptor (AhR), 2) promyelocytic leukemia zinc

finger (PLZF), and 3) retinoid-related orphan receptor gt
(RORgt) (29–31). Similarly, lymphoid tissue inducer (LTi)

cells, a unique subtype of ILC3s, also require RORgt for

differentiation and similarly produce the cytokines IL-22 and

IL-17; however, PLZF in not necessary for development (30).

Similarly, ILC3s are classified by their expression of NKp46,

CD127, c-Kit, and CCR6. However, in mice CCR6+NKp46− LTi

cells as well as CCR6−NKp46− and CCR6−NKp46+ ILC3 cells

have also been described. ILC3 through the production of IL-22

play an integral role in immune homeostasis, by stimulating

antimicrobial peptide production by epithelial cells and goblet

cell mucus secretion, both of which support barrier integrity.

Additionally, the ILC3 secretion of IL-17 and GM-CSF promotes

granulopoiesis, the production of neutrophil chemoattractant

(32), as well as the generation and survival of myeloid cells, and

tolerogenic T cells (27).
Innate-like T lymphocytes

Alongside ILCs, innate-like T lymphocytes participate in host

defense against tissue damage or pathogenic insult prior to the

adaptive immune response. Unconventional T-cell subsets express

restricted T-cell receptor (TCR) sequences. Consequently,

unconventional T-cell stimulation occurs independent of the

classical major histocompatibility complex (MHC) I and II-

dependent presentation of microbial components and/or antigens

(33). Like ILCs, the classification of unconventional T cells depends

on cytokines, effector molecules, transcription factors, and surface

markers (Table 1). Growing evidence supports an important role of

unconventional T cells in the early immune response by providing

an immediate cellular response and facilitating conventional T-cell

responses (33).

Natural killer T cells and invariant natural killer
T cells

Presentation of lipid antigens via CD1d is the major defining

characteristic of NKT cells. NKT cells are classically subdivided

into two distinct populations based on the expression of different

TCR alpha chains (38–41). Type 1 NKT cells (iNKT cells)
frontiersin.org
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express an invariant TCRa chain and a limited TCRb profile.

Human iNKT cells typically express the TCRa chain Va24-
Ja18, while iNKT cells from mice expresses the TCRa chain

Va14-Ja18. NKT cells also possess cytotoxic capabilities due to

the expression of perforin, CD95/CD95 L, and TNF (42).

Conversely, type 2 NKT cells express an expanded TCRa and

TCRb profile (40, 43). Alpha-galactosylceramide (a-GalCer), a
ceramide lipid attached to a polar galactose head, is a model

CD1d antigen. iNKT cells react and expand rapidly in response

to a-GalCer, which drives iNKT cells to a classical effector status

characterized by the production of key immunoregulatory

cytokines. Non-lipid antigen-specific responses in iNKT cells

have also been reported; however, most iNKT cells drive innate

and adaptive immune responses via tumor necrosis factor-a
(TNF-a), IFN-g, IL-17, and IL-4-mediated activation of antigen-

presenting cells (APCs). Finally, iNKT cells can also be

characterized based on specific cytokines and transcription

factors unique to each subset. Specifically, iNKT cells are often

subdivided into the following groups: 1) iNKT1 cells, which

utilize T-bet and secrete IFN-g, 2) iNKT2 cells, which are

GATA-3 expressing and IL-4 secreting, and 3) iNKT17 cells,

which are dependent of RORgt expression and produce IL-

17 (44).

