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Abstract

Calcium ions function as a key second messenger ion in eukary-
otes. Spatially and temporally defined cytoplasmic Ca2+ signals are
shaped through the concerted activity of ion channels, exchangers,
and pumps in response to diverse stimuli; these signals are then
decoded through the activity of Ca2+-binding sensor proteins. In
plants, Ca2+ signaling is central to both pattern- and effector-
triggered immunity, with the generation of characteristic cytoplas-
mic Ca2+ elevations in response to potential pathogens being
common to both. However, despite their importance, and a long
history of scientific interest, the transport proteins that shape Ca2+

signals and their integration remain poorly characterized. Here, we
discuss recent work that has both shed light on and deepened the
mysteries of Ca2+ signaling in plant immunity.
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The plant immune system

All eukaryotes use immune systems to protect themselves against

potential pathogens. The plant immune system consists of two char-

acterized perception layers: one that utilizes cell-surface pattern

recognition receptors (PRRs) to perceive extracellular immunogenic

patterns, and another that relies on intracellular nucleotide-binding

leucine-rich repeat (NLR) receptors that recognize pathogenic effec-

tors inside the cell (Jones & Dangl, 2006).

In the first layer of the plant immune system, apoplastic immuno-

genic elicitors such as pathogen-, microbe-, damage-, or herbivore-

associated molecular patterns (PAMPs, MAMPs, DAMPs, or HAMPs,

respectively) or immune-modulating peptide phytocytokines are

recognized by PRRs, which leads to defense responses termed

pattern-triggered immunity (PTI) (Boller & Felix, 2009; Yu et al,

2017; DeFalco & Zipfel, 2021). All plant PRRs described to date are

receptor kinases (RKs) or receptor proteins (RPs) (Boutrot & Zipfel,

2017; Albert et al, 2020). RKs are characterized by a domain struc-

ture reminiscent of metazoan receptor tyrosine kinases (RTKs)

(DeFalco & Zipfel, 2021); namely, a ligand-binding extracellular

domain (ECD), a single-span transmembrane helix (TM) and a

cytosolic protein kinase domain (Jamieson et al, 2018), while RPs

lack a cytoplasmic kinase domain and instead form functional bipar-

tite receptors with adapter RKs (Liebrand et al, 2013; Albert et al,

2015; Postma et al, 2016). Because of their domain architecture,

plasma membrane (PM)-localized PRRs (or their complexes) allow

extracellular ligand binding to be communicated across the

membrane into cytosolic signaling events. The molecular nature of

elicitors varies, including proteins, lipids, and carbohydrates, and

can be derived from either the potential pathogen or herbivore (e.g.,

MAMPs, PAMPs, or HAMPs) or the host plant, as in the case of

macromolecules released upon cell damage (DAMPs) or secreted

peptide phytocytokines (Gust et al, 2017). PRR ECDs are character-

ized by a variety of subdomains, including leucine-rich repeat

(LRR), epidermal growth factor-like (EGF), lectin, and lysin motif

(LysM) domains (Boutrot & Zipfel, 2017). The best-studied PRRs to-

date are the LRR-RKs FLAGELLIN-SENSING 2 (FLS2) and EF-TU

RECEPTOR (EFR), which perceive the bacterial PAMPs flg22 and

elf18, respectively (G�omez-G�omez & Boller, 2000; Zipfel et al, 2006).

Both FLS2 and EFR form stable ligand-dependent complexes with

common LRR-RK co-receptors of the SOMATIC EMBRYOGENESIS

RECEPTOR KINASE (SERK) family, such as BRASSINOSTEROID-

INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1, also called SERK3)

(Chinchilla et al, 2007; Heese et al, 2007; Roux et al, 2011). Complex

formation between PRRs and co-receptors leads to phosphorylation

events within the cytoplasmic kinase domains and the activation of

receptor-like cytoplasmic kinases (RLCKs), which directly phospho-

rylate and regulate target proteins in order to activate PTI (Liang &

Zhou, 2018; DeFalco & Zipfel, 2021) (Fig 1A).

Pathogens introduce effectors into the host cytoplasm that

promote pathogenicity, often by disturbing PTI (Jones & Dangl,

2006). To counteract this, plants rely on a second layer of immunity,

in which intracellular NLR-type receptors sense effectors and/or

their activity, leading to effector-triggered immunity (ETI). Interest-

ingly, plant NLRs share a common architecture with those of

animals, featuring a conserved nucleotide-binding domain (NBD)

and LRR domain, with variable accessory domains at both N and C

termini (DeYoung & Innes, 2006; Jones et al, 2016; Baggs et al,

2017; van Wersch et al, 2020). NLRs are categorized based on their

N-terminal domains: coiled-coil (CC)-NLRs (CNLs), toll/interleukin-

related (TIR)-NLRs (TNLs), or RPW8-NLRs (RNLs). Of these NLRs,

CNLs and TNLs function as sensors while RNLs function as helpers

downstream of TNLs (Baggs et al, 2017; Wu et al, 2017; Jubic et al,

2019; Feehan et al, 2020). NLRs can be present in an inactive state,

in which the LRR domain is likely autoinhibitory, and adenosine
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diphosphate (ADP) is bound to their NBD (Williams et al, 2011;

Bernoux et al, 2016). Upon activation, ADP is exchanged to adeno-

sine triphosphate (ATP) and autoinhibition is released (Fig 1A). In

animals, NLR activation often leads to oligomerization via N-

terminal domains and the formation of large multimeric structures

(Danot et al, 2009). A similar oligomerization mechanism has been

long hypothesized for plant NLRs, but has only been recently

corroborated by structural data that are discussed in detail below.

PTI and ETI have traditionally been viewed as independent path-

ways; however, at least some signaling components are shared by

both layers of immunity (Thomma et al, 2011). Activation of either

layer of the immune system triggers numerous overlapping cell

signaling events, including Ca2+ fluxes, production of apoplastic

reactive oxygen species (ROS), mitogen-activated protein kinase

(MAPK) cascades, transcriptional reprogramming, and phytohor-

mone biosynthesis (Cui et al, 2015; Yu et al, 2017; Zhou & Zhang,

2020; DeFalco & Zipfel, 2021). ETI is generally also accompanied by

a form of programmed cell death termed the hypersensitive

response (HR) at the site of infection (DeYoung & Innes, 2006; Jones

& Dangl, 2006), although HR-like cell death is also induced by some

forms of PTI (Wang et al, 2020). Recent work has further demon-

strated that PTI and ETI are linked at transcriptional and/or molecu-

lar levels (Ngou et al, 2021; Pruitt et al, 2021; Tian et al, 2021; Yuan

et al, 2021); however, the exact mechanisms governing linkage of
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Figure 1. PTI and ETI induce cytoplasmic Ca2+ elevations.

RKs and RPs are PRRs residing at the PM. They form complexes with co-receptors upon perception of molecular patterns originating from microbes, viruses, herbivores,
parasitic plants, or damaged host cells. In turn, RLCKs are activated and released from the complexes to activate downstream signaling to induce pattern-triggered
immunity, of which Ca2+ release within few minutes after ligand perception is one facet. Microbes introduce effector proteins into host cells to disturb and overcome
immune responses. Cytoplasmic NLRs sense the presence or activity of effectors to induce ETI. To this end, autoinhibition is released, ADP is changed to ATP and
oligomerization of NLRs occurs, leading to downstream signaling and finally ETI (A). A significant cytoplasmic Ca2+ increase has been reported to occur in Arabidopsis
leaves starting 1.5 h and peaking at about 2 h after infection with avirulent bacteria (B). Schematic Ca2+ signatures of Arabidopsis plants induced by bacterial infection
as reported by Grant et al (2000) (B). RK: receptor kinase; co-RK: coreceptor kinase; RP: receptor protein; RLCK: receptor like cytoplasmic kinase; NLR: nucleotide-binding
leucine-rich repeat receptor; CC: coiled-coil; TIR: toll/interleukin-related; CNLs: CC-NLRs; TNLs: TIR-NLRs; RNLs: RPW8-NRLs; NBS: nucleotide binding site; LRR: leucine-
rich repeats; PTI: pattern-triggered immunity; ETI: effector-triggered immunity, c[Ca2+]: cytoplasmic free Ca2+ concentration.
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these immune pathways remains to be elucidated fully. As changes

in intracelluar Ca2+ levels have been well documented downstream

of both PRR and NLR activation, Ca2+ signaling is thought to be key

to both layers of the plant immune system (Seybold et al, 2014;

Moeder et al, 2019).

