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Abstract: The aim of the study was to compare the computer model of synaptic breakdown
in an Alzheimer’s disease-like pathology in the dentate gyrus (DG), CA3 and CA1 regions of the
hippocampus with a control model using neuronal parameters and methods describing the complexity
of the system, such as the correlative dimension, Shannon entropy and positive maximal Lyapunov
exponent. The model of synaptic breakdown (from 13% to 50%) in the hippocampus modeling the
dynamics of an Alzheimer’s disease-like pathology was simulated. Modeling consisted in turning off

one after the other EC2 connections and connections from the dentate gyrus on the CA3 pyramidal
neurons. The pathological model of synaptic disintegration was compared to a control. The larger
synaptic breakdown was associated with a statistically significant decrease in the number of spikes
(R = −0.79, P < 0.001), spikes per burst (R = −0.76, P < 0.001) and burst duration (R = −0.83, P < 0.001)
and an increase in the inter-burst interval (R = 0.85, P < 0.001) in DG-CA3-CA1. The positive maximal
Lyapunov exponent in the control model was negative, but in the pathological model had a positive
value of DG-CA3-CA1. A statistically significant decrease of Shannon entropy with the direction of
information flow DG->CA3->CA1 (R = −0.79, P < 0.001) in the pathological model and a statistically
significant increase with greater synaptic breakdown (R = 0.24, P < 0.05) of the CA3-CA1 region
was obtained. The reduction of entropy transfer for DG->CA3 at the level of synaptic breakdown of
35% was 35%, compared with the control. Entropy transfer for CA3->CA1 at the level of synaptic
breakdown of 35% increased to 95% relative to the control. The synaptic breakdown model in an
Alzheimer’s disease-like pathology in DG-CA3-CA1 exhibits chaotic features as opposed to the control.
Synaptic breakdown in which an increase of Shannon entropy is observed indicates an irreversible
process of Alzheimer’s disease. The increase in synapse loss resulted in decreased information flow
and entropy transfer in DG->CA3, and at the same time a strong increase in CA3->CA1.
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1. Introduction

One of the most current issues in medicine is a detailed explanation of causes, possibilities of
diagnosis and treatment of Alzheimer’s disease (AD), which causes in the late stage a complete loss
of memory regarding current events and changes in the environment [1]. Connections between the
entorhinal cortex and hippocampus are essential for this disease. At a late stage, these connections are
completely destroyed. In the initial phase, only a few out of thousands of connections from the stellate
cells of the second layer of the entorhinal cortex are discontinued, but this always leads to a decrease in
the possibility of learning and memorizing new changes in the environment. This phenomenon can
be easily modeled even in simplified models of the hippocampus network. In AD, the hippocampus
plays a special role, which is important in impaired memory functioning [2]. The experiments show
that a 50% decrease in the number of synaptic connections is the main and most credible factor of
cognitive deficiency, which is called synaptic deletion [2]. Brain compensation mechanisms include the
strengthening of the remaining synaptic connections, which are referred to as synaptic compensations.
Models of synaptic breakdown and compensation are based on these observations [3–5]. According
to these models, it has been proven that in the Hopfield network architecture, the loss of synaptic
connections is the cause of memory decline and distortion of learned patterns. However, uncontrolled
synaptic modification is another phenomenon seen in the associative network [6–8].

Models of neural networks in experiments with brain simulations carried out to understand the
basic mechanisms of AD can be divided into types of so-called connection or biophysical models.
Models of neurons used in simulation systems of processes associated with associative memory must
demonstrate the ability of time-space integration [2,9–11]. Models of neural networks are used in
simulations of memory dysfunctions, such as AD, where theta and gamma oscillation is required,
as well as various types of neurons and input patterns [12–14].

The most commonly used methods characterizing the complexity of the system that is the
hippocampus are the positive maximal Lyapunov exponent, correlative dimension and Shannon
entropy [15,16]. The study [15] showed that patients with AD were characterized by significantly higher
values of Lyapunov exponents and correlative dimensions in EEG studies compared with controls.

Entropy is a concept referring to randomness and predictability, therefore, greater entropy is often
associated with greater randomness and smaller systemic order [17]. We have two families of entropy
estimators: spectral entropy and entropy deposition [18]. The usefulness of entropy in the analysis of
EEG signals in AD has been demonstrated. The increased value of entropy in AD has been shown in
previous studies [17–21].

The aim of this study was to model the synaptic breakdown in AD using methods describing
the complexity of systems, such as Lyapunov entropy or correlation dimension. Our experiment
with simulations of the hippocampus network DG-CA3-CA1 was aimed at understanding the basic
mechanisms of AD and information flow in the hippocampus.