Mucosal associated invariant T cells
MAIT cells co-express a semi-invariant TCR alpha (a) and

beta (b) chain and CD161. In humans, TCR Va 7.2-Ja 33/12/20

and Vb2/13 are the most common TCR ab chains, while in mice

TCR Va 19-Ja 33 paired with Vb6/20 classically defines MAIT

cells (45, 46). Recognition of vitamin B (riboflavin and folic acid)

metabolites via presentation through the highly conserved MHC

class I-related molecule 1 (MR1) is widely viewed as one of the, if
Frontiers in Immunology 04
not the, main characteristic of MAIT cells. Upon stimulation,

MAIT cells rapidly secrete IFN-g, TNF-a, IL-2, and IL-17, as

well as exhibit cytotoxic effects (45, 47–53). In addition to

classical MAIT-cell activation via MR1 ligands, MAIT cells

can be alternatively activated via IL-15, IL-18, and IL-12

without TCR engagement (54–56). RORgt and PLZF are the

two key transcription factors for MAIT-cell development (57,

58). Interestingly, there appear to be tissue-specific populations

of MAIT cells. For example, MAIT cells derived from the liver

generally have higher levels of the tissue residency markers

CD69 and CD103, as well as markers of cellular activation

CD56, CD38, PD-1, and NKG2D, under normal physiological

conditions (54, 55, 59). MAIT cells facilitate immune regulation

both during normal physiological conditions and during

pathogenic or antigenic insult.

Gamma delta T cells
gd T cells represent a unique subset of unconventional T

cells, as they exhibit characteristics of both innate and adaptive

immune cells. For example, following insult gd T cells respond

rapidly and do not require clonal selection or TCR recognition-

mediated differentiation (60). Additionally, gd T cells can be

further characterized into distinct populations based on their

TCRd chain expression. gd T cells that express either the Vd1 or
Vd2 TCR chain are the two most common populations. These gd
T-cell subsets seem to also display a tissue-specific tropic

behavior. Vd2+ gd T cells are mainly located in the circulatory

system, while Vd1+ gd T cells are primarily mucosal-associated

(61). Vd1+ gd T cells are also long-lived cells that exhibit low

levels of CD27 and high levels of granzyme B and CX3CR1 (62).

In addition, Vd1+ gd T cells also retain their proliferative

capacity and TCR sensitivity (62). Likewise, Vd1+ gd T cells
TABLE 1 Innate-like immune cells: recognized surface markers, effectors, and transcription regulators.

Type of
cell

Surface markers Non-cytokine
effectors

Key cytokines Transcription factors Citation

MAIT ab T‐cell receptor with a semi‐invariant
TCR‐a chain (usually Va7.2−Ja33)
associated with TCR‐b chains (Vb2,
Vb13), CD161high, CD3+, CD8a+, MR1

Perforin, granzyme
B

TNF‐a, interleukin‐
17, IFN‐g, IL‐4, IL-
22

RAR-related orphan receptor gt
(RORgt), promyelocytic leukemia
zinc finger protein (PLZF), and
eomesodermin (EOMES)

(34)

ILC-1 NKp46/NCR1, CD56, CD122, NK1.1/
CD161, CD49a, CD103, Integrin a1,
CXCR6, CXCR3, CD103, CD69, and
CD39, CD127/IL-7 receptor a

IFN‐g T-bet, Hobit (1, 35)

ILC-2 CRTH2, KLRG1, ST2, CD25, variant
CD44, and CD161 expression

IL-5, IL-9, IL-13,
amphiregulin

GATA-3, ROR-a, TCF-1 (3, 4, 13, 14, 16, 20, 21)

ILC-3 Nkp44, CD127, c-Kit, and CCR6 IL-17A, IL-22, GM-
CSF, TNF‐a

RORgt, lymphoid tissue inducer
(Lti), aryl hydrocarbon receptor
(AhR), and promyelocytic
leukemia zinc finger

(27, 28, 36, 37)

NKT/iNKT Invariant TCRa (iNKT), restricted TCRb
chains (iNKT), greater diversity of TCRa
and TCRb chains (type 2 NKT)

Perforin, granzyme
B

TNF‐a, IFN‐g, IL-
17, IL-4

(33, 38–43)
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secrete IFN-g and TNF-a, as well as perforin and granzyme B

following TCR or CD1d stimulation (60, 62, 63). Recently, Vd3+
gd T cells have been described and were found to be enriched

with hepatic tissues. These cells are activated by CD1d

stimulation, which drives the production of Th1, Th2, and

Th17 cytokines. These cells were also demonstrated to exhibit

cytotoxic activity (64). gd T cells play an important role in host

defense, especially within mucosal-associated tissues.
Innate lymphocytes: The effects of
alcohol misuse

Alcohol use is known to alter the number and function of

immune cells, such as macrophages, neutrophils, and T cells.