Ca2+ in immunity

Ca2+ is a universal second messenger in eukaryotes (Clapham,

2007). Owing to its cytotoxicity, cytosolic Ca2+ levels must be main-

tained at low (~10�8 to 10�7 M) levels in living cells, and thus Ca2+

is sequestered in intracellular stores (in plants, primarily the

vacuole and the endoplasmatic reticulum, but also the vesicular

compartments, the chloroplasts and mitochondria) or the apoplast

via active transport, generating enormous electrochemical potential

gradients across membranes (Clapham, 2007; Edel et al, 2017; Costa

et al, 2018). Ca2+-permeable channels can therefore generate rapid,

transient increases in Ca2+ concentrations, which are in turn inter-

preted by a large suite of Ca2+-binding sensor proteins that regulate

diverse cellular processes (DeFalco et al, 2010). Ca2+ signaling is

thus summarized in three steps: encoding (via stimulus-triggered

Ca2+ fluxes), decoding (via Ca2+ sensor proteins), and responses (via

regulation of downstream cellular processes).

In plants, Ca2+ signaling is involved in all aspects of life, includ-

ing growth regulation, development, abiotic stress responses, and

reproduction (Kudla et al, 2018), as well as the establishment of

beneficial plant-microbe interactions (Tian et al, 2020). In this

review, we focus on how cytoplasmic Ca2+ signals are encoded via

transport across the PM during immune signaling.

Ca2+ influx and the oxidative burst (Doke, 1983, 1985; Apostol

et al, 1989; Keppler et al, 1989) were among the first cellular

responses to pathogen infection or elicitor treatment to be described

(Atkinson et al, 1996; Levine et al, 1996; Zimmermann et al, 1997;

Lecourieux et al, 2002). ROS production during the oxidative burst

was eventually attributed to the activity of PM-localized NADPH

oxidases of the RESPIRATORY BURST OXIDASE HOMOLOGUE

(RBOH) family (Torres et al, 2002); in the model plant Arabidopsis

thaliana (hereafter, Arabidopsis), a single member, RBOHD, is

responsible for ROS production in response to elicitors (N€uhse et al,

2007; Zhang et al, 2007). In contrast, the molecular nature of the

Ca2+ channel(s) involved in plant immunity remained comparably

elusive for many years (Seybold et al, 2014).

Cytosolic Ca2+ signals evoked by treatment with various

immunogenic elicitors were first measured in plant cell culture

using Ca2+ radioisotopes, Ca2+-sensitive dyes, or electrophysiological

approaches (Atkinson et al, 1996; Levine et al, 1996; Gelli et al,

1997; Zimmermann et al, 1997). The development of genetically

encoded Ca2+ indicators (GECIs) greatly expanded the possibilities

for real-time, kinetic analysis of Ca2+ fluxes in intact tissues upon

infection or elicitor treatment. The first GECI deployed in plants was

aequorin (AEQ) from Aequoria victoria (Knight et al, 1991), which

forms a holo-enzyme with its cofactor coelenterazine and emits light

upon Ca2+-binding. When challenged with either virulent or aviru-

lent strains of the pathogenic bacterium Pseudomonas syringae,

Arabidopsis plants expressing AEQ showed a first Ca2+ signal peak

after ~10 min. A second, stronger, more persistent Ca2+ signal was

seen after 1.5–2 h only with avirulent, ETI-activating P. syringae

(Grant et al, 2000; Kang et al, 2010; Hung et al, 2014). The similar

kinetics of early Ca2+ elevation induced by P. syringae and that trig-

gered by elicitors (Blume et al, 2000; Lecourieux et al, 2002) and the

biphasic nature of the response to ETI-inducing bacteria suggested

that PTI and ETI may induce distinct Ca2+ signals (Fig 1B).

Subsequent analyses of AEQ-expressing Arabidopsis plants have

shown perception of diverse elicitors, including PAMPs, DAMPs,

and phytocytokines, to be sufficient to elicit rapid Ca2+ signals (Ranf

et al, 2008, 2011; Vadassery et al, 2009; Krol et al, 2010). Such PTI

Ca2+ signaling requires functional PRRs and downstream signaling

components, including RLCKs such as the RLCK-VII/ AVRPPHB

SUSCEPTIBLE 1 (PBS1)-LIKE (PBL) family members BOTRYTIS-

INDUCED KINASE 1 (BIK1) and PBL1 (Li et al, 2014; Ranf et al,

2014; Monaghan et al, 2015). More recently, the deployment of fluo-

rescent GECIs in plants has allowed for the analysis of elicitor-

induced Ca2+ signals at the cellular level. Such fluorescent GECIs

include ratiometric (e.g., yellow cameleons) and intensiometric

(e.g., GCaMPs and GECOs) sensors (Grenzi et al, 2021b; Waadt

et al, 2021). Flourescent GECIs have been utilized to show that

elicitor-induced Ca2+ signals in leaves are oscillatory at the single-

cell level (Thor & Peiter, 2014; Keinath et al, 2015) and that in roots

both elicitor application and laser ablation-induced cell damage lead

to the formation of Ca2+ transients (Keinath et al, 2015; Marhav�y

et al, 2019; Waadt et al, 2020).

ROS and Ca2+—tightly linked second messengers

There is extensive interplay between Ca2+ and ROS signaling (Gilroy

et al, 2016); however, the initial PTI-related Ca2+ signal triggered by

P. syringae was shown to be only mildly reduced by treatment with

the NADPH oxidase inhibitor DPI or catalase, while there was no effect

on the longer-term, effector-triggered signal (Grant et al, 2000). Simi-

larly, rbohd mutants showed a slight, quantitative defect in elicitor-

triggered Ca2+ signals when measured in seedlings (Ranf et al, 2011).

In contrast, elicitor-induced ROS production can be severely attenuated

by treatment with Ca2+ channel blockers (Ranf et al, 2011). Elicitor

perception can directly activate RBOHD via phosphorylation by BIK1

(Kadota et al, 2014; Li et al, 2014), suggesting a complex relationship

between Ca2+ and ROS in immune signaling and a model wherein,

upon elicitor perception, initial activation of RBOHD through PRR-

mediated phosphorylation primes the system for subsequent activation

through Ca2+ signaling (Kadota et al, 2015) (Fig 2). Ca2+ not only acti-

vates RBOHD directly via its cytoplasmic Ca2+-binding EF-hand

domains but also indirectly via Ca2+-regulated kinase-mediated RBOHD

phosphorylation (Ogasawara et al, 2008; Dubiella et al, 2013). Interest-

ingly, BIK1 and CALCIUM DEPENDENT PROTEIN KINASE 5 (CPK5)

activate RBOHD through phosphorylation at distinct sites (Dubiella

et al, 2013; Kadota et al, 2014; Li et al, 2014). While target residues

have been described to be strictly required for PTI-induced ROS bursts

(N€uhse et al, 2007), individual contribution from other phosphoryla-

tion sites and the impact of certain phosphorylation patterns remain to

be uncovered.