2. Materials and Methods

2.1. Study Design

Five simulations were performed: one of them was characterized by a control model
(control model), and another four a pathological model (pathological model). Figure 1 presents
a detailed diagram of the simulation of the hippocampus network DG-CA3-CA1. The pathological
model simulated synaptic breakdown in the hippocampus for four consecutive phases: 9%, 18%, 26%
and 35% of the synapse loss modeling the dynamics of AD. Modeling of AD consisted in turning off

one after the other connections with EC2 and connections with EC2 on inhibitory interneurons on the
granule cells of the dentate gyrus and on CA3 pyramidal neurons (basket cells within the dentate gyrus
(DG) and CA3) (broken connections are marked red on Figure 1). In our parallel simulation study,
we performed a comparative analysis of neuronal parameters, the complexity of the hippocampus
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through a positive Lyapunov exponent, correlative dimension and Shannon entropy and parameters
of information theory (entropy transfer and mutual information).
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Figure 1. The diagram of the simulation of the hippocampus network DG-CA3-CA1 (control model 
vs. pathology model). 

2.2. The Model Description 

The mathematical formalism of the DG-CA3-CA1 network was based on previous studies [22–
24]. The diagram of the neural network related to the hippocampal subregions DG-CA3-CA1 is 
shown in Figure 2. Our model was built of 21 cells. The DG region contained four granule cells and 
three inhibitory interneurons: two basket cells and one mossy cell (O-LM). On the other hand, the 
CA3 and CA1 areas contained four pyramidal cells and three inhibitory interneurons: two basket 
cells and one O-LM cell. The simplified morphology of nerve cells including the cell body, part of the 
axon and dendrites (mainly apical) was used. All the properties of the nerve cell used in the 
experiment were based on the functions described in the literature [25–30]. 

Figure 1. The diagram of the simulation of the hippocampus network DG-CA3-CA1 (control model vs.
pathology model).

2.2. The Model Description

The mathematical formalism of the DG-CA3-CA1 network was based on previous studies [22–24].
The diagram of the neural network related to the hippocampal subregions DG-CA3-CA1 is shown
in Figure 2. Our model was built of 21 cells. The DG region contained four granule cells and three
inhibitory interneurons: two basket cells and one mossy cell (O-LM). On the other hand, the CA3 and
CA1 areas contained four pyramidal cells and three inhibitory interneurons: two basket cells and one
O-LM cell. The simplified morphology of nerve cells including the cell body, part of the axon and
dendrites (mainly apical) was used. All the properties of the nerve cell used in the experiment were
based on the functions described in the literature [25–30].
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Figure 2. DG-CA3-CA1 hippocampal formation microcircuit. On the left is the dentate gyrus (DG) 
region, CA3 on the right and CA1 at bottom. Major cell types and their connectivity: granule (G1–
G4), pyramidal (P1–P8), basket (B1–B6), OL-M (1–2) cells, mossy cell (MC). T1–T9 represent 
GABAergic cells in the medial septum-diagonal band (MS-DB) region which provides the 
disinhibitory inputs on hippocampal GABAergic interneurons at theta rhythm. All external and 
internal glutamatergic pathways innervate both principal cells (pyramidal and granule) and 
GABAergic interneurons (B and OL-M). The dentate gyrus and the CA3 area receive radially 

Figure 2. DG-CA3-CA1 hippocampal formation microcircuit. On the left is the dentate gyrus (DG)
region, CA3 on the right and CA1 at bottom. Major cell types and their connectivity: granule (G1–G4),
pyramidal (P1–P8), basket (B1–B6), OL-M (1–2) cells, mossy cell (MC). T1–T9 represent GABAergic
cells in the medial septum-diagonal band (MS-DB) region which provides the disinhibitory inputs
on hippocampal GABAergic interneurons at theta rhythm. All external and internal glutamatergic
pathways innervate both principal cells (pyramidal and granule) and GABAergic interneurons (B and
OL-M). The dentate gyrus and the CA3 area receive radially segregated layer II (EC2) inputs from both
the medial (MEC) and lateral (LEC) entorhinal cortex. The combined and dentate-/CA3 processed MEC
and LEC information is transmitted to CA1 pyramidal cells. Principal neurons in the entorhinal cortex
layer 3 (EC3) directly project to the CA1 field and synapse with CA1 pyramidal neurons. The MEC and
LEC are in reciprocal connections with different segments of the CA1 area and the subiculum, which
however receive processed information from both MEC and LEC via the CA3 input.
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2.3. Synaptic Properties