This also appears to be true for innate lymphocytes (Table 2).

Immune dysfunction has been associated with alcohol-induced

end-organ damage (Figure 2). However, the role of innate

lymphocytes remains ill-defined in the context of alcohol-

induced end-organ damage. Below, we will highlight our

current understanding of the effects of alcohol on innate

lymphocyte populations.
Frontiers in Immunology 05
Innate lymphoid cells

Group 1 ILCs
Chronic alcohol consumption has been demonstrated to

decrease the abundance and function of NK cells in the

periphery (65). Zhang et al. demonstrated that following

chronic alcohol exposure, NK cells are arrested in their

development at the CD27+CD11b+ stage (Figure 3). Further,

cytotoxic NK cells (cNK) appear to accumulate in the bone

marrow with a corresponding drop in the number of cNK cells

in tissues (i.e., the spleen, lung, liver, and lymph nodes). Given

that cNK cells produce IFN-g and the cytotoxic effector

molecules perforin and granzyme B, it is likely that the

impairment of cNK maturation alters the release of IFN-g and
cytotoxic effector molecules, which has further downstream

effects/impairments in other components of the innate

immune system. Importantly, treatment with IL-15 and IL-

15Ra restores the alcohol-mediated impairment of cNK

development and maturation. This finding implies that the

deleterious effects of alcohol might be traced to an impairment

of upstream cells/pathways critical for the secretion of IL-15. For

example, IL-15-producing CD11chi cells in the spleen are
TABLE 2 Innate-like immune cells: their function and known alcohol-related impairments.

Type of
cell

General function Alteration by alcohol Citation

NK Cytolytic effector lymphocytes which produce IFN-g and act to control
infection and tumor spread

Decreases the abundance and function of NK cells in the
periphery, arrests development at the CD27+ CD11b+ stage,
and impairs chemotaxis into inflamed/infected tissues. Alcohol
also increases the number of IFN-g-producing NK cells, while
inhibiting the induction of perforin, granzyme A, and granzyme
B following IL-2 stimulation.

(65–67)

ILC1 Production of proinflammatory and regulatory cytokines (particularly
IFN-g), maintenance of immune homeostasis. Usually tissue-specific
residents.

ILC1 numbers are relatively unaffected by chronic alcohol
administration, but ILC1 impairments in alcohol + infection
murine models have been previously suggested. Understudied.

(65, 66, 68)

ILC2 Production of proinflammatory and regulatory cytokines (particularly
type 2 cytokines). Critical to type 2 inflammation. Of particular
importance to lung tissue homeostasis with influences on epithelial
barrier integrity, mucus, and airway influence.

Likely dysregulated; however, we found no studies that
evaluated the effects of alcohol on ILC2 cells in any tissue.

ILC3 Production of proinflammatory and regulatory cytokines (particularly
IL-22, IL-17A). In the gut, they serve as sentinels involved in
maintaining homeostasis and tolerance to commensals while also
functioning to prevent invasion by pathogens. The LTi subtype
appears important for the long-term maintenance of memory CD4 T
cells.

Ethanol impairs secretion of IL-22 from gut ILC3, which was
correlated with alcohol-related changes in the composition of
the intestinal microbiota and increased intestinal permeability.

(36, 69, 70)

NKT/iNKT These cells are CD1d-restricted and react to lipid antigenic stimulation
within minutes by secreting a wide variety of cytokines. This rapid
response time makes these cells important in the early response to
infection.

Alcohol increases proliferation and maturation of iNKT cells.
These cells secrete IL-10 and IFN-g which are both altered in
alcohol use disorder.