A recent AEQ-based screen for impaired H2O2-induced Ca2+

signaling identified an LRR-RK, HYDROGEN PEROXIDE INDUCED

Ca2+ INCREASE 1 (HPCA1), as a putative ROS sensor (Wu et al,

2020a). Interestingly, HPCA1 was independently identified as

CANNOT RESPOND TO DMBQ 1 (CARD1), which showed a loss of
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response to the quinone compound 2,6-dimethoxy-1,4-

benzoquinone (DMBQ), which regulates interactions with parasitic

plants and also triggers HPCA1/CARD1-dependent Ca2+ signaling

(Laohavisit et al, 2020). Both the nature of the channel(s) that are

regulated by HPCA1/CARD1, as well as the exact role of ROS in

regulating Ca2+ signaling via such sensor(s) remain unclear. Inter-

estingly, AEQ-measured calcium signals in response to H2O2 were

reduced in cngc2 and cngc4 mutants (Tian et al, 2019), suggesting

that these channels may function downstream of ROS perception.

Shaping immune signals via Ca2+ efflux

Ca2+ signals are generated via the coordinated action of channels

and active transporters and involve influx from the apoplast and

release from intracellular stores (Spalding & Harper, 2011; Edel

et al, 2017; Resentini et al, 2021). In addition, plants possess

three major families of proteins that mediate active Ca2+ transport

out of the cytosol: Ca2+/H+ exchangers (CAXs), autoinhibited

Ca2+-ATPases (ACAs) and ER Ca2+-ATPases (Geisler et al, 2000;

Shigaki & Hirschi, 2000; Garc�ıa Bossi et al, 2020). ACA autoinhibi-

tion can be relieved by Ca2+/CaM-binding, which allows for rapid

feedback regulation of Ca2+ signals (Geisler et al, 2000). The PM-

localized ACA8 and its homolog ACA10 were identified as interac-

tors of FLS2, and aca8 aca10 mutants displayed quantitative defects

in flg22-induced calcium signals and compromised resistance to

P. syringae infection (Frei dit Frey et al, 2012), as well as disturbed

stomatal closure upon PAMP perception (Yang et al, 2017), suggest-

ing that Ca2+ efflux across the PM to the apoplast shapes Ca2+ signal-

ing during PTI.

Two tonoplast-localized ACAs, ACA4 and ACA11, have also been

implicated in immunity, as aca4 aca11 mutants display autoimmune

phenotypes and spontaneous cell death (Boursiac et al, 2010).

Although aca4 aca11 mutants have wildtype total calcium content

(Boursiac et al, 2010), subsequent work has revealed that basal

cytosolic calcium levels are elevated in aca4 aca11 (Hilleary et al,

2020). Elicitor-induced calcium signals also show elevated peaks in

aca4 aca11 mutants (Fig 3), which can be rescued by mis-

localization of PM ACAs to the tonoplast (Hilleary et al, 2020), indi-

cating that transport of Ca2+ into the vacuole is critical to maintain

Ca2+ homeostasis and modulate signaling during PTI.

Plasma membrane-localized Ca2+ channels involved in
immunity

Extensive work has demonstrated that elicitor-induced Ca2+ signals

strictly require PM-localized, Ca2+-permeable channels, as treatment

with blockers such as Gd3+ or La3+ abolishes such signals (Blume

et al, 2000; Grant et al, 2000; Lecourieux et al, 2002; Kwaaitaal

et al, 2011; Ranf et al, 2011; Maintz et al, 2014; DeFalco et al, 2017).

While such studies clearly implicate Ca2+-permeable channels as

components of immune signaling, their nature has remained hidden.

However, recent work has started to decipher how Ca2+ signals are

generated upon immune activation, and the defense-related roles of

several classes of plant Ca2+ channels have begun to be character-

ized. Below, we discuss immunity-related channel candidates by

their phylogenetic groups rather than following a chronological

order of identification or a strict PTI/ETI dichotomy.

CNGCs—from strong phenotypes to complex regulation
One of the first families of potential Ca2+ channels identified in

plants were the tetrameric cyclic nucleotide-gated channels (CNGCs)

(Köhler & Neuhaus, 1998). Plant CNGCs comprise large gene
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Figure 2. Ca2+ and ROS signals are tightly interconnected.

Upon activation of PRR complexes during PTI, RLCKs activate Ca2+ channels leading to cytoplasmic Ca2+ signals. Ca2+ ions can directly activate the NADPH-oxidase
RBOHD through binding to its N-terminal EF-hands, but also induce the activity of Ca2+-regulated kinases that phosphorylate the cytoplasmic N terminus of RBOHD
(indicated by grey arrows targeting RBOHD p-sites). In addition, RLCKs directly phosphorylate the N terminus and thereby activate RBOHD (indicated by black arrows tar-
geting RBOHD p-sites). Reactive oxygen species derived from RBOHD activity can be perceived by cysteine pairs of the RK HPCA1/CARD1. This is required for H2O2 induced
Ca2+ signals in Arabidopsis, the signaling pathway downstream of HPCA1 activation is not known.
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families (e.g., 20 members in Arabidopsis) (M€aser et al, 2001) and

are named for their topology and domain organization, which are

reminiscent of mammalian cyclic nucleotide-gated (CNG) and

hyperpolarization-activated cyclic nucleotide-modulated (HCN)

families (Kaupp & Seifert, 2002; Matulef & Zagotta, 2003). Individual

CNGCs have six transmembrane helices and cytosolic N and C

termini, with the cyclic nucleotide-binding domain (CNBD) located

within the CNGC C terminus (Kaplan et al, 2007). While previous

reports have indicated that the CNBDs of plant CNGCs may bind

cyclic nucleotides (Baxter et al, 2008), and some electrophysiologi-

cal analyses have indicated that application of cAMP or cGMP can

promote CNGC activity (Leng et al, 2002; Zhang et al, 2007; Gao

et al, 2014, 2016; Meena et al, 2019), it remains unclear whether

cyclic nucleotides are bona fide agonists for plant CNGCs in planta.

Furthermore, the existence of guanylate and adenylate cyclases

(GCs and ACs) in plant proteomes is still under debate and will not

be discussed in detail here. Indeed, while studies suggest multiple

plant proteins, including RKs, to display GC activity (Qi et al, 2010;

Turek & Irving, 2021), the low determined in vitro activities of the

putative GCs and the position of their putative active sites within

the kinase domains of RKs argues against a physiological relevance

for such potential GC activity (Ashton, 2011; Bojar et al, 2014).

Nevertheless, extensive electrophysiological work over the past

two decades has shown that at least some CNGCs form

Ca2+-permeable, non-selective cation channels (Jarratt-Barnham

et al, 2021). CNGCs are directly regulated by the conserved Ca2+

sensor calmodulin (CaM), with one or more CaM-binding domains

(CaMBDs) found within the cytosolic C termini of all CNGCs exam-

ined to date (Arazi et al, 1999; Köhler & Neuhaus, 2000; Hua et al,

2003; Fischer et al, 2013, 2017; DeFalco et al, 2016a) as well as the

N terminus of some CNGC isoforms (DeFalco et al, 2016a). Ca2+/

CaM regulation of CNGCs is complex (DeFalco et al, 2016b) as a

Ca2+-independent IQ motif CaMBD at the C-terminal end of the

channel is essential for CNGC function (DeFalco et al, 2016a; Pan

et al, 2019), with additional Ca2+-dependent CaMBDs providing

negative (feedback) regulation (DeFalco et al, 2016a; Pan et al,

2019; Tian et al, 2019).