All cell models—pyramid, basket and O-LM—were made of 16 compartments. Each dendrite
had excitatory or inhibitory synapses. The mathematical formalism describing AMPA, NMDA and
GABA receptors from previous works was used [22–24]. Each CA3 pyramidal cell received inhibitory
synapses from basket cells and O-LM cells. The inputs stimulating the CA3 pyramidal cells were
received from the second layer of entorhinal cortex and dentate gyrus. On the other hand, stimulating
input basket cells were received from the distal dendrites on the second layer of the entorhinal cortex
and from the dentate gyrus of mossy fiber cells. The inputs from EC2 and EC3 were shifted in phase
relative to each other, so that the strong stimulation from one corresponded to the weak stimulation of
the other [31]. Each O-LM cell had stimulation inputs from CA3 pyramidal cells and an inhibition
from the septum [32,33]. According to biological research, the sources of inputs to the CA1 area
were mossy fibers and Schaffer’s collaterals from CA3 and projections from the third layer of the
entorhinal cortex [34]. In addition to this, theta oscillation was delivered via the septo-hippocampal
system through the vault and described frequencies in the band from 4 Hz to 12 Hz, and temporarily
anchored in faster gamma oscillations, which was simulated in this study [35–39]. It is believed
that theta oscillations play a fundamental role in the activity of the hippocampus, including spatial
information [40–42].

2.4. Correlation Dimension, Shannon Entropy and the Positive Maximal Lyapunov Exponent

For nonlinear analysis of the results of the pathological and the control model, phase space
reconstruction was performed, which is one of the methods used for describing the complexity of
the dynamic system [43]. Attractor reconstruction was performed using time delay methods [44,45].
The mutual information method was used to determine the ‘optimal’ time delay value for the
reconstruction of the state space [46]. The minimum dimension of deposition of one-dimensional time
series was chosen using the false nearest neighbors method [47]. Finally, the correlation dimension,
Shannon entropy and the positive maximal Lyapunov exponent were established with the use of a
tool proposed by Charles Webber and Joseph Zbilut (recurrence quantification analysis) [48]. In 1948,
Claude Shannon defined entropy as a measure of uncertainty associated with a random variable.
The Shannon entropy measures the recursion power of the studied time series, which in some ways
allows the ability to check the degree of their chaoticity [49].

2.5. Mutual Information and Transfer Entropy

Mutual information (MI) is a concept in the field of information theory that defines the relationship
between two random variables and can be used as an alternative to a well-known correlation
analysis [50,51]. Therefore, MI can help more than correlation analysis to understand the interaction
between the two systems and determine the degree of coupling of the two systems [52]. Mutual
information measures how much information we can have about the X signal, knowing Y, but does not
provide knowledge about the dynamics and direction of its flow. This problem is solved by using the
entropy transfer method [52]. The use of the entropy transfer method in the analysis of interactions
between two systems can allow us to distinguish information that has really been exchanged between
the systems from information that is the same in both systems due to a common source of information
or a common history. The entropy transfer can determine the information exchanged between the
systems separately for each of the directions.

2.6. Statistical Methods and Software

The statistical analyses were performed using the statistical suite TIBCO Software Inc. (2017),
Statistica (data analysis software system), version 13, (Palo alto, CA, USA, 2017, http://statistica.io) and
Excel. The significance of difference between more than two groups was assessed with a parametric
F test (ANOVA). In case of statistically significant differences between two groups, post-hoc tests were

http://statistica.io
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used (Tukey test). Two-way ANOVA with post-hock Tukey analysis were performed using TIBCO
Software Inc. (2017), Statistica. Chi-squared tests for independence were used for qualitative variables.
In order to determine dependence, strength and direction between variables, correlation analysis
was used by determining the Pearson or Spearman’s correlation coefficients. In all the calculations,
the statistical significance level of P < 0.05 has been used. Parameter calculations for complex systems
and information theory were made in the Neuroscience Information Theory Toolbox software [53].

3. Results

3.1. Neuronal Parameters

The performed simulations compared the number of spikes, spikes per burst, burst duration
and inter-burst interval in a control model with pathological simulations associated with increasing
synaptic breakdown from 9% to 35%.

3.1.1. DG-CA3-CA1 and CA3-CA1 Areas

Statistical analyses of the results of number of spikes in the hippocampal cumulative areas
DG-CA3-CA1 show statistically significant differences between the pathological and control model.
A statistically significant reduction in the number of spikes was obtained in the synaptic breakdown
model at the 26% and 35% levels compared with the control (268.4 and 288.1 vs. 504.8, P < 0.001).
In addition, the number of spikes was significantly lower in the synaptic disintegration model at 26%
and 35% compared with 9% (268.4 and 288.1 vs. 412.9, P < 0.01). A statistically significant decrease in
the number of spikes was also obtained at 26% and 35% compared with 18% (268.4 and 288.1 vs. 399.3,
P < 0.05) (Figure 3). A statistically significant negative correlation in the level of synaptic decay was
obtained, and in the number of spikes (correlation coefficient R = −0.79, P < 0.001).