(65, 71, 72)

gd Part of early rapid response to insult, these cells have characteristics of
both innate and adaptive immune cells but do not require clonal
selection or TCR recognition. Cytotoxic.

In a murine model, subsets of dermal gd T cells (CD3hiVg3+
and CD3intVg3-) were diminished. Diminished IL-17 secretion.

(73, 74)

MAIT MAIT cells react to key microbe-associated molecules (riboflavin) via
a conserved TCR that recognizes MR1. Though they recognize a more
restrictive subset of antigens than other conventional MHC-restricted
T cells, their response is more rapid. These cells are a crucial part of
the early infection response mounted in peripheral mucosal tissue like
the lung and GI tract.

Chronically, alcohol depletes MAIT cells in the liver, GI, and
lungs, as well as reduces their antibacterial activity. Alcohol also
dysregulates cytokine production following infection in a tissue-
specific manner.

(75, 76)
fr
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significantly decreased following chronic alcohol consumption.

However, IL-15 can be produced from a variety of different cells

including intestinal epithelial cells, thymic epithelial cells,

keratinocytes, macrophages, and dendritic cells (80).

Mice depleted of NK cells by anti-AsGM1 antibody

treatment displayed increased hepatic triglyceride levels and

decreased serum alanine aminotransferase (ALT) levels

following chronic ethanol exposure in mice, suggesting that

NK cells mediate, in part, liver steatosis and injury. These data

are also consistent with research that suggests that NK activation

is beneficial in the short run, by increasing host defense against

fibrosis and hepatic steatosis through selective cytotoxic activity.

However, it is clear that chronic NK-cell activation contributes

to liver damage (81). Cui et al. argued that the hepato-specific

effects of NK cells were partially mediated by IFN-g. IFN-g
downregulated the expression of several genes related to

lipogenesis and fatty uptake including Srebp-1, Fas, Acc, Gpat,

Scd1, and Fat (82). In addition, IFN-g genetic knockout mice

exhibited significantly more severe steatosis than WT mice.

Finally, in recent work from our group we found that mice fed

a binge-on-chronic ethanol diet exhibited reduced recruitment

of NK cells and T cells to the lungs in response to bacterial

pneumonia compared to control mice (83). Importantly, indole

or probiotics supplementation restored pulmonary immune cell

recruitment (NK cells and T cells) to the lungs of alcohol-fed

mice and was dependent on AhR signaling, suggesting that

alcohol-mediated intestinal dysbiosis and loss of specific

microbial metabolites impairs recruitment of NK cells and T
Frontiers in Immunology 06
cells to the lungs to combat pathogenic insult (83). While NK-

cell numbers and function are detrimentally affected by alcohol,

it does not appear to affect the frequency of group I ILC.

In summary, alcohol arrests the development of NK cells in

CD27+CD11b+ which could contribute to systemic

dysregulation via interference with NK-driven IFN-g signaling.
Such dysregulation can contribute to the development of

alcoholic liver disease, and studies on the depletion of cNK

cells (via the anti-AsGM1 antibody) show increased

steatohepatitis. Interestingly, NK-cell maturation can be

rescued by the administration of IL-15 which suggests that IL-

15 signaling is disrupted following alcohol administration.

However, we have not rigorously identified which specific IL-

15 producers are involved.

