
materials

Article

The Impact of the Vanadium Oxide Addition on the
Physicochemical Performance Stability and
Intercalation of Lithium Ions of the
TiO2-rGO-electrode in Lithium Ion Batteries

Beata Kurc 1,* , Marcin Wysokowski 2 , Łukasz Rymaniak 3, Piotr Lijewski 3,
Adam Piasecki 4 and Paweł Fuć 3

1 Institute of Chemistry and Electrochemistry, Faculty of Chemical Technology, Poznan University of
Technology, Berdychowo 4, PL-60965 Poznan, Poland

2 Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of
Technology, Berdychowo 4, PL-60965 Poznan, Poland; marcin.wysokowski@put.poznan.pl

3 Institute of Combustion Engines and Transport, Faculty of Transport Engineering, Poznan University of
Technology, Piotrowo 3, PL-60965 Poznan, Poland; lukasz.rymaniak@put.poznan.pl (Ł.R.);
piotr.lijewski@put.poznan.pl (P.L.); pawel.fuc@put.poznan.pl (P.F.)

4 Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan
University of Technology, Jana Pawla II 24, PL-60965 Poznan, Poland; adam.piasecki@put.poznan.pl

* Correspondence: beata.kurc@put.poznan.pl; Tel.: +4861-665-3666

Received: 22 January 2020; Accepted: 21 February 2020; Published: 24 February 2020
����������
�������

Abstract: This work determines the effect of the addition of various amounts of vanadium oxide on
the work of a cell built from a hybrid VxOy-TiO2-rGO system in a lithium-ion cell. Moreover, a new
method based on solvothermal chemistry is proposed for the creation of a new type of composite
material combining reduced graphene, vanadium oxide and crystalline anatase. The satisfactory
electrochemical properties of VxOy-TiO2-rGO hybrids can be attributed to the perfect matching of
the morphology and structure of VxOy-TiO2 and rGO. In addition, it is also responsible for the
partial transfer of electrons from rGO to VxOy-TiO2, which increases the synergistic interaction
of the VxOy-TiO2-rGO hybrid to the reversible storage of lithium. In addition a full cell was
created LiFePO4/VxOy-TiO2-rGO. The cell showed good cyclability while providing a capacity of
120 mAh g−1.

Keywords: solvothermal synthesis; reduced graphene oxide; anatase; vanadium oxide; lithium
ion batteries

1. Introduction

Continuous technological progress means that people are constantly looking for new solutions
that will enable them to work more efficiently and make the most of their potential. The constant
movement and very active lifestyle of millions of people from around the world forces somehow being
in constant motion, which makes them portable devices. Lithium-ion cells are widely used in modern
technologies as separate systems.

The automotive industry continues working to introduce and promote energy saving and
environmentally friendly solutions. The use of alternative fuels, hybrid and electric drives, as well
as fuel cells, could be included among those [1–4]. This requires introducing significant changes in
vehicle construction and even infrastructure adaptation, e.g., building battery charging stations.

Electric and hybrid drives used in city buses are characterized by many favorable operational
parameters in urban operating conditions and it is in this vehicle group that ongoing efforts are being
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undertaken to introduce various types of innovations to improve the efficiency of electrical solutions,
mainly the energy storage systems. Their addition to hybrid systems makes it possible to turn off

the internal combustion engine during stops and to use only the electric drive, e.g., in zero emission
zones [5]. In this type of systems, energy is recovered when the vehicle brakes, converting the kinetic
energy of the vehicle into electricity.

The search for suitable cathodic and anodic materials is still underway. Among the former there
are, among others, vanadium oxides. Due to the preservation of good properties during loading and
unloading processes, relatively easy transfer of lithium ions, several degrees of oxidation (V3+, V4+,
V5+), ease of synthesis and lack of toxicity, they are a good basis for working with lithium-ion cells.
They also provide good cycling stability [6–9]. Vanadium oxides are regularly used in research works
around the world. New synthetic methods are still being developed that use this compound in the most
diverse fields of science. During the preparation of the research material, various compilations using
vanadium oxide are used. Such materials can be prepared by various methods including hydrothermal
synthesis, precipitation [10] and sol gel synthesis [11]. In one of the recent works of Ceder et al. [12]
the slow diffusion kinetics in V2O5 electrodes was also indicated, particularly in the stable α-V2O5

phase associated with the conversion during the discharge process of fully demagnesiated α-V2O5

into a coexisting two-phase structure with fully magnesiated α-V2O5 and fully demagnesiated α-V2O5

phases. The relatively large theoretical capacity when intercalating two lithium Li+ ions per unit cell is
the main advantage of this oxide.