Similarly, in the area of CA3-CA1, statistically significant differences were obtained between
the pathological model and the control model. There was a statistically significant reduction in the
number of spikes in the synaptic breakdown model at the 26% and 35% levels compared with the
control (286.6 and 315.1 vs. 550.6, P < 0.001). In addition, the number of spikes was significantly
smaller in the synaptic breakdown model at the 26% level compared to the 9% level (286.6 vs. 442.9,
P < 0.01) (Figure 3). A statistically significant negative correlation was obtained in the level of synaptic
breakdown, and in the number of spikes (correlation coefficient R = −0.83, P < 0.001).

Statistically significant differences were obtained for spikes per burst by comparing the pathological
model with the control. There was a statistically significant reduction in spikes per burst in the synaptic
breakdown model at the 26% and 35% levels compared with the control (2.5 and 2.8 vs. 5.4, P < 0.001).
In addition, spikes per burst was significantly lower in the synaptic breakdown model at the 26% and
35% levels compared with the 9% level (2.5 and 2.8 vs. 4.2, P < 0.01). A statistically significant drop in
spikes per burst was also obtained at the 26% and 35% levels compared with the breakdown at the 18%
level (2.5 and 2.8 vs. 4.1, P < 0.05) (Figure 3). A statistically significant negative correlation in the level
of synaptic breakdown was obtained, and in the spikes per burst (correlation coefficient R = −0.76,
P < 0.001).

The spikes per burst analysis was statistically significant in the synaptic breakdown model at the
26% and 35% levels compared with the control (2.8 and 3.2 vs. 6.0, P < 0.001) for the CA3-CA1 region.
In addition, spikes per burst was significantly lower in the synaptic disintegration model at the 26%
and 35% levels compared with the 9% level (2.8 and 3.2 vs. 4.6, P < 0.01) (Figure 3). A statistically
significant negative correlation in the level of synaptic breakdown was obtained, and in spikes per
burst (correlation coefficient R = −0.81, P < 0.001).

Statistical analysis of burst duration showed a statistically significant reduction in time in the
synaptic breakdown model at the level of 9%, 26% and 35% compared with the control (33.3, 18.6 and
19.4 vs. 41.9, P < 0.05, P < 0.001) in DG-CA3-CA1. In addition to this, shortened burst duration at the
breakdown level of 26% compared to the 9% level (18.6 vs. 33.3, P < 0.01) and at the 26% and 35%
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level compared to 18% level (18.6 and 19.4 vs. 35.2, P < 0.01) was obtained (Figure 3). A statistically
significant negative correlation was obtained in the level of synaptic breakdown and burst duration
(correlation coefficient R = −0.83, P < 0.001).

In the CA3-CA1 model, statistical analysis of the burst duration showed a statistically significant
reduction of time in the synaptic breakdown model at the 26% and 35% level compared with the control
(18.1 and 19.1 vs. 42.1, P < 0.001). The time reduction was also obtained at the breakdown level of
38% compared with the 9% level (18.1 vs. 33.1, P < 0.01) (Figure 3). A statistically significant negative
correlation was obtained at the level of the synaptic breakdown and the burst duration (correlation
coefficient R = −0.83, P < 0.001).

The results of the statistical inter-burst interval analyses showed a statistically significant increase
in the 9%, 26% and 35% models compared with the control (93.0, 112.0 and 111.8 vs. 84.1, P < 0.05,
P < 0.001) in DG-CA3-CA1. In addition to this, an increase in the inter-burst interval was obtained in
the 38% and 50% models compared with the 9% and 18% models (112.0 and 111.8 vs. 93.0 and 91.5,
P < 0.01) (Figure 3). A statistically significant positive correlation in the level of synaptic decay was
obtained, and in the inter-burst interval (correlation coefficient R = 0.85, P < 0.001).

The results of the statistical inter-burst interval analysis showed a statistically significant increase
in the 9%, 26% and 35% models compared with the control (93.9, 113.1 and 112.9 vs. 84.3, P < 0.001)
in the CA3-CA1 area. In addition to this, an increase in the inter-burst interval was obtained in the
26% and 35% models compared with the 25% model (113.1 and 112.9 vs. 92.8, P < 0.05) (Figure 3).
A statistically significant positive correlation was obtained at the level of synaptic breakdown, and the
inter-burst interval (correlation coefficient R = 0.86, P < 0.001).