Group 2 ILCs
To our knowledge, there are no studies that have evaluated the

effects of alcohol on ILC2 cells in any tissue. However, it is likely that

ILC2s are affected by alcohol and contribute to alcohol-induced

end-organ damage. ILC2 are critically important for type 2

inflammation and the regulation of normal host physiological

responses, such as eosinophil and mast-cell recruitment, mucus

accumulation, smooth-muscle hypercontractility, goblet-cell

metaplasia, and the differentiation of macrophages toward an M2

phenotype. Alcohol is known to impair goblet-cell metaplasia and

mucus accumulation (84–86), smooth-muscle hypercontractility

(87), eosinophil and mast-cell recruitment (88–90), and

alternative macrophage activation (91, 92). It follows that ILC2
FIGURE 2

Examples of alcohol related organ injury with potential influences from the innate-like immune system. Many tissues rely on processes
regulated by innate-like immune signaling to maintain homeostasis. Alcohol can perturb homeostasis by interfering with signal release (ex.
decrease in IL-22 release by ILC-3 cells), by depleting or activating regulatory cells (ex. maturation of iNKT and inactivation of NK cells following
alcohol exposure) or by interfering with effector cell function. Little has been rigorously established about how broad changes in the innate-like
immune system result in tissue damage. However, we can make some informed inferences. Depletion of signals like IL-22 could facilitate injury
in tissues like the lungs and small intestines (2, 5) because IL-22 is a fundamental mediator of inflammation, mucous production and tissue
regeneration. During necrotic alcohol-associated tissue injuries (3, 4), there is often tissue infiltration by cytolytic elements including NK cells. In
a healthy individual, the activity of these cytotoxic elements is kept in check by cytokine signaling by innate-like including iNKT cells. However,
alcohol exposure can dysregulate this signaling and periods of hypo- and hyperactive cytolytic activity may result.
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dysregulation may contribute to alcohol-induced impairment of

these processes. However, the role of ILC2 cells in these processes in

the context of alcohol use is unknown and primed for

future research.

Group 3 ILCs
While ILC3s have become a hot topic in immune research, little

is known about the role of ILC3 in alcohol-induced end-organ

damage. However, this is an ever-growing interest in the field. To

date, only one study has examined the effects of alcohol on ILC3.

Specifically, ethanol feeding was found to impair IL-22 production
Frontiers in Immunology 07
by ILC3s in the gastrointestinal tract (69). Loss of ILC3-mediated

IL-22 production was driven by alcohol-associated dysbiosis and

reduced levels of indole-3-acetic acid (I3AA). Noteworthily,

supplementation of alcohol-fed mice with I3AA protected mice

from steatohepatitis via increased expression of IL-22 and REG3G,

as well as decreased bacterial translocation to the liver (69). Given

that the importance of ILC3 in immune homeostasis is continually

expanding, it is likely that ILC3 dysregulationmay be a contributing

factor during alcohol-induced end-organ damage. However, the

role of ILC3 cells in the context of alcohol use is still understudied

and primed for future research.
FIGURE 3

The interplay between iNKT cells and NK cells appears central to the pathogenesis of hepatic steatosis and other aspects of alcoholic liver
disease. Mature NK cells appear to oppose hepatic steatosis, but also facilitate tissue injury through cytotoxic activity (1). Acutely, NK activity is
thought to be beneficial; NK cells release IFN-g which downregulates a variety of lipogenic and fatty uptake genes (2). NK cells can also
promote beneficial remodeling and regeneration of the liver. Chronically however, over activation of NK cells may contribute to liver injury (3).
Alcohol can perturb the iNKT/NK cell balance, favoring iNKT cell maturation while suppressing the maturation of NK cells (3). This change can
be achieved through a variety of possible mechanisms. For example, ethanol impairs the release of IL-15 which promotes the maturation of NK
cells (4). Ethanol can also promote the release of IL-10 from iNKT cells which will suppress NK activity (5).
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Innate-like T lymphocytes

NKT and iNKT cells
The effects of alcohol on traditional NK (discussed above),

NKT, and iNKT cells are the most well studied of effects on

innate lymphocyte populations. However, given the ever-

growing role and understanding of innate lymphocytes, even

our knowledge of the effects of alcohol on these cell types is most

likely in its infancy. Further, there are differences in the effects of

acute and chronic alcohol consumption and there are likely

subtle differences in the effects of alcohol across specific iNKT

subsets. Broadly speaking, alcohol appears to increase immature

iNKT-cell proliferation and maturation in the thymus with a

corresponding increase in IFN-g-producing iNKT-1 cells (65).