On top of this the addition of porous V2O5 was shown to provide interconnected network for
efficient transport of Li+ across the entire structure. Moreover, the interconnected network infuses
higher mechanical robustness in order to cope with the active materials volume expansion while
also retaining dimensional stability at the electrode level. The feasibility of this approach has been
successfully demonstrated, but the V2O5 electrodes can from the material’s poor structural stability,
low-diffusion coefficient of lithium ions (~ 10−12 cm2 s−1) and moderate electronic conductivity (10−2

to 10−3 S cm−1) when used in rechargeable Li-ion batteries.
The unique structure could provide numerous electrolyte access channels to facilitate rapid

diffusion of lithium ions into the electrode material. It also affected the short semiconductor diffusion
for lithium due to the thin layer of VxOy. It also influenced the high electricity conductivity of the
entire electrode based on the graphene network and the highest content of electrochemically active
material in the electrode. The hybrid obtained using this method can meet all kinetic requirements for
efficient charging and discharging of the ideal electrode material-i.e., rapid ion diffusion. As a result,
the graphene structure and VxOy enable the electrode to work efficiently: charging and discharging
with a long life cycle while maintaining a highly reversible capacity. The addition of vanadium oxide
reduces structural changes during work, prevents, among others material swelling.

The following table shows sample combinations of reagents used in vanadium oxide methods
as an electrode material. Depending on the purpose of the test material being prepared, different
compilations of used substances are selected. The review of these substances aims to show how many
possibilities exist for the use of vanadium oxide in a wide variety of lithium-ion cell research. The most
common combinations with its use: rGO-V2O5; TiO2-V2O5.

rGO is widely used as a template for solvothermal deposition of V2O5 [13] as well as TiO2 [14,15].
Surprisingly, there are no reports to date concerning the use of rGO as a template for the development
of vanadia–titania nanocomposites for Li-ion batteries.

The unique structure could provide numerous electrolyte access channels to facilitate rapid
diffusion of lithium ions into the electrode material. It also affected the short semiconductor diffusion
for lithium due to the thin layer of VxOy. It also influenced the high electricity conductivity of the
entire electrode based on the graphene network and the highest content of electrochemically active
material in the electrode. The hybrid obtained using this method can meet all kinetic requirements for
efficient charging and discharging of the ideal electrode material-i.e., rapid ion diffusion. As a result,
the graphene structure and VxOy enable the electrode to work efficiently: charging and discharging
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with a long life cycle while maintaining a highly reversible capacity. The addition of vanadium oxide
reduces structural changes during work, prevents, among others material swelling.

Therefore, we decided to develop, for the first time, a solvothermal reaction for the synthesis of
novel VxOy-TiO2-rGO nanocomposites and to investigate their potential application in the construction
of a new generation of Li-ion batteries. Incorporation of rGO into VxOy-TiO2 is beneficial in terms of
the cell stability. The cell does not lose significant capacity during extended work.

2. Materials and Methods

2.1. Synthesis of VxOy-TiO2-rGO Oxide Nanocomposites

For the typical synthesis of VxOy-TiO2-rGO oxide nanocomposites, a solution consisting of 20 mL
of H2O and 40 mL of CH3COOH (Sigma-Aldrich, Hamburg, Germany) underwent vigorous stirring at
room temperature; then 2 mL of rGO (Merck, Hamburg, Germany), 10 mL of titanium(IV) butoxide
(Sigma-Aldrich), an appropriate quantity of NH4VO3 (Merck) and 1 mL of NH4OH (Merck) were
added gradually. The detailed quantities of reagents used for the synthesis of selected samples are
given in Table 1, Figure 1.

Table 1. Description of the reactants and conditions used for solvothermal synthesis of VxOy-TiO2-rGO
composites.