3.1.2. DG, CA3 and CA1 Regions

Statistical analyses of the results of the number of spikes in the hippocampal accumulation
of DG, CA3 and CA1 areas also show statistically significant differences between the pathological
model and the control model. A statistically significant reduction in the number of spikes was
obtained in the synaptic breakdown model at the 26% and 35% level compared with the control
(232.0 and 234.0 vs. 413.0, P < 0.05) in DG. In addition to this, the number of spikes was significantly
smaller at the 26% synaptic breakdown model level compared with the 9% level (232.0 vs. 353.0,
P < 0.05) in DG (Figure 4). In the CA3 model, a statistically significant reduction in the number of
spikes in the synaptic breakdown model was obtained at the 26% and 35% levels compared with the
control (300.0 and 329.3 vs. 587.8, P < 0.05). In contrast, in the CA1 region, a significant decrease in the
number of spikes was obtained in the synaptic breakdown model at the 26% level compared with the
control (273.3 vs. 513.5, P < 0.05) (Figure 4). There were statistically significant negative correlations
at the level of synaptic breakdown, and number of spikes for DG (correlation coefficient R = −0.80,
P < 0.001), CA3 (correlation coefficient R = −0.86, P < 0.001) and CA1 (correlation coefficient R = −0.82,
P < 0.001).

The spikes per burst analysis was statistically significant in the synaptic breakdown model at the
26% and 35% levels compared with the control (2.0 and 2.0 vs. 4.2, P < 0.05) for DG. In addition to
this, the spikes per burst was significantly smaller in the synaptic breakdown model at the 26% level
compared with the 18% level (2.0 vs. 3.7, P < 0.05) for DG (Figure 3). In the CA3 model, a statistically
significant reduction in spikes per burst was obtained in the synaptic breakdown model at the 26%
and 35% levels compared with the control (2.9 and 3.3 vs. 6.4, P < 0.05). In contrast, in the CA1 region,
a significant decrease in the spikes per burst was obtained in the model of synaptic breakdown at
the 26% level compared with the control (2.6 vs. 5.5, P < 0.05) (Figure 4). Statistically significant
negative correlations were obtained at the level of synaptic breakdown, and of spikes per burst for DG
(correlation coefficient R = −0.80, P < 0.001), CA3 (correlation coefficient R = −0.85, P < 0.001) and CA1
(correlation coefficient R = −0.79, P < 0.001).
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Figure 3. The analysis of simulations DG-CA3-CA1 region (left) and CA3-CA1 (right). The number
of spikes, spikes per burst, burst duration and inter-burst interval for the pyramidal cell comparison
control model and model of the synapses lost during an Alzheimer’s disease-like pathology: synaptic
deletion 9%, 18%, 26% and 35% (* P < 0.05, ** P < 0.01, *** P < 0.001).
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On the other hand, the statistical analysis of burst duration showed a statistically significant
reduction of time in the synaptic breakdown model at the 26% and 35% levels compared with the
control (19.6 and 19.9 vs. 41.6, P < 0.05) in DG. The time reduction was also obtained at the 26%
breakdown level compared with the 18% level (19.6 vs. 36.0, P < 0.05) in DG (Figure 4). In the CA3
model, a statistically significant shortening of burst duration was obtained in the synaptic breakdown
model at the 26% and 35% levels compared with the control (18.7 and 20 vs. 43.0, P < 0.05). In contrast,
in the CA1 region, a significant shortening of burst duration was obtained in the synaptic breakdown
model at the 26% and 35% levels compared with the control (17.5 and 18.2 vs. 41.2, P < 0.05) (Figure 4).
Statistically significant negative correlations at the level of synaptic breakdown were obtained, and
a burst duration for DG (correlation coefficient R = −0.80, P < 0.001), CA3 (correlation coefficient
R = −0.85, P < 0.001) and CA1 (correlation coefficient R = −0.85, P < 0.001).

The results of the statistical inter-burst interval analyses showed a statistically significant increase
in the 26% and 35% models compared with the control (110.0 and 109.7 vs. 83.7, P < 0.05) in DG.
In addition to this, an increase in the inter-burst interval was obtained in the 26% model compared with
the 18% model (110.0 vs. 88.7, P < 0.05) in DG (Figure 4). In the CA3 model, a statistically significant
increase in the inter-burst interval was obtained in the synaptic breakdown model at the 26% and 35%
levels compared with the control (110.9 and 111.3 vs. 83.4, P < 0.05). In the CA1 region, however,
a significant increase in the inter-burst interval was obtained in the synaptic breakdown model at
the 26% and 35% levels compared with the control (115.2 and 114.5 vs. 85.2, P < 0.05) (Figure 4).
Statistically significant positive correlations were obtained at the level of synaptic breakdown and
burst duration for DG (correlation coefficient R = 0.80, P < 0.001), CA3 (correlation coefficient R = 0.85,
P < 0.001) and CA1 (correlation coefficient R = 0.84, P < 0.001).

