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Abstract: Prion diseases are a group of incurable infectious terminal neurodegenerative diseases 
caused by the aggregated misfolded PrPsc in selected mammals including humans. The complex 
physical interaction between normal prion protein PrPc and infectious PrPsc causes conformational 
change from the α- helix structure of PrPc to the β-sheet structure of PrPsc, and this process is re-
peated. Increased oxidative stress is one of the factors that facilitate the conversion of PrPc to 
PrPsc. This overview presents evidence to show that increased oxidative stress and inflammation 
are involved in the progression of this disease. Evidence is given for the participation of redox-
sensitive metals Cu and Fe with PrPsc inducing oxidative stress by disturbing the homeostasis of 
these metals. The fact that some antioxidants block the toxicity of misfolded PrPc peptide supports 
the role of oxidative stress in prion disease. After exogenous infection in mice, PrPsc enters the fol-
licular dendritic cells where PrPsc replicates before neuroinvasion where they continue to replicate 
and cause inflammation leading to neurodegeneration. Therefore, reducing levels of oxidative stress 
and inflammation may decrease the rate of the progression of this disease. It may be an important 
order to reduce oxidative stress and inflammation at the same time. This may be achieved by in-
creasing the levels of antioxidant enzymes by activating the Nrf2 pathway together with simultane-
ous administration of dietary and endogenous antioxidants. It is proposed that a mixture of micro-
nutrients could enable these concurrent events thereby reducing the progression of human prion dis-
ease. 

Keywords: Oxidative stress, inflammation, apoptosis, antioxidants, misfolded proteins, spongiform encephalopathy, prion  
diseases. 

1. INTRODUCTION 

 Prion diseases are a group of rare progressive incurable 
transmissible infectious neurodegenerative diseases caused 
by aggregated misfolded β-sheet of PrPsc protein in selected 
mammals including humans. As early as 1730’s, the symp-
toms of prion disease were known as scrapie in sheep and 
goat. In 1957, a transmissible neurological disease called 
kuru, similar to Creutzfeldt-Jakob disease (CJD), was identi-
fied in the Fore tribe of Papua, New Guinea [1]. It was found 
that extracts from the autopsied brain of individuals with 
kuru when administered into chimpanzees led to similar 
brain pathology [2]. A similar cross species infectivity at-
tributed to beef consumption was found in the United King-
dom following an outbreak of “mad cow disease”. This is 
known as variant CJD (vCJD). In 1982, Dr. Stanley Prusiner 
of the University of California School of Medicine, San 
Francisco, proposed the term prion. He isolated an infective 
agent scrapie that induced neurodegeneration in the brain of 
sheep and goats [3]. A similar infectious agent was isolated  
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from the brains of victims of the genetic diseases CJD and 
Gerstmann–Sträussler–Scheinker syndrome (GSS). In 2012, 
it was suggested that neurodegenerative diseases such as 
Alzheimer’s Disease (AD) could be considered a prion dis-
ease [4]. Thus beta-sheet Aβ peptides of AD are not infec-
tious and do not cause Transmissible Spongiform Encepha-
lopathy (TSE), whereas the β-sheet of PrPsc is infectious and 
causes TSE. 
 Several studies have found that increased oxidative stress 
[5, 6] and inflammation [7-9] are associated with the pro-
gression of prion disease. In addition, an interaction between 
redox-sensitive metals [primarily copper (Cu) and iron (Fe)] 
and PrPc by altering the homeostasis of these metals may 
contribute to increased oxidative stress [10, 11]. The in-
volvement of oxidative stress in the pathogenesis of prion 
disease is further supported indirectly by reports that anti-
oxidants can reduce neurotoxicity both in cell culture and in 
animal models [12-15]. Therefore, reducing oxidative stress 
and inflammation appears to be a rational choice for slowing 
down the progression of prion diseases. 
 This review briefly describes incidence, forms, transmis-
sion, symptoms, and pathology of prion disease, and dis-
cusses factors facilitating the transition of normal prion pro-
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tein (PrPc) to infectious prion protein (PrPsc), modes of 
transport and translocation of PrPsc from the periphery to the 
brain. Evidence showing that increased oxidative stress and 
inflammation are involved in the progression of this disease 
is assembled. This includes support for the interaction of 
redox-sensitive metals Cu and Fe with PrPc and PrPsc lead-
ing to disruption of normal intracellular homeostasis of the 
metals, resulting in increased oxidative stress. This review 
proposes that in order to reduce oxidative stress and 
inflammation at the same time, it is critical to increase the 
levels of antioxidant enzymes by activating the Nrf2 
pathway, at the same time as supplementation with dietary 
antioxidant compounds. The use of a mixture of 
micronutrients that would bring these changes about is 
advocated as a possible means of reducing the rate of 
progression of human prion disease. 
2. INCIDENCE, FORMS, AND TRANSMISSION OF 
PRION DISEASES 

