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Abstract 

The Hepatitis C virus (HCV) envelope glycoprotein E1 forms a non-covalent heterodimer with E2, the main target of neutralizing anti-
bodies. How E1–E2 interactions influence viral fitness and contribute to resistance to E2-specific antibodies remain largely unknown. 
We investigate this problem using a combination of fitness landscape and evolutionary modeling. Our analysis indicates that E1 and 
E2 proteins collectively mediate viral fitness and suggests that fitness-compensating E1 mutations may accelerate escape from E2-
targeting antibodies. Our analysis also identifies a set of E2-specific human monoclonal antibodies that are predicted to be especially 
resilient to escape via genetic variation in both E1 and E2, providing directions for robust HCV vaccine development.
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1. Introduction
Hepatitis C virus (HCV), a single-stranded RNA virus, is the major 
cause of liver-associated disease and liver cancer. Currently, an 
estimated 58 million people are chronically infected with HCV 
(World Health Organization 2022). Although direct-acting antivi-
rals (DAAs) have been developed and offer promising treatments 
for chronic HCV infections, their high cost and low rates of HCV 
diagnosis limit their accessibility to a subset of infected individu-
als only (Rosenthal and Graham 2016; World Health Organization 
2022). Additionally, the efficacy of DAAs is limited by their inability 
to prevent reinfection and the emergence of drug-resistant viral 
strains (Wyles and Luetkemeyer 2017; Rossi et al. 2018). There-
fore, developing an effective vaccine is crucial for eradication of 
HCV.

HCV encodes a single polyprotein, which is further cleaved by 
cellular and viral proteases into three structural proteins (core, 
E1, and E2) and seven non-structural proteins (NS1, NS2, NS3, 
NS4A, NS4B, NS5A, and NS5B). The envelope protein E2 is vital for 
viral entry into liver cells (hepatocytes), and it is a primary target 
for neutralizing antibodies (Deleersnyder et al. 1997). These anti-
bodies bind to specific E2 regions, blocking the virus’s ability to 
enter host cells and thus inhibiting viral replication and spread. A 
particular group of these antibodies, termed broadly neutralizing 

antibodies (Osburn et al. 2014), displays the capacity to neutral-

ize a wide range of HCV genotypes and subtypes (Bankwitz et al. 

2021).
Previous studies have indicated that E2 alone can generate 

a potent humoral immune response on its own and serve as 

a promising vaccine candidate (Cerino et al. 1997; Li et al. 

2016; Yan et al. 2019). Nonetheless, the other envelope pro-

tein E1, which forms non-covalent heterodimers with E2 (Deleer-

snyder et al. 1997), exhibits a functional interdependence with 

E2 (Wahid et al. 2013; Douam et al. 2014; Li and Modis 2014; 
Haddad et al. 2017; Moustafa et al. 2018; Tong et al. 2018). 
For instance, E1 helps E2 maintain its functional conforma-

tion and regulates E2’s interaction with HCV receptors CD81 
and SR-B1, and both E1 and E2 are needed for interaction with 
Claudin-1, a key factor in HCV entry. E1 has also been shown 
to modulate the folding of E2 (Cocquerel et al. 2000; Brazzoli 
et al. 2005). While preliminary experiments suggest that specific 
mutations in E1 and E2 may jointly modulate viral infectivity 
(Douam et al. 2014), a comprehensive analysis of the role of E1E2 
inter-protein interactions in mediating viral fitness is still lack-
ing. Moreover, fitness of HCV is closely related to its ability to 
escape from antibody responses (Keck et al. 2011; Vela´zquez-
Moctezuma et al. 2021). Therefore, investigating the effect of E1 
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on escape from E2-specific neutralizing antibodies is of particular
interest.

In this work, we develop a computational fitness landscape 
model that considers interactions between E1 and E2 proteins. A 
detailed study of this model is performed using the available in 
vitro infectivity measurements to assess the role of E1E2 inter-
protein interactions in mediating viral fitness. We further integrate 
this model into an in-host evolutionary model and investigate 
whether E1 may facilitate viral escape from antibodies target-
ing E2. Our analysis reveals potentially escape-resistant human 
monoclonal antibodies (HmAbs) against the E1E2 complex, offer-
ing directions for the development of an effective vaccine
against HCV.

2. Results
2.1. Inference and statistical validation of the 
joint model for the E1E2 protein
We developed a computational model, termed joint model (JM), 
for the entire E1E2 protein using the sequence data available for 
subtype 1a. This model uses a maximum entropy approach to 
estimate the probability of observing a virus with a specific E1E2 
protein sequence. In this model, the probability of any sequence
x = [x1, x2,…., xN] is given by

Ph,J (x) = e−E(x)

Z
,where E (x) = ∑i=1

N−1
∑j=i+1

N
Jij (xi,xj) + ∑i=1

N
hi (xi) , (1)

where N is the length of the sequence and is a normalization 
factor, which ensures that the probabilities sum to one. The 
fields h and couplings J represent the effect of mutations on a 
single residue and interactions between mutations at two differ-
ent residues, respectively. E(x) denotes the energy of sequence
x (commonly referred to as Hamiltonian in statistical physics), 
which is inversely related to its prevalence. Inference of a max-
imum entropy model involves choosing the fields and couplings 
such that the model can reproduce the single and double mutant 
probabilities observed in the E1E2 sequence data.

We inferred the E1E2 maximum entropy model using the 
graphical user interface (GUI)-based software implementation of 
Minimum Probability Flow–Boltzmann Machine Learning (MPF–
BML) (Quadeer et al. 2019) (see Section 5 for details), an efficient 
inference framework introduced in Louie et al. (2018). The single 
and double mutant probabilities obtained from the JM matched 
well with the E1E2 sequence data (Fig. 1A, B). Although not explic-
itly included in model inference, additional statistics including 
the connected correlations and the distribution of the number of 
mutations computed from the model also agreed well with those 
obtained from the E1E2 sequence data (Fig. 1C, D), demonstrating 
the predictive power of the inferred model. Overall, these results 
indicate that the inferred E1E2 JM captures well the statistics of 
the data.

2.2. E1E2 inter-protein interactions are important 
in mediating viral fitness
While some studies have considered E2 alone (i.e. independent 
of E1) (Cerino et al. 1997; Li et al. 2016; Yan et al. 2019), multi-
ple studies have reported that these two proteins are functionally 
interdependent (Wahid et al. 2013; Douam et al. 2014; Haddad 
et al. 2017; Moustafa et al. 2018). This suggests that interactions 
between E1 and E2 may be critical. Previously, we had investigated 
E2 alone wherein we had inferred a fitness landscape model for 
E2 and used it to explore HCV escape dynamics from neutraliz-
ing antibodies (Quadeer, Louie, and Mckay 2019; Zhang, Quadeer, 

and McKay 2022). Here, to investigate the importance of E1E2 
inter-protein interactions in virus fitness and immune escape, we 
compared the inferred JM with a model that considers E1 and E2 
proteins to be independent (see Section 5 for details). We refer 
to it as the independent model (IM). In this model, the energy of 
an E1E2 protein sequence x = [xE1, xE2] is given by the sum of the 
energies of its E1 and E2 parts, xE1 and xE2, respectively, 

E (x) = E (xE1) + E (xE2) . (2)

Here, E(xE1) and E(xE2) are computed separately using inferred 
E1-only and E2-only maximum entropy models, respectively (see 
Section 5 for details). Both the E1-only and E2-only models capture 
well the statistics of the respective sequence data (Supplementary 
Fig. S1).

Equipped with the JM and IM, we first investigated whether 
E1 and E2 proteins can be considered statistically independent. 
This can be quantified by comparing the fraction of the corre-
lated structure (FCS) of the E1E2 protein complex captured by 
the two models (Mora et al. 2010). FCS captured by a model can 
be estimated by comparing the entropy of synthetic sequences it 
generates with the entropy of a site-independent model and the 
estimated true entropy of the data, which omit and incorporate all 
correlations among sites, respectively (see Section 5 for details). If 
FCSs captured by both the JM and IM are similar, it will be sug-
gestive of E1 and E2 to be independent. Based on our analysis, the 
average FCS of the E1E2 protein complex captured by the JM (63 per 
cent) was 22 per cent more than that captured by the IM (41 per 
cent) (P = 9.1 × 10−5; Fig. 2), suggesting that E1 and E2 proteins are 
not statistically independent. Thus, there seem to be significant 
inter-protein correlations that are not captured by the IM.

We next investigated if the additional correlations captured by 
the JM, compared to the IM, make it a better representative of the 
intrinsic E1E2 fitness landscape. Maximum entropy models have 
been shown previously to be good representatives of the under-
lying fitness landscapes for multiple individual viral proteins of 
HCV (polymerase (Hart and Ferguson 2015), NS3 (Zhang, Quadeer, 
and McKay 2023) and E2 (Quadeer, Louie, and Mckay 2019; Zhang, 
Quadeer, and McKay 2022)) and human immunodeficiency virus 
(HIV) (Ferguson et al. 2013; Mann et al. 2014; Barton et al. 2016; 
Flynn et al. 2017; Louie et al. 2018). To test this for the JM and the 
IM, we compared the predictions of both models using the in vitro 
infectivity measurements available for E1E2. We compiled a total 
of 156 in vitro infectivity measurements for E1E2 from sixteen 
studies (Goffard et al. 2005; Drummer et al. 2006; Ciczora et al. 
2007; Falkowska et al. 2007; Gal-Tanamy et al. 2008; Rothwangl 
et al. 2008; Dowd et al. 2009; Keck et al. 2009; Guan et al. 2012; Keck 
et al. 2012; Urbanowicz et al. 2015; Pierce et al. 2016; El-Diwany 
et al. 2017; Gopal et al. 2017; Douam et al. 2014; Pfaff-Kilgore et al. 
2022). We found that the JM provided a stronger negative Spear-
man correlation (r = − 0.70; see Section 5 for details) between the 
predicted sequence energies (inversely related to prevalence) and 
experimental fitness values (Fig. 3) than the IM (r = − 0.54; Fig. 3, 
inset). This result suggests that the JM is a better representa-
tive of the E1E2 fitness landscape. It also indicates the potential 
importance of E1E2 inter-protein interactions in mediating viral 
fitness.