3.2. Parameters in a Complex System: Hippocampus

In simulations of correlation dimension, Shannon entropy and the positive maximal Lyapunov
exponent in the control compared with the pathological model in simulations related to the increasing
synaptic disintegration from 9% to 35%.

3.2.1. DG-CA3-CA1 and CA3-CA1 Regions

Statistical analyses of the correlation dimension results in hippocampal simulations of the
DG-CA3-CA1 regions show statistically significant differences between the pathological and the control
model. A statistically significant decrease in the correlation dimension was obtained in the synaptic
breakdown model at the 35% level compared with the control (3.9 vs. 6.0, P < 0.05). In addition to this,
a statistically significant decrease in the correlation dimension was found in the synaptic breakdown
model at the 35% level compared to synaptic breakdown at the 26% level (3.9 vs. 6.6, P < 0.01).

However, in the CA3-CA1 region there were no statistically significant differences regarding the
correlation dimension between the tested models (P = 0.8452) (Figure 5).

The results of the statistical analyses of Shannon entropy changes relative to the synaptic
breakdown in the DG-CA3-CA1 model also did not show statistical significance (P = 0.3528) (Figure 4).
On the other hand, in the CA3-CA1 region a statistically significant increase in Shannon entropy in
the synaptic breakdown model at the 26% and 35% levels was obtained as compared with the control
(1.9 and 1.6 vs. 1.0, P < 0.05) (Figure 5).

Detailed statistical analysis showed statistically significant differences in the positive maximal
Lyapunov exponent relative to the synaptic breakdown in the DG-CA3-CA1 and CA3-CA1 regions.
In the DG-CA3-CA1 region a statistically significant increase in the positive maximal Lyapunov exponent
was obtained at all levels of synaptic breakdown compared with the control model (0.053, 0.048, 0.036
and 0.034 vs. −0.136, P < 0.01, P < 0.05) (Figure 5). Similar results were obtained in the CA3-CA1
region (0.066, 0.060, 0.042 and 0.042 vs. −0.213, P < 0.01, P < 0.05) (Figure 5).
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3.2.2. DG, CA3 and CA1 Regions

Statistical analyses of the correlation dimension results in the hippocampal simulations of the
DG, CA3 and CA1 regions show statistically significant differences between the pathological and the
control model only in the DG region. A statistically significant decrease in the correlation dimension
was obtained in a synaptic breakdown model at the 35% level compared with the control (1.0 vs. 7.0,
P < 0.05). In addition to this, a statistically significant increase in the synaptic breakdown model at
the 26% and 35% levels was obtained as compared with the 26% level (5.0 and 1.0 vs. 10.0, P < 0.01).
There were no statistically significant differences between the correlation dimension and the synaptic
breakdown in the CA3 and CA1 regions, (P > 0.05) (Figure 6).Entropy 2019, 21, 408 11 of 18 
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Figure 4. The analysis of simulations at the DG, CA3 and CA1 regions. The number of spikes, spikes
per burst, burst duration and inter-burst interval for the pyramidal cell comparison control model and
model of the synapses lost during an Alzheimer’s disease-like pathology: synaptic deletion 9%, 18%,
26% and 35% (* P < 0.05, ** P < 0.01, *** P < 0.001).
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Figure 5. The nonlinear analysis of simulations at the DG-CA3-CA1 region (left) and CA3-CA1
(right). The comparison control model and model the synapses lost during an Alzheimer’s disease-like
pathology: synaptic deletion 9%, 18%, 26% and 35% correlation dimension, entropy and positive
Lyapunov exponent for the pyramidal cell comparison control model (* P < 0.05, ** P < 0.01,
*** P < 0.001).

The results of the statistical analyses showed statistically significant Shannon entropy changes
relative to the synaptic breakdown in the DG and CA1 regions. Shannon entropy significantly increased
at the 35% level compared with the control model (3.5 vs. 2.8, P < 0.01) and at the 18% level compared
to the 35% level (3.0 vs. 3.5, P < 0.05) in the DG region. In contrast, in the CA1 region a statistically
significant increase in Shannon entropy in the synaptic breakdown model at the 35% level was obtained
compared with the control (1.8 vs. 0.4, P < 0.01). In addition to this, a statistically significant increase at
the 9% and 18% levels was obtained compared with the 35% level (0.8 and 0.6 vs. 1.8, P < 0.5, P < 0.01)
(Figure 6). A statistically significant increase in Shannon entropy in the synaptic breakdown model
at the 9% and 18% levels was obtained compared with the 26% level (0.8 and 0.6 vs. 1.9, P < 0.001)
(Figure 6).