Sample
Name

Volume of
H2O/mL CH3COOH/mL Amount of

NH4VO3/g

Volume of
Ti(OC4H7)4
/mL

Temperature/K Time/h

S2V0Ti1

20 40

0

10 473 24
S2V0.25Ti1 0.1
S2V0.5Ti1 0.2
S2V1Ti1 0.4
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Figure 1. Schematic view of the solvothermal synthesis procedure.

2.2. Electrode and Electrolyte

The tested anodes were analyzed: VxOy-TiO2-rGO on a copper foil (Hohsen, city, Japan)|LiPF6

solid salt in liquid EC/DMC (1:1)|Li. The ratio of components was VxOy-TiO2-rGO (75%), AB (15%),
PVdF (10%), (by weight). In order to get rid of the NMP solvent, the electrodes were dried under
vacuum for 24 h at 120 ◦C.

2.3. Procedures and Measurements

The morphology and microstructure of the prepared samples were examined on the basis of the
SEM images recorded from an EVO40 scanning electron microscope (Zeiss, Oberkochen, Germany).
The particle size distributions were determined using a Zetasizer Nano ZS (Malvern Instruments Ltd.).
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A Vertex 70 spectrophotometer (Bruker, Bremen, Germany) was used to record the Fourier
transform infrared spectra (FTIR). Analysis was conducted on the materials in the form of tablets,
with the WAXS method used for crystal phase identification analysis. The results were analyzed
using X-RAYAN software. To determine the electrochemical properties of the cells electrochemical
impedance spectroscopy (EIS) and galvanostatic charging/discharging tests were used. The cycling
measurements were taken using a Gammry Industries (Louis Drive Warminster, PA 18974) multichannel
electrochemical system at different current density values, while the multichannel potentiostat
(Gammry) was used for cyclic voltammetry (CV).

In order to assess the morphologies of particles, the scanning electron microscope (SEM), model
MIRA3, produced by Tescan (Brno–Kohoutovice, Czech Republic) was used. An accelerating voltage
of 20 kV was applied. The chemical compositions of powders were measured by ULTIM MAX 65
microanalyzer with EDS method (Oxford Instruments) at the same accelerating voltage i.e., 20 kV. The
contents of elements such as Ti, O and V were analyzed. To reduce samples charging, the graphite
film with thickness of about 20 nm was coated on powders using a JEE 4B vacuum evaporator (JEOL,
Dearborn Road Peabody, MA, USA).

The electrodes: Li: ca. 45 mg (0.785 cm2), VxOy-TiO2-rGO: 2.5–3.5 mg, were separated by a glass
microfiber GF/A separator (Whatmann, 0.4–0.6 mm thick). The electrodes were placed in an adapted
Swagelok® connecting tube. Cells were assembled in a glove box in a dry argon atmosphere.

3. Results

3.1. Dispersive and Structural Properties of the Obtained Materials

The SEM images presented below indicate that TiO2-rGO (S2V0Ti1) obtained by a solvothermal
method without the presence of vanadium precursor has a uniform spherical shape with particle
sizes ranging between 50 nm and 150 nm, and a tendency to form aggregates. This observation was
confirmed by measurements of particle size distribution (Figure 2).

The graph obtained confirms a bimodal particle size distribution resulting from the aggregation
of nanoparticles into sub-micrometric aggregates. The SEM images and the particle size distribution
graphs presented for samples obtained with increasing quantities of vanadium precursor show an
increasing tendency towards the formation of large conglomerates composed of spherical nanoparticles
(Figure 2).

To confirm composite formation and to identify the functional groups present on the surface
of the obtained materials, FTIR spectroscopy was applied. Figure 3a shows the spectra recorded
for VxOy-TiO2-rGO composite samples and for TiO2-rGO as a reference sample. The fundamental
vibrations in all of the TiO2-based composites appear in the FTIR spectra as a very intense broad band,
ascribed to stretching vibrations of Ti–O bonds (550–653 cm−1) [16,17]. The next band is visible at
1103 cm−1, and according to the literature [18] is related to stretching vibrations of unshared V=O
bonds [19]. The highest intensity of this band is observed for the sample obtained with the highest
quantity of vanadium precursor. The band visible at 1333 cm−1 is a result of stretching vibrations of
C=O and C–OH bonds. The multiple bands visible in a range from 1414 cm−1 to 1551 cm−1 are related
to the graphitic core of reduced graphene oxide [20,21]. The intense band at ~ 1630 cm−1 corresponds
to deformation vibrations of adsorbed water molecules [16], but also overlaps with a band related to
C=C sp2 bonded carbon atoms [22,23]. The intense wide band at 3407 cm−1, with a shoulder at 3241
cm−1, is attributed to stretching vibrations of O–H groups [16].
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The XRD patterns of the samples are presented in Figure 3b. All patterns confirm that the materials
synthesized via the solvothermal method exhibit very high crystallinity. All observed 2Θ peaks are
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characteristic for anatase (JCPDS, No. 21–1272). It can be observed that the incorporation of vanadium
precursor does not lead to the formation of any new crystalline phase, and does not influence the
crystallinity of the obtained materials.