2.3. Majority of strong E1E2 inter-protein 
interactions are compensatory
The couplings of the inferred maximum entropy model (Jij in 
Equation (1)) are informative of the type of interactions between 
residues (Butler et al. 2016; Zhang et al. 2020). When the value of 
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Figure 1. Statistical validation of the inferred E1E2 JM. Comparison of the (A) single mutant probabilities, (B) double mutant probabilities, (C) 
connected correlations, and (D) distribution of the number of mutants per sequence obtained from the MSA and those predicted by the inferred JM. 
Samples were generated from the inferred model using the MCMC method (Ferguson et al. 2013).

Figure 2. Comparison of the FCS in E1E2 protein captured by the JM and 
the IM. FCS captured by a model is quantified by Imodel/I. Here, 
I = Sind − Strue is the multi-information which measures the overall 
strength of correlations in the system, where Sind denotes the entropy of 
a site-independent model of E1E2 protein and Strue is the true entropy of 
the E1E2 complex estimated using the approach in Strong et al. (1998) 
(see Section 5 for details). Similar to I, Imodel = Sind − Smodel measures the 
strength of correlations captured by the JM or IM, where Smodel is the 
entropy predicted by the JM or IM based on the data generated using the 
MCMC method (see Section 5 for details) (Mora et al. 2010). Entropies for 
the JM and IM were calculated over ten instances of MCMC runs, and the 
P-value was calculated using the one-sided Mann–Whitney test.

Jij is large and positive, it signifies a strong antagonistic interac-
tion or negative epistasis between residues i and j. This results in 
a decrease in the fitness of double mutants and makes it harder 
for new mutations to occur (Bank et al. 2014). On the other hand, 
when the value of Jij is large and negative in Equation (1), it 
indicates a strong compensatory interaction or positive epistasis 
between residues i and j. This signifies improved viral entry or 
immune evasion capability of double mutants, allowing the virus 
to acquire diverse mutations.

Analyzing the top 300 pairs of inter-protein couplings (listed in 
Supplementary Data 1), i.e. with large absolute values of Jij, we 
found that the majority (70 per cent) were negative (Fig. 4). This 
suggests that the top inter-protein couplings are largely compen-
satory and that simultaneous mutations in the two proteins may 
assist in maintaining a viable virus. This result was robust to the 
number of top inter-protein couplings considered (Supplementary 
Fig. S2). A recent study reported E1E2 as a highly fragile complex, 
with 92 per cent of alanine mutations introduced independently 
at each residue severely impacting viral infectivity (Pfaff-Kilgore 
et al. 2022). The strong compensatory interactions identified in our 
analysis indicate a potential mechanism by which E1 and E2, the 
most variable HCV proteins, may make multiple mutations while 
maintaining viral fitness.

We further quantified whether the strongly coupled residues 
(those associated with top 300 pairs of inter-protein couplings) 
were enriched in any known functional region of E1 and E2 pro-
teins (see Section 5 for details). Our findings indicate that although 
no specific region of E1 exhibited statistically significant enrich-
ment with the strongly coupled residues, there was a notable sta-
tistical enrichment of such residues within hypervariable Region 1 
(HVR1) and hypervariable Region 2 (HVR2) of the E2 protein (Sup-
plementary Table S1), thereby suggesting that these E2 regions 
may be involved in interactions with E1. This is also consistent 
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Figure 3. Comparison of the E1E2 fitness prediction by the JM and IM. Normalized energies computed from the inferred JM correlate strongly with the 
experimental fitness measurements. Conversely, the inferred IM provided a much lower correlation (inset). The legend shows the references from 
which fitness/infectivity measurements were compiled (Goffard et al. 2005; Drummer et al. 2006; Ciczora et al. 2007; Falkowska et al. 2007; 
Gal-Tanamy et al. 2008; Rothwangl et al. 2008; Dowd et al. 2009; Keck et al. 2009; Guan et al. 2012; Keck et al. 2012; Douam et al. 2014; Urbanowicz 
et al. 2015; Pierce et al. 2016; El-Diwany et al. 2017; Gopal et al. 2017; Pfaff-Kilgore et al. 2022).

with the literature that has shown that HVR2 is essential for 
the formation of the E1E2 heterodimer (McCaffrey et al. 2011), 
and epistatic interactions exist between E1 and HVR1 of E2 
(Vela´zquez-Moctezuma et al. 2019). As the name of these regions 
suggests, these two regions are highly variable and are known 
to modulate viral escape from neutralizing antibodies (Alham-
mad et al. 2015). Hence, the potential compensatory interactions 
between E1 and these two E2 regions may contribute to viral 
immune evasion. Structurally, these interacting residues, however, 
do not demonstrate spatial proximity (Supplementary Fig. S3), 
suggesting that such interactions may occur through allosteric 
mechanisms, or alternatively, they may come into contact within 
the native trimer structure of E1E2 (Falson et al. 2015).

2.4. Evolutionary simulations suggest that the E1 
protein contributes to escape from E2-specific 
antibody responses
To gain a deeper understanding of the impact of E1 on viral escape 
dynamics from E2-specific antibody responses, we quantified and 
compared the average time it takes for E2 residues to escape 
with and without the influence of E1. To achieve this, we uti-
lized an in-host evolutionary model that takes into account the 
stochastic dynamics of viral evolution within the host includ-
ing virus–host interactions, virus–virus competition, and escape 
pathways that the virus may employ to evade immune pressure. 
Similar models have been used previously for simulating in-host 
viral evolution for HIV (Barton et al. 2016) and HCV (Quadeer, 
Louie, and Mckay 2019; Zhang, Quadeer, and McKay 2022). Here, 
we incorporated the inferred JM into a population genetics model, 
similar to the well-established Wright–Fisher model (Ewens 2004). 
By doing so, we were able to predict the average number of gener-
ations, referred to as ‘escape time’, for each E2 residue to escape 
selective pressure (see Section 5 for more details). To determine 

escape times of these residues without the influence of the E1 pro-
tein, we utilized the E2-only model developed in our previous work
(Quadeer, Louie, and Mckay 2019).

Previously, the E2-only model has been shown to be capable 
of predicting known escape mutations from multiple E2-specific 
HmAbs (Kato et al. 1993; Keck et al. 2008; Keck et al. 2009; Morin 
et al. 2012; Bailey et al. 2015; Keck et al. 2016) (listed in Supplemen-
tary Table S2), where these mutations were shown to be associated 
with lower escape times compared to mutations at other residues 
(Quadeer, Louie, and Mckay 2019) as they enable the virus to evade 
the associated antibody pressure. We found that this was also true 
for the inferred JM (P = 9.9 × 10−24; Fig. 5A). We also analyzed escape 
times of mutations in buried and exposed residues within E1E2 
structures (Section 5). Buried residues, located in the protein core, 
were expected to have higher escape times compared to exposed 
ones, and our analysis confirmed this prediction (P < 10−10; Sup-
plementary Fig. S4). These results suggest the JM to be capable 
of distinguishing E2 residues associated with low and high escape 
times.

We employed the JM to pinpoint E1E2 regions that appear most 
susceptible to antibody targeting. This was done by overlaying the 
mutation-associated escape times onto each E1E2 residue, repre-
sented as a heat map on the experimentally resolved (Torrents 
de la Peña et al. 2022) (partial) and AlphaFold-predicted (Mitchell 
et al. 2019; Mirdita et al. 2022) (complete) E1E2 structure (Fig. 5B). 
Regions representing CD81 binding sites, HVR1, and HVR2 are 
also depicted on the structures. An appreciable number of red-
colored E1E2 residues on this map indicated a high incidence of 
surface mutations associated with high escape times. This find-
ing suggests the feasibility of rationally engineering antibodies 
(Sormanni, Aprile, and Vendruscolo 2015) that specifically target 
these exposed, difficult-to-escape residues, potentially enabling a 
potent immune response.
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Figure 4. Strong E1E2 inter-protein interactions are largely 
compensatory. Each pair of mutations between E1 and E2 proteins was 
ranked by the absolute values of Jij from Equation (1) and top 300 pairs 
are plotted here. Compensatory interactions (negative values of Jij)  and 
antagonistic interactions (positive values of Jij) are highlighted in 
different colors. The outer segments of the circle represent E1 (shown in 
black, encompassing residues 192–383) and E2 (shown in gray, 
encompassing residues 384–746) proteins. HVR1 and HVR2, which we 
found to be statistically enriched with strongly coupled residues, are 
shown as red segments.