In vivo, this facilitates a Th1-dominant immune response. This

activation is interesting as it contrasts strongly to the inhibitory

effects that alcohol exhibits on NK cells (discussed above).

Some have hypothesized that NK and iNKT cells may be

interlinked through a system of contra-regulation (71). A

significant fraction of iNKT cells produce interleukin-10 (IL-10).

IL-10 is an interleukin known to antagonize the action of NK cells

(72). For example, in contrast to NK-cell activity, iNKT cells

promote hepatic steatosis by inhibiting the accumulation of NK

cells and the release of IFN-g (71). In addition, Ja18-/- mice (a

knockout model deficient in iNKT cells) demonstrated

significantly higher levels of total NK-cell count and IFN-g
release following alcohol exposure, while WT mice exhibited a

loss of total NK cells and IFN-g. Likewise, iNKT-deficient Ja18-/-

mice appeared relatively protected from hepatic steatosis, but if

these mice were also depleted of their NK cells by using the anti-

AsGM1 antibody, alcoholic liver injury steatosis was significantly

aggravated. Further, hepatic IL-10 was significantly upregulated,

but no changes in TGF-b or IL-4 were noted. As noted above,

iNKT cells are known for generating IL-10, which can inhibit NK

activation and recruitment. In support of this cross talk, steatosis

and liver damage were also alleviated in IL-10 KO mice,

presumably via the suppression of NK cells.

In summary, alcohol enhances the development of iNKT

cells, which promotes a Th1-dominant immune response. The

extent to which the altered abundance of iNKT alters host health

is unclear. However, dysregulation of iNKT may account for

reports of alcohol-related signaling dysfunction involving IL-10

and other iNKT-derived cytokines. There is also evidence that

increased iNKT activity promotes alcohol steatosis.

MAIT cells
Alcohol consumption influences MAIT-cell numbers and

function through a variety of mechanisms. For example, chronic

alcohol use is associated with impaired intestinal transport of

riboflavin, as well as other B vitamins (93), which likely

contributes to MAIT-cell depletion following chronic alcohol

consumption. Work done by Zhang et al. demonstrates that
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there is a decrease in the abundance of MAIT cells in subjects

with chronic alcoholic liver disease (78). Changes in MAIT-cell

numbers also appear to depend on chronic ethanol

consumption, as changes in MAIT-cell numbers were not

observed following short-term binge drinking or short-term

abstinence. Furthermore, the levels of peripheral MAIT cells

were decreased and exhibited reduced antibacterial activity in

subjects with alcoholic cirrhosis or severe alcoholic hepatitis

(79). The hepatic expressions of the key transcription factors

RORgt, PLZF, and Eomes were all reduced in subjects with

severe alcoholic hepatitis (79).

Although alcohol can directly affect immune cells, it is worth

noting that alcohol-related effects on intestinal bacterial antigens

and/or metabolites, independent of ethanol, can deplete MAIT

cells (79), which suggests that impairment in hepatic and

circulating MAIT cells in patients with severe alcoholic hepatis

is more likely due to chronic exposure to bacteria than to

alcohol. Recent studies from our group have found that the

number of MAIT cells in the mucosal tissues was significantly

decreased in mice following binge-on-chronic alcohol feeding

(47). However, CD69 expression was increased following alcohol

feeding. Interestingly, the expression levels of Th1-specific

cytokines and transcription factors were tissue specific. Th1-

specific responses were decreased in the intestinal tract but

enhanced in the lung and liver (47). Like previous studies

which found a critical association of the gut microbiota with

MAIT cells, we found that transplantation of the fecal

microbiota from alcohol-fed mice into alcohol-naïve mice

resulted in a MAIT-cell profile similar to those seen in our

alcohol-feeding model (47). Importantly, the differences

observed between MAIT cells from alcohol- and control-fed

mice were mitigated by antibiotic treatment. Further, in subjects

with alcohol-associated liver disease, as well as in rodent

ethanol-feeding models, there is increased intestinal

permeability with systemic distribution of bacterial products,

such as LPS and bacterially derived riboflavin (94, 95).