Plant CNGCs are divided into four subfamilies based on phylo-

geny, with group IV CNGCs further divided into groups IVa and IVb

(M€aser et al, 2001). The best-studied CNGCs to-date are the two

Arabidopsis group IVb members, CNGC2 and CNGC4, which were

first isolated as the defense, no death (dnd) or HR-like lesion mimic

(hlm) mutants dnd1 and dnd2/hlm1 (null mutants of CNGC2 and

CNGC4, respectively) (Clough et al, 2000; Balagu�e et al, 2003;

Jurkowski et al, 2004). The dnd mutants were initially described to

be defective in the induction of HR, despite still being able to carry

out ETI to avirulent pathogens (Yu et al, 1998). These dnd mutants

display numerous phenotypic defects, including dwarf morphology,

delayed flowering, elevated concentrations of the phytohormone

salicylic acid (SA), spontaneous cell death, and dis-regulated auxin

signaling (Clough et al, 2000; Balagu�e et al, 2003; Chan et al, 2003;

Jurkowski et al, 2004; Chin et al, 2013; Chakraborty et al, 2021). In

keeping with the immune-related phenotypes of dnd1/cngc2

mutants, CNGC2 was also suggested to be a mediator of Ca2+ fluxes

in plant immunity, as production of the signaling molecule nitric

oxide (NO) was reported to be reduced in cngc2 mutants compared

to WT plants after treatment with the PAMP lipopolysaccharide

(LPS) (Ali et al, 2007). The same study used pharmacological inhibi-

tors to implicate CaM, Ca2+ channels, and a NO synthase (NOS)-

type protein to be required for this process. Given the lack of

mammalian-type NOS enzymes in land plants (Santolini et al, 2017)

and the myriad functions of CaM (DeFalco et al, 2010), results from

such pharmacological studies must however be interpreted

cautiously. Subsequent work using AEQ reporter lines suggested

that CNGC2 is required for full Ca2+ signals in response to some but

not all elicitors (Ma et al, 2012). Given the convergence of signaling
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Figure 3. Disturbance of the Ca2+ efflux machinery impairs plant immunity.

Ca2+ exchangers (CAX) and autoinhibited Ca2+-ATPase (ACAs) reside at the PM or tonoplast and establish low cytoplasmic Ca2+ concentrations and rapid termination of
Ca2+ signals through export of the Ca2+ ions into the apoplast or vacuolar lumen (A). This function is disturbed in Arabidopsis aca4 aca11 mutants, which consequently
show an autoimmune phenotype (B). PTI induced Ca2+ signatures are compromised in those lines, with slower onset of the signal, and higher peak concentration and
retarded reduction of the Ca2+ signals. Schematic Ca2+ signatures as reported by Hilleary et al (2020) (C).
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downstream of diverse PRRs (Couto & Zipfel, 2016; Bjornson et al,

2021), it remains unclear how such specificity may be achieved.

Interestingly, virus-induced gene silencing (VIGS) of IVb isoforms in

tomato compromised ROS production in response to flg22, further

suggesting that these CNGCs may positively regulate PTI (Saand

et al, 2015).

Recently, loss-of-function cngc2 and cngc4 mutants were each

isolated in an AEQ-based forward genetic screen for compromised

Ca2+ signaling upon flg22 treatment (Tian et al, 2019). Both mutants

displayed defects in Ca2+ influx and ROS production after treatment

with flg22 and exhibited compromised resistance to P. syringae.

Remarkably, these phenotypes were however strictly dependent on

high Ca2+ concentrations in the growth media, as cngc2 and cngc4

responses under low Ca2+ growth were indistinguishable from those

of WT plants. Interestingly, PRR signaling mutants, such as bik1, do

not display such conditional phenotypes (Li et al, 2014; Ranf et al,

2014; Monaghan et al, 2015). Detailed electrophysiological charac-

terization of the heterologously expressed channels in Xenopus

laevis oocytes found the single subunits to be inactive, while

CNGC2-CNGC4 heteromers produce strong currents (Tian et al,

2019), in keeping with a model wherein these channel subunits

function together (Chin et al, 2013). CNGC2-CNGC4 currents were

inhibited by CaM; further experiments suggested that phosphoryla-

tion of the CNGC4 C terminus by BIK1 can partially release this

negative regulation (Tian et al, 2019) (Fig 4A). This work further

highlights the complex regulation to which CNGCs are likely

subject, including by CaM, phosphorylation, and, potentially,

ligand-binding (Jarratt-Barnham et al, 2021).

Both cngc2 and cngc4 mutants are hypersensitive to Ca2+ concen-

tration in growth media (Chan et al, 2003; Chin et al, 2013), and

their pleiotropic dnd phenotypes have been suggested to be caused

by the mutant’s inability to take up Ca2+ from the apoplast into the

cells in the vicinity of vasculature (Wang et al, 2017). Over-

accumulation of apoplastic Ca2+ and the resulting perturbations of

both tissue- and cellular Ca2+ homeostasis may thus (at least

partially) cause cngc2 (and cngc4) phenotypes, though this will

require further study to resolve fully. Given that PTI is not affected

in cngc2 and cngc4 mutants grown at low Ca2+ concentrations (Tian

et al, 2019), at such growth conditions—under which no growth

defects also occur—other, currently unknown Ca2+ channels must

also contribute to PTI (Dietrich et al, 2020). Recent studies reported

a member of CNGC subfamily II, AtCNGC6, to be involved in the

generation of Ca2+ signals during immunity after perception of the

DAMP eATP, supporting the possibility of diverse CNGC subunits

playing specific roles in plant immune responses (Duong et al,

2022).

CNGCs and cell death
A genetic screen in rice (Oryza sativa, Os) recently identified loss-of-

function mutants of OsCNGC9 (a group III CNGC and homolog of

Arabidopsis CNGC18) that displayed compromised resistance to rice

blast disease and lesion-mimic phenotypes after flowering (Wang

et al, 2019b). PAMP-induced Ca2+ currents across the PM were

found to be strongly diminished in Oscngc9 mesophyll cells

compared to WT controls and, using an elegant heterologous recon-

stitution assay in mammalian cell culture, the authors demonstrated

activation of the channel by OsRLCK185, a rice member of the

RLCK-VII/PBL family that functions downstream of chitin

perception (Wang et al, 2019b) (Fig 4B). The autoimmune pheno-

types of Oscngc9 mutants are reminiscent of Arabidopsis cngc2 and

cngc4, it will therefore be interesting to determine whether such

autoimmune phenotypes are due to these channels being guarded

by NLRs and/or through perturbed Ca2+ homeostasis.

In contrast to the loss-of-function mutants described above,

several gain-of-function CNGC mutants have also been isolated from

genetic screens. These include several instances of (semi-) dominant

gain-of-function mutations that trigger autoimmunity such as cpr22

(caused by expression of an in-frame CNGC11/12 chimera) (Yosh-

ioka et al, 2006; Urquhart et al, 2007) and cngc20-4 (caused by a

leucine to phenylanaline mutation within one of the transmembrane

helices of CNGC20) (Zhao et al, 2021) of Arabidopsis and the brush

mutant of Lotus japonicus (hereafter, Lotus), which is caused by an

N-terminal glycine to glutamic acid mutation in the Lotus homolog

of Arabidopsis CNGC19 (Chiasson et al, 2017) (Fig 4C). While such

gain-of-function mutants must be interpreted cautiously, detailed

study of these mutants suggests that dis-regulated CNGCs can

induce Ca2+- and SA-dependent immunity and HR-like cell death

(Yoshioka et al, 2006; Urquhart et al, 2007; DeFalco et al, 2016a;

Zhao et al, 2021), suggesting possible roles in ETI signaling and

immunity more generally (Moeder et al, 2019).

CNGC20 has also recently been identified as a positive regulator

of a specific form of autoimmunity (Yu et al, 2019). Loss of the

SERK family co-receptors BAK1/SERK3 and BAK1-LIKE 1 (BKK1/

SERK4) triggers constitutive cell death and seedling lethality (He

et al, 2007; Kemmerling et al, 2007; Schwessinger et al, 2011).