Further comparing the escape times of E2 residues inferred 
from these two models, we found that the escape times of 
residues associated with escape mutations inferred from the JM 
were marginally significantly lower (P = 0.077; Fig. 5C, left panel) 
than those from the E2-only model. In contrast, there was not 
much difference between the escape times of the remaining E2 
residues (P = 0.525; Fig. 5C, right panel). This suggests that the 
E1 protein may assist in viral escape from E2-specific antibod-
ies. In addition, we found that the strongly coupled inter-protein 
residues (Fig. 4) were statistically significantly enriched in escape 
mutations (P = 5.4 × 10−19; Fig. 5D). This further corroborates the 
potential role of E1 in mediating viral escape from neutralizing 
antibodies.

2.5. For multiple E2-specific HmAbs, E1 is 
predicted to provide accelerated escape dynamics
Previously, we utilized the E2-only model to assess the efficacy 
of each known E2-specific HmAb based on the minimum escape 
time predicted for its binding residues (Quadeer, Louie, and Mckay 
2019; Zhang, Quadeer, and McKay 2022) (see Section 5 for details). 
Our aforementioned analysis suggests that E1 may potentially 
assist E2 in antibody evasion, and hence, we further studied how 
this would impact the efficacy of known HmAbs predicted by 
the JM in comparison to the E2-only model. We first employed a 
binary classifier (Quadeer, Louie, and Mckay 2019) to determine 
an optimal cut-off value (𝜁 = 96 generations) for identifying escape-
resistant residues based on the JM. This binary classifier utilized 
known escape mutations (listed in Supplementary Table S2) as 
true positives and the remaining E1E2 residues as true negatives, 
as detailed in Section 5. We subsequently evaluated each antibody 
by comparing the minimum escape time predicted for its bind-
ing residues with the corresponding optimal cut-off value 𝜁 for 

each model. For this analysis, we focused on thirty-two HmAbs for 
which binding residues have been determined using global alanine 
scanning experiments (Pierce et al. 2016; Gopal et al. 2017; Keck 
et al. 2019).

Based on our previous predictions using the E2-only model, 
we had identified twenty-one E2-specific HmAbs that appear rel-
atively easy for the virus to escape. These predictions were also 
consistent with the JM (Fig. 6). Among these HmAbs, studies have 
shown that AR1A, AR1B, AR2A, CBH-4B, CBH-4D, CBH-4G, CBH-
20, CBH-21, and CBH-22 were non-neutralizing or isolate-specific 
(Keck et al. 2005; Law et al. 2008; Kong et al. 2016), which further 
supports our predictions for both models. The remaining eight 
E2-specific HmAbs (212.15, 212.25, CBH-7, CBH-23, HC-1, HC33-1, 
HC84-20 and HCV1) were predicted to be escape resistant by the 
E2-only model. However, only four (212.15 and 212.25, HC33-1, and 
HCV1) among these were predicted to be escape resistant by the 
JM (Fig. 6). The predictions of the JM for these HmAbs align well 
with literature reports. For instance, HmAbs 212.25 and 212.15, 
isolated from patients who had spontaneously cleared HCV, were 
found to be cross-neutralizing (Keck et al. 2019). HC33-1 and HCV1 
have also been reported as potentially escape-resistant broadly 
neutralizing antibodies in multiple studies (Broering et al. 2009; 
Kong et al. 2012; Keck et al. 2014; Pierce et al. 2016). On the other 
hand, of the four HmAbs (HC84-20, CBH-23, HC-1, and CBH-7) pre-
dicted to be escape resistant by the E2-only model but not by the 
JM, studies have observed escape for strains isolated from patients 
who underwent liver transplantation for HmAbs CBH-23 and HC-
1, while HmAb CBH-7 was obtained from a patient with chronic 
HCV infection (Fofana et al. 2012; Keck et al. 2019). These find-
ings suggest that E1 may play a role in facilitating HCV escape 
from these antibodies. Mapping the epitopes of antibodies on the 
E1E2 structure suggests the possibility of allosteric interactions 
between E1 and E2 residues contributing to escape (Supplemen-
tary Fig. S5). Notably, the JM enabled identification of one HmAb, 
IGH526, that targets the E1 protein and may be escape resistant. 
Multiple studies have reported that IGH526 is cross-neutralizing 
and can target various HCV isolates from different genotypes 
(Meunier et al. 2008; Kong et al. 2015).

3. Discussion
E1 and E2 are envelope proteins of HCV that form non-covalent 
heterodimers. While E2 is the major target of HmAbs and a 
promising vaccine candidate, E1 is also important for HCV entry 
and assembly, and it interacts with E2. Comparing a JM that takes 
into account E1E2 interactions with an IM that does not, we have 
determined that these interactions are important in mediating 
virus infectivity and immune escape. The top E1E2 inter-protein 
interactions are compensatory and enriched in HVR1 and HVR2 of 
E2. Further using in-host evolutionary modeling, our analysis sug-
gests that E1 may facilitate HCV in escaping E2-specific antibody 
responses. We have identified potentially escape-resistant HmAbs 
against the E1E2 complex, which could aid in the development of 
a robust prophylactic vaccine against HCV.

By comparing the correlation between in vitro infectivity mea-
surements and predictions of the JM and the IM (Fig. 3), our study 
highlighted the importance of E1E2 inter-protein interactions in 
mediating viral fitness. This was further reinforced by compar-
ing the predictions of the JM with those of a site-independent 
E1E2 fitness landscape model (see Section 5 for details), which 
showed that the correlation between the JM predictions and 
in vitro fitness measurements was much higher than that of 
the site-independent model (r = − 0.54; Supplementary Fig. S6). 
These findings are consistent with previous studies that have
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Figure 5. Role of E1 in facilitating viral escape from E2-specific HmAbs. (A) Distribution of escape times of E2 residues using the inferred JM. Residues 
were divided into two categories: those with known escape mutations from E2-specific HmAbs (listed in Supplementary Table S2) and the remaining 
E2 residues. P-value was calculated using the one-sided Mann–Whitney test, as residues with known escape mutations from E2-specific HmAbs would 
be expected to have lower escape times compared to the remaining residues. (B) Superimposing relative escape times on the E1E2 crystal structures 
(top panel: PDB ID: 7T6X (Torrents de la Peña et al. 2022); bottom panel: structure predicted by AlphaFold (Mitchell et al. 2019; Mirdita et al. 2022)). 
Residues incurring high escape times upon mutation (large values of ti) are shown in red and those associated with low escape times (small values of 
ti)) are shown in blue. Locations of HVR1-, HVR2-, and CD81-binding sites (Pierce et al. 2016) are shown by dashed lines on each crystal structure. Note 
that HVR1 is not included in the experimentally resolved structure (PDB ID: 7T6X). (C) Comparison of escape times of E2 residues inferred from the JM 
and the E2-only model for the known E2 escape mutations (left panel) and the remaining E2 residues (right panel). P-values were calculated using the 
one-sided Mann–Whitney test. This choice was motivated by the expectation that E1 residues, which potentially aid the escape of E2 residues, would 
lead to lower escape times for the latter in the JM. (D) Circos plot distinguishing the interactions between strongly coupled residues (Fig. 4) involving 
escape mutations and the remaining residues. The reported P-value measures the probability of observing by a random chance at least the observed 
number of E2 escape mutations among strongly coupled residues (see Section 5 for details).

emphasized the importance of considering interactions when 
inferring protein fitness landscapes (Ferguson et al. 2013; Hart 
and Ferguson 2015; Barton et al. 2016; Flynn et al. 2017; Louie 
et al. 2018; Quadeer, Louie, and Mckay 2019; Quadeer et al. 2020; 
Sohail et al. 2021; Zhang, Quadeer, and McKay 2022; Zhang, 
Quadeer, and McKay 2023) and for identifying networks of residues 
that play crucial roles in the protein structure and function of 
viruses (Dahirel et al. 2011; Quadeer et al. 2014; Quadeer, Morales-
Jimenez, and McKay 2018; Ahmed et al. 2019; Gaiha et al. 2019).

A recent experimental study has shown that E1E2 is a frag-
ile protein complex wherein even a single alanine mutation at 
92 per cent of positions severely impacts the infectivity of the 
virus (Pfaff-Kilgore et al. 2022). Therefore, our finding that 70 per 

cent of the top 300 pairs of mutations (ranked by absolute val-
ues of Jij) between E1 and E2 are compensatory suggests that 
these interactions may play a significant role in mediating viral 
fitness. To further investigate this experimentally, it would be 
helpful to conduct assays that quantify the change in replica-
tive fitness by site-directed mutagenesis of the pairs of mutations 
identified to be associated with strong compensatory interac-
tions (e.g. top 10) individually and simultaneously (Supplementary
Data 1).