Riboflavin is known to activate MAIT cells, at least in the

short term; however, long-term exposure may lead to MAIT-

cell exhaustion, which has been reported in chronic conditions

like HIV (96, 97).

In summary, alcohol decreases the function and abundance

of MAIT cells. However, these deficiencies are not caused solely

by the direct effects of alcohol and its metabolites on the

eukaryotic cells of the host. Rather, it appears that alcohol-

related changes to the microbiota can produce MAIT-cell

dysfunction independent and in addition to changes caused

directly by alcohol.

gd T cells
Like ILC3 cells, there is a paucity of data regarding the effects of

alcohol on gd T cells. Currently, the effects of alcohol on dermal

immunological responses, particularly gd T cells, are the most well
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characterized. In a murine model, chronic EtOH feeding leads to a

loss of specific subsets of dermal T cells, including Foxp3+

regulatory T cells and both CD3hiVg3+ and CD3intVg3-gd T cells

(73). EtOH was also correlated with an impaired functional

capacity of dermal gd T cells (the prototypical dermal cells that

produce IL-17). Precisely, IL-17 production following anti-CD3

stimulation was significantly reduced in dermal gd T cells (73).

Further, lymph node-associated gd T cells isolated from EtOH-fed

mice also exhibited diminished IL-17 production following

stimulation (73). In similar studies, hepatic IL-17A production

was found tobe cell type specific depending on alcohol exposure. In

alcohol-naïve mice, IL-17 is produced primarily by hepatic gd T

cells. However, following acute-on-chronic EtOH consumption,

the secretionof IL-17Awas shifted to amoreCD4+T-cellmediated

response (74). Noteworthily, these results were not seen in TLR3

KO or Kupffer cell-depleted mice, which suggest that TLR3

activation in Kupffer cells leads to an elevated IL-1b expression,

thus driving IL-17A secretion by gd T cells early during alcohol-

associated liver disease and increased CD4+ T-cell secretion of IL-

17A during the end stage of alcohol-associated liver disease (74).
Discussion

Alcohol is known to impair immune function and perturb

immune homeostasis. It follows that organ systems which rely

on immune signaling for proper functioning are also impaired.

Some systems, like the nervous system may be altered in subtle

ways that alter behavior (75). In contrast, systems which directly

encounter pathogens from the environment can become more

susceptible to infection and injury (76, 77). However, our

understanding of the mechanisms by which this occurs

remains in its infancy. Multiple researchers have reported that

alcohol use can deplete critical cell subpopulations, by impairing

cell maturation and chemotaxis. The depletion of these cells can

propagate multiple deleterious effects. For example, a depletion

of NK cells (cytotoxic, IFN-g secreting) would be expected to

impair immune responses reliant on cytotoxicity; however, NK

depletion would also be expected to impact tissue IFN-g levels
and thereby attenuate responses by the adaptive and innate arms

of the immune system. Examples of cell depletion and signaling

disruption have been reported for many types of innate immune

cells. However, it is also worth recognizing that alcohol and

alcohol-related metabolites can interact with a variety of

lymphocytes in nuanced ways through mechanisms other than
Frontiers in Immunology 09
cellular depletion. Some cell types, such as MAIT cells, may be

mediated through indirect pathways that involve the microbiota.

This review was primarily concerned with innate-like T

lymphocytes, and therefore, we emphasized examples like the

observation that alcohol increases iNKT IL-10 secretion.

Consider however that IL-10 signaling is also heavily utilized

by innate-like B cells, a group important for IgM and as the first

line of defense against infection (98). It would be worth

exploring the effects of alcohol on these cells, both in their

secretion of IL-10 and in their ability to repel infection. At the

time of this review, we found little research discussing the effects

of alcohol on innate-like B cells. Overall, research on the effect of

alcohol on all innate-like lymphocytes remains underdeveloped.
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