A detailed statistical analysis showed statistically significant differences in the positive maximal
Lyapunov exponent relative to the synaptic breakdown in the DG, CA3 and CA1 regions. In the DG
region, a statistically significant increase in the positive maximal Lyapunov exponent at the synaptic
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breakdown at the 9% and 18% levels relative to the control model (0.027 and 0.025 vs. 0.018, P < 0.5,
P < 0.001) was obtained (Figure 6). On the other hand, at the 26% and 35% levels a significantly lower
value was obtained with respect to the 9% level (0.024 and 0.020 vs. 0.027, P < 0.05, P < 0.001) (Figure 6).

In the CA3 region a statistically significant increase in the positive maximal Lyapunov exponent
at all levels of synaptic breakdown compared with the control model (0.060, 0.035, 0.045 and
0.036 vs. −0.230, P < 0.05) was obtained (Figure 6).

Similarly, in the CA1 region, a statistically significant increase in the positive maximal Lyapunov
exponent at all levels of synaptic breakdown compared with the control model (0.072, 0.085, 0.039 and
0.047 vs. −0.197, P < 0.05) was obtained (Figure 6).
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Figure 6. The nonlinear analysis of simulations at the DG, CA3 and CA1 regions. Comparison control
model and model the synapses loss during an Alzheimer’s disease-like pathology: synaptic deletion 9%,
18%, 26% and 35% correlation dimension, entropy and positive Lyapunov exponent for the pyramidal
cell comparison control model (* P < 0.05, ** P < 0.01, *** P < 0.001).

3.3. The Flow of Information in Hippocampus vs. Shannon Entropy, Transfer Entropy and Mutual Information

The two-factor ANOVA analysis of three hippocampal regions (DG->CA3->CA1 information
flow) showed a statistically significant decrease in Shannon entropy with the information flow direction
(P < 0.001) and a statistically significant increase with greater synaptic breakdown (P < 0.01). The value
of Shannon entropy (P < 0.001) decreased both in the pathological and control model together with the
information flow direction (Figure 7).

In the DG region, Shannon entropy also increased with the increase of synaptic breakdown
(correlation coefficient R = 0.49, P < 0.01). A similar correlation was obtained for the CA1 region
(correlation coefficient R = 0.48, P < 0.05) and the CA3-CA1 region (correlation coefficient R = 0.24,



Entropy 2019, 21, 408 13 of 17

P < 0.05). In the CA3 and DG-CA3-CA1 regions, however, statistically significant relations between
synaptic breakdown and Shannon entropy were not obtained (Figure 7).

When analyzing synaptic degradation, a decrease in mutual information (MI) in DG->CA3 and
an increase in CA3->CA1 is shown. The increase in synaptic degradation caused a decrease in transfer
entropy (TE) for DG->CA3. In contrast, for CA3->CA1, the inverse relationship was obtained (Figure 7).
Transfer entropy for DG->CA3 decreased to 35% relative to the control at the synaptic breakdown
level of 35%. In addition to this, the same relationship was observed for entropy transfer with respect
to the synaptic breakdown at the 9% level (Figure 7). Transfer entropy for CA3->CA1 at the synaptic
breakdown level of 9% increased to 90% relative to the control. In addition to this, at the synaptic
breakdown, the 35% level increased to 95% relative to the control model (Figure 7).
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Figure 7. The flow of information analysis of the simulations at the DG, CA3 and CA1 regions.
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the pyramidal cell comparison control model.
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4. Discussion

The main symptoms of AD include memory disorders that are associated with the mechanism of
recalling and memorizing new information, and in particular the impairment of memory functions
in the hippocampus [2]. It is suspected that the disease develops gradually, but its etiology is not
well understood so far [54]. Neuroanatomical research of the disease shows the disappearance of
synaptic connections and, associated with this, the death of neurons. However, there are only computer
simulations in agreement with hitherto statements about the staging of Alzheimer pathology in humans,
especially around ‘preclinical’ stages ‘0’ and ‘1’ with very mild memory impairment, but with already
existing degeneration of some stellate cells in layer II of entorhinal cortex in practically in all humans
above 60 years of age.

Therefore, our microcircuit AD-like pathology model shows the dynamics of synaptic breakdown,
modeling the gradual loss of synapses. The model is adequate for simulations of information flow
through the hippocampus, but not for detailed pharmacological studies of AD treatment methods.