Comparing the JM and the E2-only model, we found ten 
residues that were predicted to be escape resistant by the E2-only 
model but easy to escape according to the JM. Interestingly, four 
of these (residues 424, 437, 537, and 538) are known antibody 
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Figure 6. Evaluation of known HmAbs using the escape times inferred from the JM and the E2-only model. For each HmAb, escape time associated 
with all binding residues was predicted using both models. Each circle in the figure represents the minimum escape time associated with the binding 
residues of each HmAb predicted by the JM (x-axis) and the E2-only model (y-axis). Global alanine scanning mutagenesis (Pierce et al. 2016; Gopal et al. 
2017; Keck et al. 2019) was used to determine the binding residues of each HmAb, where each residue of the wild-type sequence was replaced by 
alanine (or glycine/serine if the residue in the wild-type was alanine). We defined binding residues of each of these HmAbs as residues with relative 
binding (the fraction of the mutant sequence’s binding compared to the wild-type sequence) less than or equal to 20 per cent. The twenty one HmAbs 
predicted to be easy to escape by both models are 212.1.1, 212.10, A27, AR1A, AR1B, AR2A, AR3A, AR3B, AR3C, AR3D, CBH-4B, CBH-4D, CBH-4G, CBH-5, 
CBH-20, CBH-21, CBH-22, HC33-4, HC-11, HC84-24, and HC84-26. The HmAbs having binding residues in E1 are plotted along the x-axis, since the 
E2-only model could not be used to predict their escape time. The dashed line denotes the optimal cut-off value 𝜁 for each model (see Section 5 for 
details).

binding residues, which suggests that the E1 protein may inter-
act with these residues during antibody evasion. This motivates 
experimental studies for investigating the interactions between 
these four residues in the E2 and the E1 protein. One approach 
could involve longitudinal experiments (Alhammad et al. 2015), 
where the virus is allowed to infect cells in the presence of anti-
bodies that specifically target these four residues, and changes in 
these residues as well as the E1 protein are monitored over time. 
By doing so, it could be determined if mutations arise at these 
residues in response to antibody pressure and if simultaneous 
mutations are also observed in the E1 protein. This would pro-
vide important insights into the mechanisms by which the virus 
evolves to evade immune responses (Frumento, Flyak, and Bailey 
2021), which could ultimately inform the design of an effective 
vaccine against HCV.

By applying the JM and the E2-only model to evaluate the effi-
cacy of known HmAbs, we identified twenty-five HmAbs with 
consistent predictions for both models (Fig. 6). Among these, four 

HmAbs were predicted to be escape resistant, while the other 
twenty-one HmAbs were not. This motivates investigating the 
differences in escape dynamics (Augestad et al. 2020) between 
these two sets of HmAbs. For instance, experimentally quanti-
fying the average time (number of generations) it takes for the 
virus to escape from HmAbs 212.15, 212.25, HC33-1, or HCV1 
(escape-resistant HmAbs) in comparison to HmAbs AR3A, AR3C, or 
AR3D (non-escape-resistant HmAbs) would be a helpful follow-up
study.

Four HmAbs (HC-1, CBH-23, CBH-7, and HC84-20) were asso-
ciated with different predictions based on the JM compared to 
the E2-only model (Fig. 6). We found that the different predic-
tions for these HmAbs were due to the differences in escape times 
of two specific binding residues 437 and 537 by these two mod-
els, which are shared by these HmAbs. Intriguingly, these two 
residues are also CD81-binding residues (Ströh, Nagarathinam, 
and Krey 2018). Experiments to study the interactions between E1- 
and CD81-binding residues may be beneficial for discovering their 
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potential roles in compensating viral infectivity or mediating viral
entry.

4. Limitations of the study
Our study has several limitations. First, our investigation relied 
on a computational model (JM) to reveal that E1 and E2 interac-
tions are predominantly compensatory. However, the interactions 
identified by our model mostly occurred within regions known for 
their high variability, namely, HVR1 and HVR2. This observation 
could be attributed to the inherent variability of these regions, 
making them more prone to detection by our model. Therefore, 
conducting additional experimental studies involving the muta-
tion of residues within these regions, as well as the E1 residues 
predicted to interact with them, would be valuable for validat-
ing this hypothesis. Second, our in-host evolutionary modeling 
suggests a role for E1 in facilitating viral escape from E2-specific 
antibodies. However, the statistical significance of these results 
was only marginal (Fig. 5C). Therefore, conducting experiments 
to more thoroughly investigate the impact of E1 on viral escape 
from E2-specific antibodies would be beneficial in order to obtain 
more conclusive evidence. Third, we focused solely on studying 
E1E2 interactions within the context of HCV Subtype 1a. To assess 
the generalizability of our findings, it would be valuable to perform 
similar analyses using data from other HCV genotypes or sub-
types. However, the limited availability of E1E2 sequence data for 
these other subtypes poses a challenge for accurate model infer-
ence. We recognize the significance of exploring this aspect further 
in future studies.

5. Methods
5.1. Inference of computational models for the 
E1E2 protein
To explore the role of E1E2 inter-protein interactions, we con-
sidered two types of computational models for the E1E2 protein: 
One takes into account the E1E2 inter-protein interactions, named 
the JM, and the other without the E1E2 inter-protein interactions, 
named the IM.

5.1.1. JM
To infer a maximum entropy (least-biased) model for the whole 
E1E2 protein jointly, we downloaded 8,021 aligned E1 Subtype 1a 
and 6,225 aligned E2 Subtype 1a sequences from the HCV-Genes 
Linked by Underlying Evolution (GLUE) database (http://hcv.glue.
cvr.ac.uk) (Singer et al. 2018, 2019), both with genome coverage 
of ≥99 per cent. We constructed the multiple seuqence alignment 
(MSA) of the whole E1E2 protein by stitching together E1 and 
E2 sequences based on the information in their headers, yield-
ing 6,198 E1E2 sequences. We conducted a principal component 
analysis on the pair-wise similarity matrix (6198 × 6198) of the 
sequences (Strimmer and Haeseler 2009), where the (i, j)th entry of 
the similarity matrix represents the fraction of residues that are 
identical in sequences i and j, to remove any outlier sequences. 
We considered a sequence as an outlier if its corresponding value 
in the first principal component (PC) was more than three scaled 
median absolute deviations (Leys et al. 2013) from the median of 
the first PC. We also excluded 264 sequences for which patients’ 
information was not available. After these filtering procedures, 
we had M = 5,867 sequences from W = 871 patients. Moreover, we 
excluded twenty-one fully conserved E1E2 residues to improve 
the quality of the residues. Hence, the processed MSA was com-
posed of M = 5,867 sequences (listed in Supplementary Data 2) and 
N = 534 residues. We constructed a least-biased maximum entropy 

model for the E1E2 protein that can reproduce the single and 
double mutant probabilities of this processed MSA (Equation (1)).

To infer parameters (h and J) of the maximum entropy model, 
we used the GUI realization of MPF-BML (Quadeer et al. 2019), 
an efficient inference framework introduced in Louie et al. (2018). 
This software requires an MSA as input and a vector comprising 
the patient weight of each sequence included in the MSA. Patient 
weight is computed as the inverse of the number of sequences 
associated with each patient. The MPF-BML parameters used for 
inferring the model parameters (fields h and couplings J) are as 
follows: (1) L1 regularization parameters were set to 5 × 10−4 for 
both fields and couplings; (2) L2 regularization parameters were 
set to 0.05 for fields and 125 for couplings; and (3) all other 
parameters were set to their default values. The first- and second-
order statistics of the inferred JM matched well with those of the 
MSA (Fig. 1).

5.1.2. IM
The IM comprised two maximum entropy models, one for the E1 
protein and the other for the E2 protein. The maximum entropy 
models for E1 protein and E2 protein were inferred using the E1 
part and the E2 part of the E1E2 processed MSA, respectively. 
Specifically, the MSA of both E1 and E2 consisted of M = 5,867 
sequences from W = 871 patients, where each sequence contains 
N = 187 residues (five fully conserved ones were excluded) for E1 
and N = 347 residues (sixteen fully conserved ones were excluded) 
for E2. The MSA and the patient weights were further set as the 
input of the MPF-BML software using the same parameters as the 
JM except that both L1 and L2 regularization parameters were set 
to 50 for couplings for E1 and 15 for E2 and 5 × 10−4 for fields for 
both E1 and E2. Both the statistics of the inferred E1-only model 
and the E2-only model lined up well with those of the respective 
MSAs (Supplementary Fig. S1). The final IM was a linear combina-
tion of these two models, where the energy of a full E1E2 sequence
x = [xE1, xE2] is given by 

E (x) = E (xE1) + E (xE2) . (3)

Here, E(xE1) and E(xE2) represent the energy of the E1 part xE1

and E2 part xE2 of sequence x calculated from each E1-only or E2-
only model according to Equation (1).

As we had inferred a maximum entropy E2-only model in 
a previous study (Quadeer, Louie, and Mckay 2019), we further 
investigated if our previous E2-only model (inferred from 3,363 
sequences of E2 available at that time) was capable of capturing 
the statistical variations in the E2 MSA we curated in this study 
(5,867 sequences). Our results support that this is indeed the case 
(Supplementary Fig. S7), suggesting that both these E2-only mod-
els are equally representative of the variations in the E2 protein 
sequence data. In addition, the correlation of both models with in 
vitro infectivity measurements was also similar, suggesting that 
both E2-only models are also equally good representatives of the 
E2 fitness landscape (Supplementary Fig. S8).

5.2. Calculation of the FCS captured by each 
model
FCS of the E1E2 protein complex captured by a model is given by 
Imodel/I. Here, I reflects the overall strength of correlations in the 
protein complex (Mora et al. 2010), quantified by the difference 
between the site-independent model entropy (Sind) and the true 
entropy of the protein complex (Strue), which disregard and include 
all correlations among sites, respectively. In contrast, Imodel repre-
sents the strength of correlations captured by a model, calculated 

http://hcv.glue.cvr.ac.uk
http://hcv.glue.cvr.ac.uk
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by the difference between the site-independent model entropy 
(Sind) and the inferred model entropy (Smodel). Below, we describe 
how we calculated these different entropies.