VIGS-based screen revealed that this cell death is dependent on

CNGC20 and to a lesser extent its close IVa homolog CNGC19 (Yu

et al, 2019). This study further proposed a mechanism wherein

SERKs phosphorylate the C terminus of CNGC20 to destabilize the

channel in the absence of immunogenic stimuli, thereby precluding

detrimental Ca2+ influx and cell death (Yu et al, 2019), adding an

interesting component to the regulation of Ca2+ fluxes in immunity

(Fig 4C). Whether or not recruitment of BAK1 into PRR complexes

after elicitor recognition permits CNGC20 phosphorylation and

therefore induces CNGC20 activity should be addressed in future

studies. Recent work suggests a more complex role for Ca2+ in

BAK1-related cell death, as NLRs that mediate bak1 bkk1 autoim-

munity have been identified, including the NLR CONSTITUTIVE

SHADE-AVOIDANCE 1 (CSA1) (preprint: Schulze et al, 2021) and

helper NLRs of the ACTIVATED DISEASE RESISTANCE 1 (ADR1)-

like family (Wu et al, 2020b). Strikingly, these ADR1-type

helper NLRs have recently been proposed to themselves act as

Ca2+-permeable cation channels (see detailed discussion below).

The other CNGC-IVa member in Arabidopsis, CNGC19, was iden-

tified in a screen for genes whose expression was upregulated by

mechanical wounding, and cngc19 mutants were found to be more

susceptible to Spodoptera littoralis caterpillars, likely due to

impaired jasmonate (JA) and alipathic glucosinolate production

(Meena et al, 2019). Interestingly, Ca2+ signals in response to the

DAMP AtPep1 were also reduced in cngc19 mutants (Meena et al,

2019), though other work using cngc19 cngc20 protoplasts express-

ing GCaMP3 suggested that group IVa CNGCs are not required for

the Ca2+ signals in response to flg22 (Yu et al, 2019). CNGC19 was

also implicated in responses to the root-colonizing mutualist endo-

phytic fungus Piriformospora indica (Jogawat et al, 2020). cngc19

mutants display clear phenotypes with respect to the symbiosis-
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induced gain in growth rate; however, only minor defects in cyto-

plasmic Ca2+ rises after treatment with cell wall extracts from

P. indica have been reported. This indicates the involvement of

additional channel(s) (Jogawat et al, 2020).

An intriguing aspect of plant immune signaling is the propaga-

tion of electrical and second messenger-based signals through the

plant body, despite the obvious lack of any neurons or nervous

system tissues in plants. In addition to reduced AtPep1 responses,

cngc19 mutants also displayed reduced systemic Ca2+ signals after

mechanical wounding in the vasculature (Meena et al, 2019). Such

signaling has long been associated with glutamate receptor-like

(GLR) channels, which are discussed below.

GLRs – the long road to plant immunity
GLRs form a family of PM-localized, ligand-gated Ca2+ channels.

Plant GLRs are named for their homology to metazoan ionotropic

glutamate receptors (iGluRs), which are ligand-regulated, homo- or

heterotetrameric cation channels functioning in animal nervous

systems. In Arabidopsis, GLRs form a 20-member family that is sub-

divided into three clades: GLR1s, GLR2s and GLR3s; (Lam et al,

1998); individual members of the family have been implicated in

various physiological processes (Wudick et al, 2018). GLRs feature

a large, extracellular N-terminal domain, which perceives amino

acid ligands, three transmembrane helices and a short, cytosolic C

terminus (Alfieri et al, 2020).

GLRs were first implicated in the generation of Ca2+ signals upon

elicitor perception by pharmacological experiments using iGluR

inhibitors, which reduced PAMP-induced Ca2+ signals (Kwaaitaal

et al, 2011). Arabidopsis glr3.3 mutants were subsequently found to

have compromised immunity toward the oomycete pathogen

Hyaloperonospora arabidopsidis. In the same study, however, Ca2+

measurements in AEQ-expressing glr3.3 lines did not show
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Figure 4. CNGCs fulfil diverse roles in plant immune signaling.

CNGCs form homo- or heterotertramers at the PM. Arabidopsis CNGC2 and CNGC4 homotetramers are inactive, but heterotetramers allow cation fluxes into the cytosol.
Ca2+-bound Calmodulin (CAM) inhibits those channels, generating a negative feedback loop. Upon initiation of PTI, activated BIK1 phosphorylates CNGC4 to release
CAM-mediated inhibition and to induce Ca2+ influx (A). In rice, PRR complexes activate RLCK185 upon ligand perception, which phosphorylates and thereby activates
OsCNGC9. If the OsCNGC9 containing tetramer is homomeric or heteromeric is not known (B). In Arabidopsis, CNGC activity can lead to the induction of cell death via to
date not resolved signaling pathways. CNGC19 and CNGC20 form complexes at the PM, and are phosphorylated by BAK1, which initiates degradation of the channels. In
bak1/bkk1 coRK mutants, accumulation of CNGC19/CNGC20 channels leads to Ca2+ influx, ultimately causing cell death.
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reduced signals after treatment with oligogalacturonides (OGs),

products of hydrolyzed host cell walls that act as DAMPs during

H. arabidopsidis colonization (Manzoor et al, 2013). Similarly,

glr3.3 was also found to be more susceptible to P. syringae (Li et al,

2013), although formation of Ca2+ signals was not analyzed in that

study. Together, such findings suggested a role for GLR3.3 in plant

immunity which is distinct from its role in mediating the formation

of the early Ca2+ signal. Indeed, ground-breaking work from the labs

of Ted Farmer and Simon Gilroy instead unraveled the role of GLR3s

in the propagation of long-distance signals and the formation of

systemic immune responses. Multiple clade 3 GLRs were initially

found to be required for the generation of electrical signals neces-

sary for the induction of defense responses in distal tissues of plants

after mechanical wounding or larval feeding on local leaves

(Mousavi et al, 2013). Using Arabidopsis plants stably expressing

GCaMP3, another study found that GLR3.3 and GLR3.6 are required

for the generation of Ca2+ signals that propagate through the vascu-

lature upon wounding or feeding (Toyota et al, 2018), and, corre-

spondingly, glr3.3 glr3.6 plants were shown to be more susceptible

to S. littoralis (Nguyen et al, 2018). Simultaneous measurements of

the electrical signals and cytoplasmic Ca2+ concentrations revealed

that membrane depolarization preceded the rise of Ca2+ levels, a

temporal sequence that was also observed in mesophyll cells after

perceptrion of flg22 (Nguyen et al, 2018; Li et al, 2021). Such results

highlight the specific role of clade 3 GLRs in systemic signaling.

Taken together, those studies support a model wherein intercon-

nected electrical, Ca2+ and ROS signals, as well as activity of the

tonoplast-localized cation channel TWO-PORE CHANNEL 1 (TPC1)

are required for effective long-distance signal propagation in plants

(Steinhorst & Kudla, 2014; Evans et al, 2016; Choi et al, 2017;

Farmer et al, 2020; Johns et al, 2021).

It remains unclear whether clade 3 (or other) GLRs are also direct

or indirect targets of PRR-activated signaling pathways. It has been

proposed that OG perception involves RKs of the WALL-

ASSOCIATED KINASE (WAK) family of epidermal growth factor

(EGF)-motif containing RKs (Brutus et al, 2010; Kohorn & Kohorn,

2012), while local Ca2+ signals in response to aphid feeding are

BAK1- as well as GLR3.3- and GLR3.6-dependent (Vincent et al,

2017). This suggests that the PRR signaling machinery may regulate

GLR activity. Extracellular glutamate, which can act as a DAMP

upon cell disruption, is also capable of inducing Ca2+ signals that

are abolished in glr3.3 glr3.6 mutants (Toyota et al, 2018; Shao

et al, 2020), suggesting apoplastic amino acid(s) may act as agonist

ligands for GLRs. The direct binding of glutamate to GLRs was

further resolved through structural analysis of GLR3 ectodomains

(Alfieri et al, 2020; Gangwar et al, 2021; Green et al, 2021). The role

of clade 3 GLRs in systemic signaling has been recently reviewed in

detail (Grenzi et al, 2021a), while the details of how ligand-gating

and/or PRR signaling coordinate the activation of GLR3 channel

activity remain to be fully resolved.