Nevertheless, the fact that no vanadium phases (such as the V2O5 orthorhombic phase) are
observed in these XRD measurements indicates that the vanadium oxide is deposited as an amorphous
coating on the TiO2 nanoparticles.

In Figure 4 the results of chemical composition studies were presented as the EDS spectrums. In
the tables, the concentrations of the studied elements (Ti, O and V) as well as the standard deviation
were presented. The studies from the area of 1 mm2 were carried out.
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Figure 4. EDS spectra of the obtained materials.

The S2V0Ti1 sample was characterized by the highest content of titanium and oxygen, whereas for
the S2V1Ti1 sample the highest content of vanadium, i.e., 4.5 wt% was measured.

In Figure 5 SEM image and EDS concentration maps of V, O and Ti for the sample S2V1Ti1 were
presented. The maps are shown using a 12 color scale. The colors corresponded to the concentration of
a selected element, the white pixels meant the highest concentration of element and the black areas
corresponded to a concentration equal to zero. The numerical values corresponded to the number of
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counts. After applying individual areas on each other, it could be stated that areas with light and dark
colors overlapped. Thus, the resulting material in the form of a powder with particle sizes from 0.4
to 5 µm was homogeneous in respect of chemical composition. The intensity was compatible to the
results presented in the form of EDS spectrums in Figure 4.
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3.2. Electrochemical Properties

Nanoscience and nanotechnology offers some new perspectives. Novel techniques and increased
understanding of material science have made it possible to create and craft appropriate anode materials
for new LIBs. Thanks to the appropriate physicochemical characteristics of the structures, lithium
storage has been achieved. In addition, a high lithium-ion flux at the electrode/electrolyte interface has
been obtained, the diffusion distance for both Li and electron ions has been reduced, and anode volume
changes during the charging/discharging process have been significantly reduced. By combining all of
the aforementioned features into new devices it should be possible to create new high energy density
and high power density devices.

The VxOy-TiO2-rGO composite anode exhibited stable cycle performance, while retaining a
discharge capacity of 160 mAh g−1 after the 50th cycle. This is comparable to the capacities reported in
the literature [24–36] (see Table 2).
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Table 2. Comparison of the type of materials (various VxOy) with preparation methods in the literature.

Reference Electrode Materials Discharge
Capacity/mAh g−1 Current/mA g−1

[15] Carbon-coated Li3VO4(Li3VO4/C) 370 15C (C = 394)
[24] LixV2O5 116 C/4 (C = 294)

[25] Li3VO4/graphene nanosheets
composite (Li3VO4/graphene) 223 20C (C = 400)

[26] V2O5 273 0.2C (C = 294)
[26] V2O5-300 256 0.2C (C = 300)
[26] V2O5-400 210 0.2C (C = 300)
[26] V2O5-400 195 0.2C (C = 300)

[27]

LiNi0.5Co0.2Mn0.3O2 was
surface-modified by double-layer

coating: V2O5, graphene oxide
(GO-VO-NCM)

125 0.2C (C = 270)

[27] VO-NCM 130 0.2C (C = 270)
[28] Li3VO4/C–Ni composite 325 10C (C = 180)
[29] LiV2O5 135 C/5 (C=294)
[6] rGO-V2O5 295 10C (C = 394)
[31] TiO2-V2O5 319 100

[32] Hierarchical V2O5 nanobelts
(V2O5-HNbs) 248 50

[33] V2O5- TiO2 452 50
[34] TiO2-V2O5 195 17
[35] Ag-TiO2/V2O5 300 50
[36] Li3VO4/C 360 100