Sind, the entropy of site-independent model, was computed by 
considering amino acids at each E1E2 residue independently with 
the observed frequencies, which is given by 

Sind = ∑
a∈Ω

N

∑
i=1

fi (a) lnfi (a) , (4)

where Ω = {A,R,… ,V,−} (the 20 amino acids and the gap).
Strue was estimated using the procedure described in Mora et al. 

(2010) and Strong et al. (1998) that involves incrementally sub-
sampling the data and measuring its entropy. Specifically, we first 
randomly chose M sequences and calculated the ‘naive estimate’ 
of the entropy Snaive(M) through 

Snaive(M) = ∑
x∈Msequences

−f (x) ln f (x), M = 500,1000, ... (5)

where f (x) is the frequency of sequence x. We repeated this pro-
cedure 100 times with different random seeds for M sequences 
(M = 500, 1000,…) and took the mean of Snaive(M), denoted by 
⟨Snaive(M)⟩, over these iterations for each given M. As shown in 
Strong et al. (1998), the naive estimate of the entropy can be well 
fit by 

⟨Snaive (M)⟩ = Strue +
S1

M
+

S2

M2
, (6)

where S1 and S2 are constants that depend on the distribution of 
the data. They account for the bias and variance that arise due to 
finite sample size effects. When M → +∞, these correction terms 
vanish and the naive estimate converges to the true entropy Strue. 
By plotting ⟨Snaive(M)⟩ against 1

M
, we can observe the quadratic 

relationship between the two variables (Supplementary Fig. S9). 
Extrapolating the y-intercept (when 1

M
→ 0) from this plot provides 

an estimate for Strue.
We calculated Smodel, the entropy predicted by the inferred 

models, using sequence ensemble generated by a Markov Chain 
Monte Carlo (MCMC) procedure (Mora et al. 2010). For the JM, 
the sequence ensemble comprised 99,990 full E1E2 sequences, 
and the model entropy was calculated as SJM = −∑

x
f (x) ln f (x). For 

the IM, a sequence ensemble of 99,990 sequences was gener-
ated for each of the E1 and E2 proteins separately using their 
respective individual models. The entropy for IM was calculated as 
SIM = −∑

xE1

f (xE1
) ln f (xE1

) − ∑
xE2

f (xE2
) ln f (xE2

), where xE1 and xE2 are 

sequences from the E1 and E2 sequence ensemble, respectively. 
Entropies were calculated over ten instances of MCMC runs for 
both the JM and the IM. All entropies calculated earlier are shown 
in Supplementary Fig. S10.

5.3. Fitness verification
We used in vitro experimental infectivity measurements compiled 
from the literature (Goffard et al. 2005; Drummer et al. 2006; Cic-
zora et al. 2007; Falkowska et al. 2007; Gal-Tanamy et al. 2008; 
Dowd et al. 2009; Rothwangl et al. 2008; Keck et al. 2009; Keck 
et al. 2012; Douam et al. 2014; Urbanowicz et al. 2015; Pierce et al. 
2016; Pfaff-Kilgore et al. 2022) to investigate if our inferred models 
for E1E2 (JM and IM) are capable of capturing the infectivity of the 
virus. The details of the specific fitness measurements (listed in 
Supplementary Data 3) from each study are presented in Supple-
mentary Table S3. These in vitro infectivity measurements involve 
assessing the ability of HCV to infect and replicate within cultured 
cells, and energy is inversely related to prevalence according to 

our model. Thus, if we observe a negative correlation (as shown 
in Fig. 3) between model-predicted sequence energies and in vitro 
infectivity measurements of these sequences, it provides evidence 
that our inferred prevalence landscape is a reasonably good proxy 
for the fitness landscape. As experiments were conducted under 
different laboratory settings, we considered the weighted average 
of Spearman correlation coefficients from different experiments. 
This can be written as 

̄r =
∑

qexp

i=1 Qiri

∑
qexp

i=1 Qi

,

where ri is the Spearman correlation coefficient obtained from 
experiment i and Qi is the number of measurements. qexp is the 
total number of experiments.

5.4. Identification of strongly coupled residues in 
the E1 and E2 proteins
To identify strongly coupled pairs of mutations (top inter-protein 
couplings) between the E1 and E2 proteins, we constructed ‘null 
models’ to determine a threshold (Quadeer et al. 2020; Barton, Kar-
dar, and Chakraborty 2015). Specifically, to maintain the observed 
single mutant probabilities but to break any pair-wise correlations 
in the E1E2 sequence data, we first constructed a ‘null MSA’ by 
choosing amino acids at each residue with the observed frequen-
cies while keeping the same number of sequences (M = 5,867) and 
number of residues (N = 534). We then used the ‘null MSA’ to infer 
a maximum entropy model, i.e. a null model. This procedure was 
repeated ten times, and the threshold was set as the top 0.1 per-
centile of the absolute mean value of Jij of these ten null models, 
which corresponds to roughly choosing about top 300 pairs of 
inter-protein couplings in the JM. The residues that are present 
in these 300 inter-protein couplings are referred to as ‘strongly 
coupled residues’ throughout the manuscript.

5.5. Statistical significance testing
We calculated the statistical significance of the number of strongly 
coupled residues (identified by our model) in each functional 
region of E1 and E2 proteins, as well as in known escape muta-
tions (listed in Supplementary Table S2), using a P-value. For a 
given set of residues in a protein region, this P-value corresponds 
to the probability of observing at least i residues out of j strongly 
coupled residues in that region, where there are n total residues 
in that protein region out of N total residues of a protein (187 for 
E1 and 347 for E2). These can be written as 

p =
min(j,n)

∑
q=i

( j
q

)( N − j
n − q

)

( N
n

)
. (7)

A P-value less than 0.05 for a protein region indicates statisti-
cally significant enrichment of residues of that region within the 
strongly coupled E1E2 inter-protein interactions.

5.6. Visualization of interactions between 
strongly coupled pairs of mutations
To visualize the interactions between strongly coupled pairs of 
mutations, we utilized a Circos plot. The E1E2 residues were evenly 
distributed along the outer edge of the circles in Figs. 4 and 5D. 
The numbering of the residues was started at 192 (corresponding 
to the first residue of E1 according to the H77 sequence) at the 3 
o’clock position and progressed in a counter-clockwise direction. 
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Each link within the circle represents a pair of strongly coupled 
mutations (ranked by the absolute values of Jij from Equation (1)).

5.7. Prediction of complete E1E2 structures using 
AlphaFold
The experimentally resolved crystal structure of E1E2 has been 
recently published (Torrents de la Peña et al. 2022) and is available 
at Protein Data Bank (PDB) with ID: 7T6X. However, this structure 
is not complete and encompasses only E1 residues 192–256 and 
294–346 and E2 residues 420–717. Thus, we predicted the com-
plete E1E2 protein structure by AlphaFold (Mitchell et al. 2019; 
Mirdita et al. 2022) utilizing the same E1E2 sequence as 7T6X. We 
also investigated if the structure predicted by AlphaFold is accu-
rate. Based on the resolved structure (PDB ID: 7T6X), we observed 
eighty-three pairs of residues (thirty E1 residues and thirty-six 
E2 residues) that exhibit contact (<8 Angstroms distance between 
carbon-alpha atoms) between E1 and E2 proteins. For the struc-
ture predicted by AlphaFold, we identified 150 pairs of residues 
(fifty-sixE1 residues and fifty-one E2 residues) predicted to be in 
contact between E1 and E2 proteins. Notably, seventy-one pairs 
(twenty-six E1 residues and thirty-one E2 residues) were found to 
be common between the two structures, indicating a reasonable 
prediction of the E1E2 structure by AlphaFold.

5.8. Evolutionary simulation
To quantify the average time it takes for each residue in E2 to 
escape with the effect of the E1 protein, we considered a viral 
intra-host population genetics evolutionary model incorporated 
with the inferred JM similar to that in Quadeer, Louie, and Mckay 
(2019). We used the ‘escape time’ metric to represent the number 
of generations it takes on average for the virus with a mutation at 
a given residue to reach majority (frequency > 0.5) in a fixed-sized 
viral population under targeted immune pressure.

To be specific, we used a well-established Wright–Fisher model 
(Ewens 2004), where in each generation, the virus population 
undergoes mutation, selection, and random sampling steps. The 
virus population size was fixed at Me = 2000, in line with the effec-
tive HCV population size in in-host evolution (Bull et al. 2011). For 
each residue i of the E2 protein, we formed the initial viral popu-
lation with duplicates of a sequence with the consensus amino 
acid at residue i. In the mutation step, the nucleotide of each 
sequence was mutated randomly to another nucleotide at a fixed 
rate of 𝜇 = 10−4, consistent with the known HCV mutation rate 
(Cuevas et al. 2009; Sanjuan et al. 2010). In the selection step, 
each sequence was selected based on its fitness predicted from 
the inferred JM. Specifically, we calculated the survival probability 
of a virus with sequence x by 

fh,J (x) =
gh,J (x)

∑
y

gh,J (y)
, (8)

where gh,J(x) is a function that maps the predicted energy of 
sequence x smoothly to a value between 0 and 1. This function 
is defined as 

gh,J (x) = e𝛽( ̄E−Eh,J(x))

1 + e𝛽( ̄E−Eh,J(x))
, (9)

where Ē is the average energy of the current sequence popula-
tion, while 𝛽 ∼0.1 was chosen based on the slope between pre-
dicted sequence energies and in vitro infectivity measurements 
(Quadeer, Louie, and Mckay 2019). To model the immune pres-
sure at residue i, the fitness of all sequences having the consensus 
amino acid at residue i was decreased by a fixed value b, thereby 

providing a selective advantage to the sequences having a muta-
tion at this residue. The value of b was set according to the largest 
value of the field parameter in the inferred landscape. Next, the 
subsequent generation of virus population was generated through 
a standard multinomial sampling process parameterized by Me

and f h, J(x). This procedure was continued until the mutations 
at residue i reached a frequency of >0.5. The number of genera-
tions at this iteration was recorded. This process was repeated 100 
times with the same initial sequence and twenty-five distinct ini-
tial sequences as well. The final escape time ti of residue i was the 
mean number of generations over all these runs of simulation.