In the Horn–Ruppin model [3], the influence of synaptic connection breakdown on the functioning
of memory was analyzed. The analysis showed that despite network damage, the introduction of a
compensating factor that strengthens synaptic connections allows for proper functioning of memory
within the network [3]. The extension of the aforementioned model was the examination of memory
functioning using associative memory with the Hebb rule [5]. This model correctly simulated the
change in the memory capacity of AD patients. The Hasselmo model showed the existence of an
exponential increase of runaway synaptic modification, which is a mechanism of memory degradation
in AD [6,7]. In this model, interference with previous information was discovered, which lead to
a pathological increase in the strength of synaptic connections. The Menschik and Finkel models
were based on the loss of cholinergic connections in AD [12–14]. These models were inspired by an
exponential increase in the strength of synaptic connections, which preceded the loss of cholinergic
connections. Diagnostic decision support of AD and analysis of SPECT images are the medical issues
solved by means of artificial neural networks [55].

The aforementioned models focused on the analysis of a single mechanism in AD, without
considering the neural parameters or describing hippocampus complexity in terms of analyzing chaotic
behaviors and information theory. In our models, we showed a decrease in the number of spikes, spikes
per burst and burst duration with an increase in synapse loss on granule cells of the dentate gyrus and
on pyramidal neurons CA3 connections with EC2 and connections with EC2 on inhibitory interneurons
(within DG and CA3). Our simulations have been carried out for both DG-CA3-CA1, CA3-CA1 as
well as particular, individual regions. Our results are consistent with biological observations. A very
interesting phenomenon is the simultaneous increase in inter-burst interval with a drop in the number
of spikes, spikes per burst and burst duration in the dynamics of synaptic loss.

Analysis of nonlinear dynamics of simulation results in the pathological and the control
model showed that the correlation dimension was significant in the DG-CA3-CA1 and DG regions.
The complexity of the aforementioned regions was significantly higher at the synaptic breakdown
level of 26% in relation to the control. A very interesting observation was the decrease of complexity of
the hippocampus as a system at the synaptic breakdown level of 35% as compared with the control.
It can be concluded that a larger loss of synapses is associated with a simpler network where a large
number of freedom degrees of the analyzed system is not needed.

The information Shannon entropy is considered as the average amount of information increased
in CA3-CA1, DG and CA1 regions. It is noteworthy that actually the linear entropy increases with
the loss of synapses in CA1. The maximum entropy was obtained at the synaptic breakdown level
of 35% in CA1, which determines the direction of time. The increase of Shannon entropy in the CA1
region indicates the irreversible process that is Alzheimer’s disease. According to the second law of
thermodynamics, the increase in entropy is tantamount to a decrease in the available energy of the
system. On the other hand, the increase in entropy is connected not only with the disorganization level,



Entropy 2019, 21, 408 15 of 17

but also with the amount of information needed for description and complexity. Information in models
with a synaptic breakdown at the 9% to 35% level is more complex compared with the control model.

Analysis of Lyapunov exponents showed that the control model of DG-CA3-CA1, CA3-CA1, CA3
and CA1 regions had a positive value; in other words, we have a stable system. A very interesting
result was the positive Lyapunov exponents for all levels of synaptic breakdown. The pathological
model was connected with system instability and chaos.

Information in the hippocampus flows in the direction of DG->CA3->CA1. The analysis of
dynamics shows that Shannon entropy decreases in accordance with the direction of information flow.
Information processes—the type of self-organization that occurs in the hippocampus and requires
constant dissipation of energy—results in entropy decrease, which is associated with its increase for the
entire brain. Very interesting results were obtained by analyzing the entropy transfer in the dynamics
of synaptic loss. The values of synaptic breakdown at the 9% and 35% levels corresponded exactly to
the change in the transfer of entropy in relation to the control model value in DG->CA3. The flow of
information in DG->CA3 is closely related to the loss of synapses—weaker flow means greater synaptic
breakdown. In contrast, in CA3->CA1 reverse relationship was received, where a larger synaptic loss
was associated with a stronger flow of information.

5. Conclusions

The theory of information allows us to draw the conclusion that there is an interaction between
the entorhinal cortex and DG-CA3 along with the loss of synapses. The coupling between DG and
CA3 was stronger in the control model as compared with the pathological model. On the other hand,
the interaction of the CA3 and CA1 regions indicate an inverse relationship. Our simulations of
AD-like pathology using a simple but efficient hippocampal microcircuit model with a built-in long
term synaptic potentiation (LTP) mechanism could provide further understanding of the clinical course
of AD and could lead to new approaches of treatment for this disease.
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