While clade 3 GLRs and their specific role in intercellular and

long-distance signaling are to date the best studied, other GLRs have

also been recently found to play roles in the immune system. The

Arabidopsis clade 2 GLRs GLR2.7 and GLR2.9 were recently identi-

fied in a large-scale transcriptomic analyses as so-called “core

immunity response” (CIR) genes, which were transcriptionally

upregulated in response to a panel of elicitors but not abiotic

stresses (Bjornson et al, 2021) (Fig 5). GLR2.7 and GLR2.9 form a

tandemly-arranged, closely-related cluster along with GLR2.8, and

glr2.7 glr2.8 glr2.9 triple mutants displayed defects in Ca2+ responses

upon treatment with a variety of elicitors and reduced immunity

against P. syringae (Bjornson et al, 2021). In keeping with their

identification as CIR genes, these GLR2s were not found to contri-

bute to Ca2+ signals during abiotic stress, suggesting that PTI

involves common signaling components downstream of diverse elic-

itor/PRR complexes, but distinct from those involved in abiotic

stress responses. As with GLR3s, how PRR complex activation

mechanistically triggers rapid Ca2+ fluxes involving these GLR2s

remains to be uncovered, as does the potential role for amino-acid

binding in this process.

OSCAs, Ca2+ and stomatal gatekeeping
While the CNGC and GLR families of proteins were annotated

shortly following release of the first sequenced plant genomes, the

REDUCED HYPEROSMOLALITY, INDUCED CA2+ INCREASE (OSCA)

family was only recently identified. OSCAs have nine transmem-

brane helices, with a short extracellular N terminus and a larger

C terminus, and constitute a 15-member family in Arabidopsis

(Yuan et al, 2014). OSCA1.1 was identified in an AEQ-based screen

for regulators of Ca2+ signaling in response to osmotic stress (Yuan

et al, 2014) and its homolog OSCA1.2 (also named CALCIUM

PERMEABLE STRESS-GATED CATION CHANNEL 1, CSC1) was

identified through a heterologous screening of uncharacterized

Arabidopsis transmembrane proteins for Ca2+ channel activity (Hou

et al, 2014). Both OSCA1.1 and OSCA1.2/CSC1 were shown to be

Ca2+-permeable channels (Hou et al, 2014; Yuan et al, 2014), while
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Figure 5. PRR signaling controls GLR2 abundance.

Upon perception of various elicitors, transcription of clade 2 GLRs is strongly
induced. Activity of GLR2.7, GLR2.8, and GLR2.9 is required for complete PTI
induced rapid Ca2+ influx, arguing for direct regulation of those channels in
that process. The signaling pathway leading to this activation has not been
resolved yet.
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subsequent structural, electrophysiological, and bioinformatic stud-

ies have revealed that OSCAs represent an evolutionarily conserved

family of mechanosensitive, Ca2+-permeable cation channels (Jojoa-

Cruz et al, 2018; Liu et al, 2018; Murthy et al, 2018).

In addition to systemic and long-distance immune signaling, Ca2+

signaling also occurs at the single cell level in stomatal immunity.

Stomata are gas-exchange pores in the leaf epidermis that are

formed by pairs of guard cells, with stomatal aperture controlled by

changes in guard cell turgor (Lawson & Matthews, 2020). Aside

from controlling gas exchange, stomata also serve as key points of

entry for foliar pathogens (Melotto et al, 2017), and elicitor percep-

tion leads to rapid stomatal closure (Melotto et al, 2006; Desikan

et al, 2008; Zeng & He, 2010). Stomatal closure is controlled by acti-

vation of SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) and/or

SLAC1 HOMOLOGUE 3 (SLAH3), which mediate guard cell anion

efflux, and which can be activated by Ca2+-dependent or -

independent phosphorylation cascades (reviewed in (Jezek & Blatt,

2017)). PTI signaling involves Ca2+ influx in guard cells (Thor &

Peiter, 2014), and recently Arabidopsis osca1.3 osca1.7 loss-of-

function mutants were found to be defective in elicitor-induced

stomatal closure (Thor et al, 2020). The mechanism of the

underlying core signaling pathway was duly unraveled, as OSCA1.3

was identified as a direct substrate of BIK1, which phosphorylates

the channel on its N-terminal cytosolic loop, providing a direct

molecular connection from the activated PRR complex to the Ca2+

signal generation in guard cells (Fig 6A). PAMP treatment triggered

phosphorylation of this BIK1-dependent phosphosite (Benschop

et al, 2007; Thor et al, 2020), and phosphorylation was found to

promote the channel activity of OSCA1.3 in heterologous electro-

physiological measurements (Thor et al, 2020). Ca2+ signaling

defects in osca1.3 osca1.7 mutants were also specific to guard cells,

as signals in seedlings and epidermal tissues were unaffected. This

study indicates a specific role of OSCA1.3 and OSCA1.7 in guard

cells and stomatal immunity, and future studies may reveal whether

other members of this family play additional roles in immunity, as

well as how their potential mechano-regulation contributes to such

functions. Remarkably, another route of PRR signaling required for

stomatal immunity was recently identified. Upon perception of

chitin by CHITIN-ELICITOR RECEPTOR KINASE 1 (CERK1)/ LYSM-

CONTAINING RECEPTOR-LIKE KINASE 5 (LYK5) complexes,

PBL27 directly phosphorylates the anion channel SLAH3 (Liu et al,

2019) (Fig 6B). Why different elicitors activate specific pathways to
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Figure 6. PRR signaling controls Ca2+-dependent and Ca2+-independent pathways leading to stomatal immunity.

Perception of bacterial flg22 leads to activation of BIK1 and phosphorylation of the Ca2+ channel OSCA1.3. Subsequent Ca2+ influx into the cytosol is required for guard
cell closure. This closure is likely achieved through the activation of Ca2+-regulated kinases, which in turn phosphorylate SLAC1 or SLAH3 anion channels. Upon channel
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RLCK PBL27, which directly phosphorylates SLAH3, leading to stomatal closure (B).
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achieve the same physiological response, and whether the chitin

induced pathway indeed functions without contribution of Ca2+

signaling, remains to be resolved.

In addition to the osca mutants defective in elicitor-induced Ca2+

influx, disturbance of Ca2+ signals through loss of the ACA 8 and 10

cause loss of pathogen-induced stomatal closure (Yang et al, 2017).

Mutations in either of those Ca2+ pumps or their interactor BONZAI

1 (BON1) caused enhanced steady state Ca2+ signals and addition-

ally failed to generate stimulus dependent stomatal Ca2+ oscillations

due to retarded Ca2+ efflux after initial influx (Yang et al, 2017).

Interestingly, the effect on guard cell Ca2+ fluxes in osca1.3 osca1.7

mutants after flg22 application was quantitative (Thor et al, 2020),

in contrast to the near-complete loss of flg22-induced stomatal

closure in these mutants, while the defects in ACA8 and ACA10

activity still allowed the generation of Ca2+ signals but nevertheless

prevented stomatal closure (Yang et al, 2017). Together, these stud-

ies suggest that minor perturbations in Ca2+ signals can trigger detri-

mental effects on downstream physiological processes.