To perform a fair comparison between the escape times pre-
dicted by the JM and those by the E2-only model in Quadeer, Louie, 
and Mckay (2019), we set the same simulation parameters for both 
models, including the fitness penalty factor b (10), the number of 
generations (500), the number of distinct sequences forming the 
initial population (25) for each residue and the number of runs 
of simulation (100) for each distinct initial sequence. The mean 
escape time predicted for each residue by the JM and the E2-only 
model is provided in Supplementary Data 4.

5.8.1. Identification of escape-resistant residues
We ran the evolutionary simulation using the JM for all E1E2 
residues following the same procedure described earlier. We 
employed a binary classifier that utilized known escape muta-
tions (listed in Supplementary Table S2) as true positives and all 
other residues as true negatives, which achieved an area under 
curve of 0.92 (Supplementary Fig. S11a). We selected the opti-
mal cut-off value of 𝜁 ∼96 for determining whether a residue in 
the E1E2 protein is relatively escape resistant or not based on the 
maximum F1 score and Matthews correlation coefficient (Supple-
mentary Fig. S11b), commonly used metrics for evaluating binary 
classifiers.

5.9. Identification of buried and exposed residues 
from the E1E2 structure
Residues in both E1E2 structures (the experimentally resolved 
partial structure (PDB ID: 7T6X) and the AlphaFold-predicted com-
plete structure) were classified as buried or exposed based on 
the standard relative solvent accessibility (RSA) metric. Specifi-
cally, we used the get-area() function in the PyMOL software (www.
pymol.org) with a 1.4 solvent radius parameter to assign each 
residue in each structure with a solvent accessible surface area 
(SASA). We obtained the RSA values of each residue by normalizing 
the respective SASA values per residue in a Gly-X-Gly tripeptide 
construct (Miller et al. 1987). As suggested in Jardine et al. (2016), 
residues with a RSA of >0.2 were considered as exposed, while the 
remaining residues were considered buried.

5.10. Evaluation of the efficacy of known HmAbs
To evaluate the efficacy of known HmAbs based on the escape 
times obtained from the JM or the E2-only model, we adopted the 
following criteria. We compared the minimum escape time tmin

e

predicted for a HmAb’s binding residues (Pierce et al. 2016; Gopal 
et al. 2017; Keck et al. 2019) with the cut-off value (𝜁) for each 
model. If tmin

e  of a HmAb was greater than 𝜁 for a model, that HmAb 
was characterized as relatively escape resistant by that model and 
vice versa.

5.11. Site-independent model
In order to compare the JM with a model that ignores all interac-
tions between residues, we defined a site-independent E1E2 fitness 
landscape model that is characterized solely by the ‘fields’ h as 

https://www.pymol.org
https://www.pymol.org
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follows: 

hi (a) = ln
1 − fi (a)

fi (a)
, i = 1,2,… ,N, (10)

where fi(a) is the frequency of observing amino acid a at
residue i.

Data availability
All data used in this work are publicly available. Top 300 pairs of 
inter-protein couplings obtained from the JM are listed in Supple-
mentary Data 1. Accession numbers of E1E2 sequences used for 
inferring the JM and the IM are listed in Supplementary Data 2. The 
E1E2 infectivity measurements, used for correlating with predic-
tions obtained from the inferred JM and IM, are included in Supple-
mentary Data 3. The mean escape time predicted for each residue 
by the JM and E2-only model is provided in Supplementary Data 4. 
The GUI-based software implementation of the MPF-BML method 
[22], used for inferring the fitness landscape model, is available at 
https://github.com/ahmedaq/MPF-BML-GUI [21]. Data and scripts 
for reproducing the results of this manuscript are available at 
https://github.com/hangzhangust/HCVE1E2. Any additional infor-
mation related to the data reported in this paper is available from 
the lead contact upon request.

Supplementary data
Supplementary data is available at Virus Evolution online.

Acknowledgements
H.Z. and A.A.Q. were supported by the Hong Kong Research 
Grants Council (grant numbers 16204519 and 16204121). A.A.Q. 
and M.R.M. were supported by the Australian Research Coun-
cil through Discovery Project (DP 230102850). A.A.Q., R.A.B., and 
M.R.M. were supported by Australia’s National Health and Med-
ical Research Council (NHMRC) through Ideas project (2020192). 
M.R.M. is the recipient of an Australian Research Council Future 
Fellowship (project number FT200100928). R.A.B. is a fellow funded 
by NHMRC.

Conflict of interest: The authors declare no conflict of interest.

References
Ahmed, S. F. et al. (2019) ‘Sub-dominant Principal Components 

Inform New Vaccine Targets for HIV Gag’, Bioinformatics, 35: 
3884–9.

Alhammad, Y. et al. (2015) ‘Monoclonal Antibodies Directed toward 
the Hepatitis C Virus Glycoprotein E2 Detect Antigenic Differences 
Modulated by the N-terminal Hypervariable Region 1 (HVR1), 
HVR2, and Intergenotypic Variable Region’, Journal of Virology, 89: 
12245–61.

Alhammad, Y. M. O. et al. (2015) ‘Longitudinal Sequence and Func-
tional Evolution within Glycoprotein E2 in Hepatitis C Virus Geno-
type 3a Infection’, PLoS One, 10: 1–19.

Augestad, E. H. et al. (2020) ‘Global and Local Envelope Protein 
Dynamics of Hepatitis C Virus Determine Broad Antibody Sensi-
tivity’, Science Advances, 6: eabb5938.

Bailey, J. R. et al. (2015) ‘Naturally Selected Hepatitis C Virus Polymor-
phisms Confer Broad Neutralizing Antibody Resistance’, Journal of 
Clinical Investigation, 125: 437–47.

Bank, C. et al. (2014) ‘A Systematic Survey of an Intragenic Epistatic 
Landscape’, Molecular Biology and Evolution, 32: 229–38.

Bankwitz, D. et al. (2021) ‘Hepatitis C Reference Viruses Highlight 
Potent Antibody Responses and Diverse Viral Functional Interac-
tions with Neutralising Antibodies’, Gut, 70: 1734–45.

Barton, J. P. et al. (2016) ‘Relative Rate and Location of Intra-host 
HIV Evolution to Evade Cellular Immunity Are Predictable’, Nature 
Communications, 7: 11660.

Barton, J. P., Kardar, M., and Chakraborty, A. K. (2015) ‘Scaling Laws 
Describe Memories of Host-pathogen Riposte in the HIV Popula-
tion’, Proceedings of the National Academy of Sciences, 112: 1965–70.

Brazzoli, M. et al. (2005) ‘Folding and Dimerization of Hepatitis C Virus 
E1 and E2 Glycoproteins in Stably Transfected CHO Cells’, Virology, 
332: 438–53.

Broering, T. J. et al. (2009) ‘Identification and Characterization 
of Broadly Neutralizing Human Monoclonal Antibodies Directed 
against the E2 Envelope Glycoprotein of Hepatitis C Virus’, Journal 
of Virology, 83: 12 473–12 482.

Bull, R. A. et al. (2011) ‘Sequential Bottlenecks Drive Viral Evolution 
in Early Acute Hepatitis C Virus Infection’, PLoS Pathogens, 7: 1–14.

Butler, T. C. et al. (2016) ‘Identification of Drug Resistance Mutations 
in HIV from Constraints on Natural Evolution’, Physical Review E, 
93: 022412.

Cerino, A. et al. (1997) ‘Antibody Responses to the Hepatitis C Virus 
E2 Protein: Relationship to Viraemia and Prevalence in Anti-HCV 
Seronegative Subjects’, Journal of Medical Virology, 51: 1–5.

Ciczora, Y. et al. (2007) ‘Transmembrane Domains of Hepatitis C Virus 
Envelope Glycoproteins: Residues Involved in E1E2 Heterodimer-
ization and Involvement of These Domains in Virus Entry’, Journal 
of Virology, 81: 2372–81.

Cocquerel, L. et al. (2000) ‘Charged Residues in the Trans-
membrane Domains of Hepatitis C Virus Glycoproteins Play 
a Major Role in the Processing, Subcellular Localization, 
and Assembly of These Envelope Proteins’, Journal of Virology, 74:
3623–33.

Cuevas, J. M. et al. (2009) ‘Effect of Ribavirin on the Mutation Rate 
and Spectrum of Hepatitis C Virus in Vivo’, Journal of Virology, 83: 
5760–4.

Dahirel, V. et al. (2011) ‘Coordinate Linkage of HIV Evolution Reveals 
Regions of Immunological Vulnerability’, Proceedings of the National 
Academy of Sciences, 108: 11530–5.