The results of the cyclability study of all investigated materials are presented in Figure 6. The
cycling behavior of the VxOy-TiO2-rGO electrode is plotted at a low current density of 50 mA g−1, as
shown in Figure 5. S2V0Ti1 exhibit the initial discharge–charge capacities of 110 and 120 mAh g−1,
respectively. In the first cycle, a relatively high specific capacity was observed, which is a common
phenomenon. In the literature, this is translated as the formation of solid electrolyte interphase (SEI).
When cycling to the 30th cycle, the capacity is 100 mAh g−1 and then it gradually increases to 85 mAh
g−1 in the 500 mA g−1 (Table 3).
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Table 3. Rate performance under various current densities of VxOy-TiO2-rGO.

Current Rate/mA g−1 SAMPLE NAME/CAPACITY mAh g−1

S2V0Ti1 S2V0.25Ti1 S2V0.5Ti1

50 (20th cycle) 120 134 155
100 (40th cycle) 110 122 143
150 (60th cycle) 100 113 134
200 (80th cycle) 90 104 121

300 (100th cycle) 90 100 120
500 (120th cycle) 85 95 118

Moreover Table 3 shows the multiple-current galvanostatic result of the VxOy-TiO2-rGO electrode,
with discharge capacities of: S2V0Ti1:120–85 mAh g−1; S2V0.25Ti1: 134–95 mAh g−1; S2V0.5Ti1: 155–118
mAh g−1 at current densities of 50, 100, 150, 200, 300 and 500 mA g−1, respectively.

Figure 6 shows charge discharge capacities depending on the number of cycles, and the profile of
charging curves relative to the potential. As you can see, the most stable and simultaneously reversible
arrangement turned out to be S2V1Ti1. Coulombic efficiency is close to 96% and slight differences in
charging curves at 1st, 2nd and 30th cycles.

The electrode material is a composite and therefore the capacities given have not been corrected
for the vanadium oxide content. It was observed that, after 120 cycles (S2V0.5Ti1) at higher current
density, the prepared material still shows an impressive discharge capacity of ~118 mAh g−1 at a
current density of 500 mA g−1 (Table 3). All samples show relatively good capacity retention after
cycles with gradually increasing currents. One may notice that S2V1Ti1 shows reversible capacities of
about 182 mAh g−1 at 50 mA g−1 (Figure 6), and this value drops to 120 mAh g−1.

The specific capacity is low-suggesting that lithium incorporation is limited under these conditions
and that surface vanadate oxides do not significantly improve ion diffusion at the electrolyte interface.
To determine the performance of the S2V1Ti1 porous electrode in practical applications, a complete cell
with a commercial LFP cathode was assembled (Figure 7).
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Charge/Discharge capacity of the commercial LiFePO4 half cell at C/5 is shown in Figure 7a.
Figure 6 shows the dependence of Li/S2V1T1 cell capacity on the cycle, taking into account the current
densities at which the measurements were made. As can be seen in the chart above, the capacity
decreases with subsequent cycles, especially at high current density values. Comparing the above
results with literature data we get very similar values. In studies on the impact of the VxOy structure
in lithium-ion cells, the results obtained at 50 cycles and the current of the same density oscillate in the
range of 200–150 mAh g−1 depending on the sample. However, in studies using reduced graphene
oxide and VxOy in lithium-ion cells, values after 50 cycles were approximately 200 mAh g−1.

The full cell provides a discharge capacity of 158 mAh g−1 in the first cycle (Figure 7c), which
decreases slowly as the number of cycles increases. At a discharge capacity of 137 mAh g−1 after 30
cycles. Previous studies have shown that a decrease in capacity in a full cell can be the result of many
parameters, among others: different current density between two electrodes, loss of Li ions in the
direction of SEI formation and other side reactions or the use of inappropriate electrolyte.

It was found that the system achieves quite good efficiency, with a return current density of up to
50 A g−1, because the discharge capacity reaches initial values (Figure 7a). When analyzing the SEI
layers, it is important to remember about good synergy with the electrode material, in addition, it
is important that it does not dissolve in the electrolyte (especially at high temperatures). It should
be a good electronic insulator and an efficient ion conductor for lithium ions, while removing the
solvation coating around lithium ions. The latter aims to avoid co-intercalation of the solvent, which is
associated with the exfoliation of active material [19].