ANNs—atypical Ca2+ channels?
Annexins (ANNs) are small proteins occurring in both prokaryotes

and eukaryotes and form a family of eight members in Arabidopsis

(Laohavisit & Davies, 2011; Clark et al, 2012). Unlike other Ca2+-

permeable channels, ANNs are soluble proteins that lack transmem-

brane helices and instead reversibly bind negatively charged phos-

pholipids, a process that is controlled by Ca2+ (Laohavisit & Davies,

2011). ANNs have previously been suggested either to regulate Ca2+

fluxes or provide Ca2+ transport activity themselves in response to

H2O2 and salt stress (Laohavisit et al, 2012; Ma et al, 2019).

Recently, Arabidopsis ANN1 was identified as a positive regula-

tor of local and systemic Ca2+ responses that are induced upon

mechanical wounding and perception of S. littoralis oral secretions,

with ANN1 loss-of-function or overexpression lines displaying

enhanced or decreased susceptibility toward S. littoralis, respec-

tively (Malabarba et al, 2021). Furthermore, ann1 mutants were

compromised in both transcriptional responses and JA production—

phenotypes remarkably reminiscent of those reported for cngc19

mutants (Meena et al, 2019). In this context, it will be an interesting

target of future studies to parse how ANN1- and CNGC19-mediated

Ca2+ influx is able to distinguish between the induction of local and

long-distance signals.

In addition to those wound-induced signals, ANN1 was also

found to be involved in the generation of Ca2+ signals upon treat-

ment of Arabidopsis with eATP (Mohammad-Sidik et al, 2021),

which is perceived as a DAMP by the L-type lectin RK DOES NOT

RESPOND TO NUCLEOTIDES 1/P2 RECEPTOR KINASE 1 (DORN1/

P2K1) (Choi et al, 2014). The quantitative defect in eATP-induced

Ca2+ in ann1 mutants suggests ANN1 as part of the signaling path-

way downstream of PRR activation; however, it remains unclear

whether ANN1 itself acts as a Ca2+ transporter, as well as how such

activity is regulated. Furthermore, ANN1 was reported to interact

with the chitin-perceiving PRR CERK1 and thereby connects chitin

perception and salt stress responses, a process in which ANN1 was

previously characterized (Laohavisit et al, 2013; Espinoza et al,

2017). However, the underlying molecular mechanism remains to

be resolved. Interestingly, ANN1 was independently identified as a

mediator of Arabidopsis cold stress tolerance and was shown to

positively regulate Ca2+ signals after cold shock (Liu et al, 2021). In

this case, ANN1 Ca2+ transport activity was documented using elec-

trophysiological characterization in X. laevis oocytes, with phospho-

rylation by the kinase OST1 having a positive effect on this activity

(Liu et al, 2021). Whether similar regulatory phosphorylation of

ANNs occurs in the context of immune signaling remains to be

discovered, as does the mechanism by which activity of ANNs and

GLRs are coordinated in the formation of long-distance Ca2+ signals

upon wounding.

Ankyrin repeat domain proteins – a new class of Ca2+-permeable
channels in immunity?
Recently, LR14a, a wheat six-transmembrane PM intrinsic protein

with a N-terminal cytoplasmic domain containing 12 ankyrin

repeats was found to confer resistance to leaf rust in wheat

(Kolodziej et al, 2021). Silencing of LR14a led to increased growth

of the causal fungal pathogen Puccinia triticina and reduced induc-

tion of HR flecks. Interestingly, LR14a shares structural similarity

with the mammalian protein TRANSIENT RECEPTOR POTENTIAL

CHANNEL SUBFAMILY A MEMBER1 (TRPA1) (Suo et al, 2020;

Kolodziej et al, 2021). TRPs are Ca2+-permeable cation channel,

suggesting a similar function of LR14a. LR14a was found to be

required for the transcriptional induction of 160 genes upon infec-

tion with P. tricitina which were associated with the gene ontology

term “Ca2+-binding”. Overexpression of LR14a in Nicotiana

benthamiana leaves induced a water-soaking like phenotype indica-

tive for osmotic disbalance, which could be prevented by the appli-

cation of the Ca2+ channel blocker La3+ (Kolodziej et al, 2021).

These findings support the possibility that LR14a acts as a Ca2+

channel, although electrophysiological characterization of the

protein remains lacking.

Interestingly, another ankyrin repeat domain containing protein,

Arabidopsis ACCELERATED CELL DEATH 6 (ACD6), is a positive

regulator of cell death, as multiple acd6 alleles were found to induce

varying degrees of autoimmunity and have been subject of research

for over 20 years (Rate et al, 1999; Lu et al, 2003). While the molec-

ular basis of ACD6 action remained largely elusive, a recent study

has documented ACD6-induced ion channel activity upon heterolo-

gous expression in X. laevis oocytes (preprint: Zhu et al, 2021).

Furthermore, autoimmunity of the acd6-1 allele could be abolished

by growth at low [Ca2+], suggesting similar perturbances of Ca2+

homeostasis as reported for the dnd mutants (Chan et al, 2003; Chin

et al, 2013; Wang et al, 2017; preprint: Zhu et al, 2021). ACD6 had

been previously found to be associated with multiple RKs (Tateda

et al, 2014; Zhang et al, 2017); however if and how this contributes

to its regulation during immune responses has not been resolved.

NLRs – wheels of death
PTI signaling immediately downstream of elicitor perception by PRRs

involves a characteristic rapid and transient Ca2+ signal. Understand-

ing elicitor-triggered Ca2+ fluxes has been the focus of most studies of

immunity-related Ca2+ channels. ETI signaling, by contrast, involves

long-term, sustained Ca2+ signals (as discussed above). As outlined

previously, PTI and ETI induce qualitatively similar signaling outputs,

some of which (e.g., ROS, MAPK activation) have been shown to

involve the same molecular components in both pathways (Kadota

et al, 2019). It was thus reasonable to expect that similar channels

were involved in Ca2+ signaling during both PTI and ETI, a supposi-

tion reinforced by the ETI-like autoimmune and cell death phenotypes
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of several Ca2+ channel mutants, as discussed above. However, the

landscape of Ca2+ channels in immunity was recently revealed to be

more complex than previously thought.

Plant NLRs have been long hypothesized to form large, multi-

meric complexes (as it the case in animals, (Jones et al, 2016)).

This was finally shown to be the case with structural analysis of

the complex of the CNL HOPZ-ACTIVATED RESISTANCE 1

(ZAR1) and its RLCK interactors RESISTANCE-RELATED KINASE

1 (RKS1) and PBL2 (Wang et al, 2019a, 2019c). Using cryo-

electron microscopy (cryo-EM), the authors were able to resolve

how activation of ZAR1 via uridylation of the decoy PBL2 by the

bacterial effector AvrAC triggers subsequent exchange of ADP to

dADP in the ZAR1 NBD, leading the complex to take a radially

symmetrical, pentameric structure, termed a resistosome (Fig 7).

Interestingly, the N-terminal a-helical domains of ZAR1 formed a

funnel-like domain within the resistosome, which was hypothe-

sized to embed into membranes (Wang et al, 2019a). The overall

resistosome structure resembled that of mammalian inflamma-

somes, and of the fungal toxin HET-S, both of which create pores

in membranes upon activation through terminal helical domains

and thereby allow ion transport (highlighted in Dangl & Jones,

2019; Mermigka & Sarris, 2019), suggesting that this may be the

case in plants. Subsequent work using a combination of detailed

electrophysiological characterization and in planta Ca2+ measure-

ments revealed the nature of the ZAR1 resistosome as a non-

selective cation-channel with permeability to Ca2+ (Bi et al, 2021).

This ion permeability is required for ZAR1-induced cell death,

which occurs through disintegration of the PM and cellular

rupture (Bi et al, 2021).