Deleersnyder, V. et al. (1997) ‘Formation of Native Hepatitis C Virus 
Glycoprotein Complexes’, Journal of Virology, 71: 697–704.

Douam, F. et al. (2014) ‘Critical Interaction between E1 and E2 Glyco-
proteins Determines Binding and Fusion Properties of Hepatitis C 
Virus during Cell Entry’, Hepatology, 59: 776–88.

Dowd, K. A. et al. (2009) ‘Selection Pressure from Neutralizing Anti-
bodies Drives Sequence Evolution during Acute Infection with 
Hepatitis C Virus’, Gastroenterology, 136: 2377–86.

Drummer, H. E. et al. (2006) ‘A Conserved Gly436-Trp-Leu-Ala-Gly-
Leu-Phe-Tyr Motif in Hepatitis C Virus Glycoprotein E2 Is a Deter-
minant of CD81 Binding and Viral Entry’, Journal of Virology, 80: 
7844–53.

El-Diwany, R. et al. (2017) ‘Extra-epitopic Hepatitis C Virus Polymor-
phisms Confer Resistance to Broadly Neutralizing Antibodies by 
Modulating Binding to Scavenger Receptor B1’, PLoS Pathogens, 13: 
e1006235.

Ewens, W. J. (2004) Mathematical Population Genetics. Interdisciplinary 
Applied Mathematics: New York, US.

Falkowska, E. et al. (2007) ‘Hepatitis C Virus Envelope Glycoprotein 
E2 Glycans Modulate Entry, Cd81 Binding, and Neutralization’, 
Journal of Virology, 81: 8072–9.

Falson, P. et al. (2015) ‘Hepatitis C Virus Envelope Glycoprotein E1 
Forms Trimers at the Surface of the Virion’, Journal of Virology, 89: 
10333–46.

https://github.com/ahmedaq/MPF-BML-GUI
https://github.com/hangzhangust/HCVE1E2
https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/vead068#supplementary-data


12 Virus Evolution

Ferguson, A. L. et al. (2013) ‘Translating HIV Sequences into Quantita-
tive Fitness Landscapes Predicts Viral Vulnerabilities for Rational 
Immunogen Design’, Immunity, 38: 606–17.

Flynn, W. F. et al. (2017) ‘Inference of Epistatic Effects Leading to 
Entrenchment and Drug Resistance in HIV-1 Protease’, Molecular 
Biology and Evolution, 34: 1291–306.

Fofana, I. et al. (2012) ‘Mutations that Alter Use of Hepatitis C Virus 
Cell Entry Factors Mediate Escape from Neutralizing Antibodies’, 
Gastroenterology, 143: 223–33.e9.

Frumento, N., Flyak, A. I., and Bailey, J. R. (2021) ‘Mechanisms of HCV 
Resistance to Broadly Neutralizing Antibodies’, Current Opinion in 
Virology, 50: 23–9.

Gaiha, G. D. et al. (2019) ‘Structural Topology Defines Protective CD8+
T Cell Epitopes in the HIV Proteome’, Science, 364: 480–4.

Gal-Tanamy, M. et al. (2008) ‘In Vitro Selection of a Neutralization-
resistant Hepatitis C Virus Escape Mutant’, Proceedings of the 
National Academy of Sciences, 105: 19450–5.

Goffard, A. et al. (2005) ‘Role of N-linked Glycans in the Functions 
of Hepatitis C Virus Envelope Glycoproteins’, Journal of Virology, 79: 
8400–9.

Gopal, R. et al. (2017) ‘Probing the Antigenicity of Hepatitis C Virus 
Envelope Glycoprotein Complex by High-throughput Mutagene-
sis’, PLoS Pathogens, 13: e1006735.

Guan, M. et al. (2012) ‘Three Different Functional Microdomains 
in the Hepatitis C Virus Hypervariable Region 1 (HVR1) Mediate 
Entry and Immune Evasion’, Journal of Biological Chemistry, 287: 
35631–45.

Haddad, J. G. et al. (2017) ‘Identification of Novel Functions for Hepati-
tis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly’, 
Journal of Virology, 91: e00048–17.

Hart, G. R., and Ferguson, A. L. (2015) ‘Empirical Fitness Models 
for Hepatitis C Virus Immunogen Design’, Physical Biology, 12: 
066006.

Jardine, J. G. et al. (2016) ‘Minimally Mutated HIV-1 Broadly Neu-
tralizing Antibodies to Guide Reductionist Vaccine Design’, PLoS 
Pathogens, 12: 1–33.

Kato, N. et al. (1993) ‘Humoral Immune Response to Hypervariable 
Region 1 of the Putative Envelope Glycoprotein (Gp70) of Hepatitis 
C Virus’, Journal of Virology, 67: 3923–30.

Keck, Z.-Y. et al. (2014) ‘Non-random Escape Pathways from a 
Broadly Neutralizing Human Monoclonal Antibody Map to a 
Highly Conserved Region on the Hepatitis C Virus E2 Glycopro-
tein Encompassing Amino Acids 412-423’, PLoS Pathogens, 10:
1–13.

——— et al. (2016) ‘Antibody Response to Hypervariable Region 1 
Interferes with Broadly Neutralizing Antibodies to Hepatitis C 
Virus’, Journal of Virology, 90: 3112–22.

——— et al. (2009) ‘Mutations in Hepatitis C Virus E2 Located outside 
the CD81 Binding Sites Lead to Escape from Broadly Neutralizing 
Antibodies but Compromise Virus Infectivity’, Journal of Virology, 
83: 6149–60.

——— et al. (2005) ‘Analysis of a Highly Flexible Conformational 
Immunogenic Domain a in Hepatitis C Virus E2’, Journal of Virology, 
79: 13199–208.

——— et al. (2008) ‘A Point Mutation Leading to Hepatitis C 
Virus Escape from Neutralization by A Monoclonal Antibody 
to a Conserved Conformational Epitope’, Journal of Virology, 82:
6067–72.

——— et al. (2019) ‘Broadly Neutralizing Antibodies from an Individ-
ual that Naturally Cleared Multiple Hepatitis C Virus Infections 
Uncover Molecular Determinants for E2 Targeting and Vaccine 
Design’, PLoS Pathogens, 15: e1007772.

——— et al. (2011) ‘Mapping a Region of Hepatitis C Virus E2 that 
Is Responsible for Escape from Neutralizing Antibodies and a 
Core CD81-binding Region that Does Not Tolerate Neutralization 
Escape Mutations’, Journal of Virology, 85: 10451–63.

——— et al. (2012) ‘Human Monoclonal Antibodies to a Novel Cluster 
of Conformational Epitopes on HCV E2 with Resistance to Neu-
tralization Escape in a Genotype 2a Isolate’, PLoS Pathogens, 8: 
1–21.

Kong, L. et al. (2012) ‘Structural Basis of Hepatitis C Virus Neutral-
ization by Broadly Neutralizing Antibody HCV1’, Proceedings of the 
National Academy of Sciences, 109: 9499–504.

——— et al. (2015) ‘Structure of Hepatitis C Virus Envelope Glycopro-
tein E1 Antigenic Site 314-324 in Complex with Antibody IGH526’, 
Journal of Molecular Biology, 427: 2617–28.

——— et al. (2016) ‘Structural Flexibility at a Major Conserved Anti-
body Target on Hepatitis C Virus E2 Antigen’, Proceedings of the 
National Academy of Sciences, 113: 12768–73.

Law, M. et al. (2008) ‘Broadly Neutralizing Antibodies Protect against 
Hepatitis C Virus Quasispecies Challenge’, Nature Medicine, 14: 
25–7.

Leys, C. et al. (2013) ‘Detecting Outliers: Do Not Use Standard 
Deviation around the Mean, Use Absolute Deviation around the 
Median’, Journal of Experimental Social Psychology, 49: 764–6.

Li, D. et al. (2016) ‘Altered Glycosylation Patterns Increase Immuno-
genicity of a Subunit Hepatitis C Virus Vaccine, Inducing Neu-
tralizing Antibodies Which Confer Protection in Mice’, Journal of 
Virology, 90: 10486–98.

Li, Y., and Modis, Y. (2014) ‘A Novel Membrane Fusion Protein Family 
in Flaviviridae?’, Trends in Microbiology, 22: 176–82.

Louie, R. H. Y. et al. (2018) ‘Fitness Landscape of the Human Immun-
odeficiency Virus Envelope Protein that Is Targeted by Antibodies’, 
Proceedings of the National Academy of Sciences, 115: E564–73.

Mann, J. K. et al. (2014) ‘The Fitness Landscape of HIV-1 Gag: Advanced 
Modeling Approaches and Validation of Model Predictions by 
in Vitro Testing’, PLoS Computational Biology, 10: e1003776.

McCaffrey, K. et al. (2011) ‘The Variable Regions of Hepatitis C Virus 
Glycoprotein E2 Have an Essential Structural Role in Glycopro-
tein Assembly and Virion Infectivity’, Journal of General Virology, 92: 
112–21.

Meunier, J.-C. et al. (2008) ‘Isolation and Characterization of Broadly 
Neutralizing Human Monoclonal Antibodies to the E1 Glycopro-
tein of Hepatitis C Virus’, Journal of Virology, 82: 966–73.

Miller, S. et al. (1987) ‘Interior and Surface of Monomeric Proteins’, 
Journal of Molecular Biology, 196: 641–56.