The SEI layer is formed on the electrode surface due to electrolyte decomposition (solvent and
salt) at potential below 1 V vs. Li /Li+ (usually 0.7 V vs. Li/Li+ for most electrolytes). The potential for
SEI formation, composition and stability depends on many factors, such as electrolyte formulation,
charge and discharge rate, etc. [19].
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Power losses are referred to as “irreversible”. However, it is very well known that in many cases
the original capabilities are “recoverable”. It has been proven that the loss of capacity results from
many factors that cause the increase in SEI-this is the case with carbon anodes. The “irreversible”
loss of capacity in a balanced cell is caused by the phenomenon in which the lithium involved in the
reaction comes from the cathode. Similar phenomena are known when SEI is formed on the cathode
and the lithium does not have enough lithium to restore the cathode to full capacity after charging [20].

The nature of the electrolyte and the composition of the solvent components have a significant
impact on the nature of SEI. This is a key issue that governs the performance of both hard and soft
carbon anode materials.

The prepared composite can, therefore, endure significant changes, including low or high current
densities, and yet retain stability upon cycling. This is an advantage for LIBs with high power and
long lifecycle as it can increase their abuse tolerance.

The storage capacity that occurs through an intercalation path, is closely associated to the surface
area, morphology, crystallinity and its orientation. Soft carbons are commonly used and well accepted
in the battery industry.

The presented Scheme 1 emphasizes that both the current collectors and the electrolyte side
come from electrons and lithium ions in the electrodes. It was found that there are a number of
resistances that are characteristic of a composite electrode, including surface resistances of so-called
active materials, which are associated with conduction paths.
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Ion resistance in electrolyte and solid state diffusion in active materials is directly related to
ionic conductivity. For larger-size lithium-ion batteries, the distribution of reactions can occur within
composite electrodes. This is most likely due to the fact that the electrode reaction occurs preferentially
in areas with lower resistance. When creating composite electrodes, remember the relationship between
electron/ion conductivity and the distribution of reactions in electrodes and battery performance. The
distribution model has previously been studied from a theoretical point of view. There are several
reports in which the distribution of composite electrode reactions is directly observed. The reactions
between the electrode and the electrolyte depend on: material composition, its morphology, porosity
of the composite material used for electrode construction. In addition, the morphological image
determines their effective ionic and electronic conductivity.
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The tuning of such composite electrodes, however, has been mostly based on the intuition and
experience of the person performing it. This is because it is especially difficult to distinguish the
electronic conductivity and the ionic conductivity in composite electrodes [34–37].

In addition, heterogeneous aggregation of nanostructures may affect the performance of individual
cells. For longer nanostructures, the intercalation of the second lithium ion is limited, and the phase
δ completely transforms into the γ phase without irreversible reactions with slower kinetics, which
in turn increases the structural stability of the material. In the literature, it can be argued that the
electrochemical properties of nanostructures strongly depend on the particle size: the smaller the
particle size, the lower the polarization and higher cell capacity.

To increase the conductivity and specific surface area of active materials, graphene and
nanomaterials are used. This also causes a significant reduction in the phenomenon of agglomeration
during cyclical work.

In numerous literature we already find systems containing vanadium oxides and graphene
nanocomposites, such as VxOy @ G. The problem, however, is the controlled synthesis of vanadium
oxides on graphene nanoparticles of various structures. This is an important aspect from the point of
view of electrochemical properties obtained [38–43]. It is important to obtain a stable, homogeneous
and composite with good structural reserve, based on V2O5/reduced graphene oxide.