In addition to the CNL ZAR1, TNLs have since been shown to

also assemble into resistosome-like structures (Ma et al, 2020;

Martin et al, 2020), though no evidence yet indicates that these also

form pores in membranes. Instead, helper NLRs of the RNL type

such as ADR1 and NRG1.1, which function downstream of TNL

sensors, were recently found to form oligomers and constitute ion

pores through assembly of their a-helical N-terminal domains

(Jacob et al, 2021). Auto-activated forms of both NRG1.1 and ADR1

were found to function as Ca2+-permeable channels in planta and to

induce cell death upon controlled over-expression. Similar to what

had been reported for the ZAR1 resistosome (Bi et al, 2021), the

cation permeability of NRG1.1 and ADR1 was dependent of the pres-

ence of negatively charged residues within the pore region of the

protein complexes (Jacob et al, 2021).

The striking overall similarities found in the ZAR1 resistosome

and the channels formed by NRG1.1 and ADR1 raise the question if

the formation of ion-permeable pores is indeed the general function
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Figure 7. The ZAR1 resistosome forms a Ca2+-permeable pore upon activation.

In the native state, ADP-bound ZAR1 binds the RLCK RKS1. After delivery of the bacterial effector protein AvrAC, the RLCK PBL2 gets uridylated, which is in turn bound by
the ZAR1-RKS1 complex. Structural rearrangements lead to ADP exchange to ATP and relocalization of the CC domain. Pentamerization of ZAR1-RKS1-PBL2UMP com-
plexes leads to the assembly of the resitosome multiprotein complex. The center of the complex is formed by the helices of the five CC domains and displays a funnel-
like form with a central pore. The funnel inserts into the PM and allows cation influx from the apoplast into the cytoplasm. This process is required for the initiation of
the hypersensitive response. If cell death is achieved through Ca2+ toxicity, active Ca2+ signaling or a loss of membrane potential through the leak created by the resisto-
some, is not resolved yet. Besides ZAR1, also RNLs were found to form Ca2+ permeable pores after activation.

ª 2022 The Authors The EMBO Journal 41: e110741 | 2022 11 of 18

Philipp Köster et al The EMBO Journal



of all helper NLRs. The physiological role of those channels will

have to be analyzed in detail in future studies to resolve several

open questions regarding channel-like NLR functions in immunity.

After strong, induced overexpression of (auto-) activated helper

NLRs, massive ion fluxes and rapid cell death have been docu-

mented (Jacob et al, 2021). This cell death is likely to be a conse-

quence of the loss of ion homeostasis and resulting PM

destabilization rather than Ca2+ signaling per se. It therefore remains

to be seen whether, under natural infection conditions, effector-

triggered activation of NLR-formed Ca2+ channels induces bona fide

Ca2+ signals that are perceived by Ca2+ sensors to in turn induce

physiological responses other than HR. Similarly, it will be critical

to resolve how the channel-like activities of NLRs are interwoven

with those of classical Ca2+ channels, given both the ETI-like pheno-

types of numerous channel mutants and the interdependence of the

BAK1-related cell death on both ADR1-type RNLs (Wu et al, 2020b)

and CNGC20 (Yu et al, 2019).

Our understanding of NLR function continues to evolve rapidly,

and recent parallel studies have reported NADase activity of the TIR

domain of TNLs upon their activation (Horsefield et al, 2019; Wan

et al, 2019; Ma et al, 2020). The mechanistic basis of this activity

has been resolved with the structure of the TNL RPP1, wherein the

tetrameric protein complex was found to form a holoenzyme (Ma

et al, 2020). A similar tetramerization upon activation was also been

recently reported for the N. benthamiana NLR RECOGNITION OF

XopQ 1 (ROQ1) (Martin et al, 2020). How NADase activity regulates

downstream signaling pathways remains to be fully characterized;

however, it will be of great interest to determine if and how the

resulting products (nicotinamide, adenosine diphosphate ribose

(ADPR), and a variant of cyclic ADPR (v-cADPR)) may modulate

and/or induce Ca2+ fluxes. The same holds true for another

recently-reported enzymatic activity of TIR domain containing

proteins: RESPONSE TO THE BACTERIAL TYPE III EFFECTOR

PROTEIN HOPBA1 (RBA1) was recently found to produce 20,30-
cAMP/cGMP through hydrolysis of RNA and DNA molecules

(preprint: Yu et al, 2021). Production of 20,30-cAMP/cGMP appears

to be required for TIR mediated signaling and cell death, but the

exact function of those molecules will require further study.

Recently, plant genomes were found to encode proteins with

similarities to necroptosis-inducing MIXED LINEAGE KINASE-

DOMAIN LIKE (MLKL) proteins (Mahdi et al, 2020). In animals,

those MLKL proteins are phosphorylated upon necroptosis to

induce oligomerization. This causes them to translocate through

membrane insertion of an N-terminal four helix bundle called

HeLo domain, which ultimately disturbs membrane integrity and

causes cell death (Petrie et al, 2019). Interestingly, Arabidopsis

MLKL3 and 4 were found to form tetramers, and loss of MLKL

function led to severe defects in immunity toward the obligate

biotrophic fungus Golovinomyces orontii via a TNL-dependent

pathway that does not involve the induction of cell death

(Mahdi et al, 2020). Remarkably, chemical oligomerization of

MLKL HeLo domains was found to be sufficient for the induc-

tion of cell death in Arabidopsis (Mahdi et al, 2020). How

Arabidopsis MLKLs are regulated during immune responses, if

their action also induces Ca2+ fluxes across the PM, and to what

extent their functional mechanism is similar to that of the ZAR1

resistosome or the ADR1 type RNLs will be interesting topics for

future studies.

Conclusions and outlook: answers, yet more questions

The molecular basis of Ca2+ signaling during immune responses has

been a major scientific question within plant biology for decades. As

outlined in this review, numerous candidate channel proteins have

been identified in recent years as contributing to PTI and/or ETI.

However, despite this rapid increase in knowledge, critical ques-

tions remain unanswered, and the fact remains that the channel(s)

responsible for the early Ca2+ transient during PTI is/are still largely

unknown.

The study of immunity and Ca2+ signaling continues to benefit

from tool development, and the modern, ever-growing GECI reper-

toire has allowed for ever-more detailed analyses of Ca2+ signals

in vivo. However, we must remember that our conceptualization of

Ca2+ signaling is at least partially defined by the GECIs we use, and

may be too broad. It is possible that loss of individual Ca2+ channels

evokes loss of individual Ca2+ signals within micro- and nanodo-

mains, which are simply not resolved even by state-of-the-art Ca2+

measurements.

It is remarkable that numerous channels from different families

appear to contribute quantitatively to the rapid Ca2+ signal upon

elicitor perception. These results beg the question of whether

PRR-mediated signaling cascades indeed target and regulate such

a high number of individual channels. One possibility is that such

a dividing and reunifying signaling architecture may allow for

genetic robustness, although this remains to be explored. It is

also possible that individual channels function in cell type-specific

manners, as has been at least suggested in the case of OSCAs in

guard cells. It is also possible that each of the Ca2+ channels

currently identified are indeed either quantitative contributors

and/or regulators, while the channel(s) mediating the major

influx still await identification. Indeed, the recent identification of

channel families (e.g., OSCAs) or novel characterization of known

proteins as potential channels (e.g., NLRs, ankyrin repeat domain

proteins) indicates that there remains much to be discovered

regarding Ca2+-permeable channels in plants.

With regards to NLRs functioning as cation channels in ETI,

future studies will have to find if they indeed generate Ca2+ signals

that evoke specific downstream responses, or if their channel activ-

ity rather represents the loss of membrane impermeability, with

Ca2+ influx just being a fellow traveler of cell death’s onset. In either

case, it will be as well critical to resolve the role of “classical” Ca2+

channels in ETI signaling.
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