Mirdita, M. et al. (2022) ‘ColabFold: Making Protein Folding Accessible 
to All’, Nature Methods, 19: 679–82.

Mitchell, A. L. et al. (2019) ‘MGnify: The Microbiome Analysis Resource 
in 2020’, Nucleic Acids Research, 48: D570–8.

Mora, T. et al. (2010) ‘Maximum Entropy Models for Antibody Diver-
sity’, Proceedings of the National Academy of Sciences, 107: 5405–10.

Morin, T. J. et al. (2012) ‘Human Monoclonal Antibody HCV1 Effec-
tively Prevents and Treats HCV Infection in Chimpanzees’, PLoS 
Pathogens, 8: e1002895.

Moustafa, R. et al. (2018) ‘Functional Study of the C-terminal Part 
of Hepatitis C Virus E1 Ectodomain’, Journal of Virology, 92: 
e00939–18.

Osburn, W. O. et al. (2014) ‘Clearance of Hepatitis C Infection Is Asso-
ciated with the Early Appearance of Broad Neutralizing Antibody 
Responses’, Hepatology, 59: 2140–51.

Pfaff-Kilgore, J. M. et al. (2022) ‘Sites of Vulnerability in HCV E1E2 
Identified by Comprehensive Functional Screening’, Cell Reports, 
39: 110859.



H. Zhang et al.  13

Pierce, B. G. et al. (2016) ‘Global Mapping of Antibody Recognition 
of the Hepatitis C Virus E2 Glycoprotein: Implications for Vac-
cine Design’, Proceedings of the National Academy of Sciences, 113: 
E6946–54.

Quadeer, A. A. et al. (2019) ‘MPF-BML: A Standalone GUI-based Pack-
age for Maximum Entropy Model Inference’, Bioinformatics, 36: 
2278–9.

Quadeer, A. A. et al. (2020) ‘Deconvolving Mutational Patterns 
of Poliovirus Outbreaks Reveals Its Intrinsic Fitness Landscape’, 
Nature Communications, 11: 377.

——— et al. (2014) ‘Statistical Linkage Analysis of Substitutions 
in Patient-derived Sequences of Genotype 1a Hepatitis C Virus 
Nonstructural Protein 3 Exposes Targets for Immunogen Design’, 
Journal of Virology, 88: 7628–44.

Quadeer, A. A., Louie, R. H. Y., and Mckay, M. R. (2019) ‘Identifying 
Immunologically-vulnerable Regions of the HCV E2 Glycoprotein 
and Broadly Neutralizing Antibodies that Target Them’, Nature 
Communications, 10: 2073.

Quadeer, A. A., Morales-Jimenez, D., and McKay, M. R. (2018) ‘Co-
evolution Networks of HIV/HCV are Modular with Direct Associ-
ation to Structure and Function’, PLoS Computational Biology, 14: 
e1006409.

Rosenthal, E. S., and Graham, C. S. (2016) ‘Price and Affordability 
of Direct-acting Antiviral Regimens for Hepatitis C Virus in the 
United States’, Infectious Agents and Cancer, 11: 24.

Rossi, C. et al. (2018) ‘Hepatitis C Virus Reinfection after Success-
ful Treatment with Direct-acting Antiviral Therapy in a Large 
Population-based Cohort’, Journal of Hepatology, 69: 1007–14.

Rothwangl, K. B. et al. (2008) ‘Dissecting the Role of Putative CD81 
Binding Regions of E2 in Mediating Hcv Entry: Putative CD81 Bind-
ing Region 1 Is Not Involved in CD81 Binding’, Virology Journal,
5: 46.

Sanjuan, R. et al. (2010) ‘Viral Mutation Rates’, Journal of Virology, 84: 
9733–48.

Singer, J. B. et al. (2018) ‘GLUE: A Flexible Software System for Virus 
Sequence Data’, BMC Bioinformatics, 19: 532.

Singer, J. et al. (2019) ‘Interpreting Viral Deep Sequencing Data with 
GLUE’, Viruses, 11: 323.

Sohail, M. S. et al. (2021) ‘MPL Resolves Genetic Linkage in Fitness 
Inference from Complex Evolutionary Histories’, Nature Biotech-
nology, 39: 472–9.

Sormanni, P., Aprile, F. A., and Vendruscolo, M. (2015) ‘Rational Design 
of Antibodies Targeting Specific Epitopes within Intrinsically Dis-
ordered Proteins’, Proceedings of the National Academy of Sciences, 
112: 9902–7.

Strimmer, K., and Haeseler, A. V. (2009) ‘Genetic Distances and 
Nucleotide Substitution Models’, in Lemey, P., Salemi, M. and

Vandamme, A.-M. (eds) The Phylogenetic Handbook: A Practical 
Approach to DNA and Protein Phylogeny, pp. 112–3. Cambridge Uni-
versity Press: Cambridge, England.

Ströh, L. J., Nagarathinam, K., and Krey, T. (2018) ‘Conformational 
Flexibility in the CD81-binding Site of the Hepatitis C Virus Glyco-
protein E2’, Frontiers in Immunology, 9: 1396.

Strong, S. P. et al. (1998) ‘Entropy and Information in Neural Spike 
Trains’, Physical Review Letters, 80: 197–200.

Tong, Y. et al. (2018) ‘Role of Hepatitis C Virus Envelope Glycopro-
tein E1 in Virus Entry and Assembly’, Frontiers in Immunology, 9:
1411.

Torrents de la Peña, A. et al. (2022) ‘Structure of the Hep-
atitis C Virus E1E2 Glycoprotein Complex’, Science, 378:
263–9.

Urbanowicz, R. A. et al. (2015) ‘A Diverse Panel of Hepatitis C Virus Gly-
coproteins for Use in Vaccine Research Reveals Extremes of Mon-
oclonal Antibody Neutralization Resistance’, Journal of Virology, 90: 
3288–301.

Velázquez-Moctezuma, R. et al. (2021) ‘Mechanisms of Hepatitis 
C Virus Escape from Vaccine-relevant Neutralizing Antibodies’, 
Vaccines, 9: 291.

——— et al. (2019) ‘Hepatitis C Virus Escape Studies of Human Anti-
body Ar3A Reveal a High Barrier to Resistance and Novel Insights 
on Viral Antibody Evasion Mechanisms’, Journal of Virology, 93: 
e01909–18.

Wahid, A. et al. (2013) ‘Disulfide Bonds in Hepatitis C Virus Gly-
coprotein E1 Control the Assembly and Entry Functions of E2 
Glycoprotein’, Journal of Virology, 87: 1605–17.

World Health Organization. (2022), Hepatitis C, Fact Sheet <https://
www.who.int/news-room/fact-sheets/detail/hepatitis-c> 
accessed 1 Nov 2022.

Wyles, D. L., and Luetkemeyer, A. F. (2017) ‘Understanding Hep-
atitis C Virus Drug Resistance: Clinical Implications for Cur-
rent and Future Regimens’, Topics in Antiviral Medicine, 25:
103–9.

Yan, Y. et al. (2019) ‘A Nanoparticle-based Hepatitis C Virus Vac-
cine with Enhanced Potency’, The Journal of Infectious Diseases, 221: 
1304–14.

Zhang, T.-H. et al. (2020) ‘Predominance of Positive Epistasis among 
Drug Resistance-associated Mutations in HIV-1 Protease’, PLoS 
Genetics, 16: 1–22.

Zhang, H., Quadeer, A. A., and McKay, M. R. (2022) ‘Evolutionary Mod-
eling Reveals Enhanced Mutational Flexibility of HCV Subtype 1b 
Compared with 1a’, iScience, 25: 103569.

Zhang, H., Quadeer, A. A, and McKay, M. R. (2023) ‘Direct-acting antivi-
ral resistance of Hepatitis C virus is promoted by epistasis’, Nat 
Commun, 14.

https://www.who.int/news-room/fact-sheets/detail/hepatitis-c
https://www.who.int/news-room/fact-sheets/detail/hepatitis-c

	HCV E1 influences the fitness landscape of E2 and may enhance escape from E2-specific antibodies
	1. Introduction
	2. Results
	2.1. Inference and statistical validation of the joint model for the E1E2 protein
	2.2. E1E2 inter-protein interactions are important in mediating viral fitness
	2.3. Majority of strong E1E2 inter-protein interactions are compensatory
	2.4. Evolutionary simulations suggest that the E1 protein contributes to escape from E2-specific antibody responses
	2.5. For multiple E2-specific HmAbs, E1 is predicted to provide accelerated escape dynamics

	3. Discussion
	4. Limitations of the study
	5. Methods
	5.1. Inference of computational models for the E1E2 protein
	5.1.1. JM
	5.1.2. IM

	5.2. Calculation of the FCS captured by each model
	5.3. Fitness verification
	5.4. Identification of strongly coupled residues in the E1 and E2 proteins
	5.5. Statistical significance testing
	5.6. Visualization of interactions between strongly coupled pairs of mutations
	5.7. Prediction of complete E1E2 structures using AlphaFold
	5.8. Evolutionary simulation
	5.8.1. Identification of escape-resistant residues

	5.9. Identification of buried and exposed residues from the E1E2 structure
	5.10. Evaluation of the efficacy of known HmAbs
	5.11. Site-independent model

	 Data availability
	Supplementary data
	Acknowledgements
	Conflict of interest:
	References