The synergistic effect between vanadium oxide and the graphene substrate affects performance
and excellent cyclic stability. This is influenced by: the growth of V2O5 nanoparticles on reduced
graphene oxide, which also ensures good electronic conductivity of electrode materials. Porous space
created by interconnected nanocomponents can improve the availability of electrolyte with electrode
materials. What’s more, the thickness of one thin component can reduce the diffusion of Li+ ions.
It also limits the transport of electrons; and the porous structure may better account for changes in
volume during the cycle [44,45]. Figure 8 shows representative cyclic voltammograms (CVs) of S2V0Ti1,
S2V0.25Ti1, S2V0.5Ti1 and S2V1Ti1 for the first cycles at a scan rate of 0.5 mV s−1 in a voltage window of
0–3 V.
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Cyclic voltammetry is a technique used to determine the range of potentials at which the cell
will exhibit the best properties. It also provides us with information on the processes taking place
on the electrodes. Figure 6 shows the cycle of the tested cell with the feed rate of 0.5 mV s−1. The
reduction process in cells using vanadium oxide as the electrode material is 1.6 V. The oxidation reaction
corresponds to a potential of 2.25 V. In similar studies regarding modified V2O5 used in lithium-ion
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cells [46], the reduction peak appeared in the vicinity of 2.3 V. In contrast, the peak corresponding to
the oxidation reactions occurred in the 2.5 V range, which is close to the above results.

As can be seen, the reduction peak shifts to the low potential region with increasing content of
TiO2, whereas the oxidation peaks shift to the high potential region, suggesting polarization under a
high scan rate. The cyclic voltammograms (CVs) is widely performed to study the oxidation/reduction
process and Li intercalation/deintercalation behavior in the electrode reactions.

Poor electrochemical performance can often still be caused by a minimal increase in volume as
well as irreversible reactions during cyclic operation. This is also affected by the inadequate internal
conductivity of V2O5 [45–47]. Various solutions can be found in the literature: intervention in structure
design or planned morphology, for example V2O5 with a carbon coating. In the literature, we see that
simple and direct strategies to solve this problem are used—the introduction of conductive carbon
into the composite, physical mitigation of volume growth by creating an empty structure or exposing
certain aspects by regulating morphology. Further network level design is relatively small, especially
on an atomic scale, but Cao et al. [48] found that amorphous vanadium pentoxide exhibits better energy
density and cycle stability than crystalline ones when used in batteries. Good properties have been
shown to result from the isotropic percolated diffusion network in amorphous V2O5, which facilitates
fast-faradic reactions. It has also been noticed that crystalline V2O5 can provide higher capacity than
amorphous V2O5 at high current densities, while amorphous provides higher capacity at low current
densities [15,49].

Figure 9 shows scanning electron microscopy (SEM) images of pristine electrodes and after
electrochemical cycling. The S2V0Ti1 and S2V1Ti1 particles after electrochemical cycling are covered
with a film and small aggregates. This ‘micro-roughness’ may indicate the formation of an SEI layer.
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Figure 9. SEM images of obtained materials: (a) S2V0 Ti1; (b) S2V1 Ti1. (left) Before charging/discharging;
(right) After charging/discharging.



Materials 2020, 13, 1018 14 of 17

Robust intercalation tunnels and the ability of many electrons to pass, produces a V2O5 electrode
with high power efficiency, which requires the use of dimensional parameters and transport to overcome
the complex environment of physicochemical reactions. Likely by the directions of ion diffusion
towards the electrode and load transfer to the electrode/electrolyte interface, which created a new
aspect of research that scientists are currently trying to solve.

Using the thermodynamic expression, it should be noted that the available energy depends
on the electrode materials, it is difficult to fully release the theoretical value of the chemical energy
accumulated in V2O5 due to the limitations of ion diffusion kinetics and V2O5 computer conductivity.

4. Conclusions

The solvothermal method has been shown to be an efficient tool for the preparation of
VxOy-TiO2-rGO materials with uniform spherical morphology. The addition of vanadium precursor to
the reaction system facilitates the aggregation of particles into large agglomerates. XRD measurements
indicate that the vanadium atoms are well incorporated in the TiO2 crystalline structure. The work
has demonstrated that VxOy-TiO2-rGO displays improved electrochemical stability upon the reported
lithiation and delithiation, which effectively improves the long-term electrochemical performance and
maintains the specific capacity well. The VxOy-TiO2-rGO microparticles synthesized as described here
may be a promising candidate as an anode material for future application in LIBs.

It has been proved that a relatively porous structure allowed the use of the surface area to quickly
replenish electrolyte ions. It has also been found that the surface porosity of various structures can
create an interconnected network for better Li+ transport throughout the structure. In addition, this
limited the significant increase in volume during electrode operation.
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