 The annual incidence of prion disease Creutzfelt-Jacob 
Disease (CJD) in the USA is about 1-case/million persons 
[16]. Human prion diseases include sporadic CJD (sCJD), 
the most common form (about 85% of cases) which involves 
a spontaneous mutation, and less-common inherited forms 
included, familial CJD (fCJD), Fatal Familial Insominia 
(FFI), and Gerstmann–Sträussler–Scheinker syndrome 
(GSS). Animal prion diseases include Bovine Spongiform 
Encephalopathy (BSE), scrapie of sheep, and chronic wast-
ing disease of deer and elk. These can be transmitted to hu-
mans by consumption of infected meat. Sporadic CJD results 
from spontaneous conversion of PrPc to PrPsc in some carri-
ers of a specific mutation that enhances this possiblitiy, 
rather than from PrPsc infection from external sources [17, 
18]. This transition which does not involve genetic changes 
may take place spontaneously especially with some variants 
of PrPc. Familial Creuztfeldt-Jacob Disease (fCJD) is found 
in a small population of Libyan Jews that have extensively 
interbred for centuries. The clinical and pathological features 
of fCJD in this community are similar to those observed in 
sCJD, but the incidence of this disease in this community is 
100 times higher than in general population [19]. The fCJD 
in this community is linked to the E200K mutation (substitu-
tion of glutamate for lysine at codon 200) in PRNP gene. 
Another fCJD linked to the mutation in which a substitution 
of Valine (V) for Glycine (G) at codon 114 (G114V) is 
found in a single Chinese patient [8]. Iatrogenic CJD occurs 
when the infectious agent is transmitted from person to per-
son by medical/surgical procedures such as blood transfu-
sion, and contaminated dental tools [20, 21]. The progression 
of various types of prion disease can vary in its rapidity, area 
of brain primarily affected and the nature of its clinical pro-
gression.  

3. SYMPTOMS OF PRION DISEASE 

 sCJD is characterized by rapid progressive dementia. 
Earlier symptoms include muscular incoordination, impaired 
memory, judgment, thinking, and vision. Individuals with 
CJD may suffer from insomnia, depression, or unusual sen-
sation. Pneumonia and other infections often precipitate 
death. The symptoms of vCJD are characterized by a longer 
period incubation period and by the relatively early onset of 

psychiatric symptoms, (CDC, 2017). These may include so-
cial isolation, delusional ideation, irritability/aggression, 
visual hallucinations, anxiety, and depression. Sporadic CJD 
occurs mostly in older individuals with rapid progression of 
dementia leading to death within a year, whereas variant 
vCJD is found in younger individuals with slower progres-
sion of the cognitive dysfunction [22, 23].  

4. PATHOLOGY OF PRION DISEASES 

 The pathological changes in the brain of CJD patients are 
also complex, depending upon the type of mutation in PRPN 
gene, regions of the brain, and type of PrPsc. The extent of 
vacuolation (spongiform change) and deposition of PrPsc 
differ in various regions of the brain. In the case of sCJD, the 
density of vacuolation is highest in the occipital cortex and 
cerebellum and lowest in the dentate gyrus, whereas the de-
gree of deposition of PrPsc is similar in the cortex and cere-
bellum, but they were absent in the dentate gyrus [24]. The 
clinical changes in sCJD patients consist of rapid progressive 
cognitive dysfunction, diffusion-weighted magnetic reso-
nance imaging (DWI) hyperintensity, myoclonus, periodic 
sharp-wave complexes on electroencephalogram, and aki-
netic mutism state. Pathological alterations in the brain in-
cluded spongiform changes in the gray matter, gliosis, and 
neuropil rarefaction, followed by neuronal loss. Changes in 
the levels of spongiform occur several months before gliosis 
and the emergence of symptoms. [25].  

5. TRANSLOCATION OF EXOGENOUSLY INFEC-
TED PrPsc FROM THE PERIPHERAL TISSUES TO 
THE BRAIN 

 The mechanisms of translocation of exogenously infected 
PrPsc from the peripheral tissue to the brain in humans are 
not well understood. From studies in mice, it appears that 
mononuclear phagocytes play an important role in transloca-
tion processes in prion disease. Some phagocytes may help 
PrPsc entry into lymphoid tissues where they propagate, 
whereas others may remove PrPsc by phagocytosis. The 
same study reported that an intact splenic marginal zone 
permitted the rapid delivery of PrPsc into B-lymphocyte fol-
licles where they replicated on the follicular dendritic cells 
prior to translocation to, and infection of the brain [26]. 
Other studies suggested that exogenously infected PrPsc 
enter lymphoid organs where they can replicate in the pres-
ence [27] or in the absence [28] of follicular dendritic cells 
prior to invasion of the brain.  

6. TRANSITION OF PrPc TO PrPsc AND MECHA-
NISMS OF PROLIFERATION OF PRPsc 

 Mutations in PRNP gene coding for PrPc can trigger con-
formational change of the normal α-helix structure of PrPc 
to the abnormal β-sheet structure of PrPsc. These form intra-
cellular aggregates not susceptible to proteolytic degradation 
which can lead to neurodegenerative changes. PrPsc is infec-
tious and in this, resembles bacteria and viruses [29]. How-
ever, unlike bacteria and viruses, PrPsc contains no nucleic 
acids [30, 31]. The mechanisms of transition from PrPc to 
PrPsc structure and subsequent replication of the PrPsc con-
figuration is likely to involve a complex physical interaction 
between PrPc and PrPsc at the cell surface. The newly 
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formed PrPsc structures can accumulate as intracellular ag-
gregates or at the cell surface [29]. This transition from PrPc 
to PrPsc repeated many times, leads to a chain reaction and 
an exponential increase in the number of PrPsc particles 
[32]. In the familial variant of prion disease, spontaneous 
generation of PrPsc may be due to selective migration of 
mutant PrPc to the acidic environment of the lysosome that 
facilitates the conversion of PrPc to PrPsc [33]. A substantial 
degree of conversion of PrPc to PrPsc is likely to occur in 
the endomal/lysosomal system in all prionoses. 

7. POLYMORPHISMS OF THE PrPc GENE 

 Polymorphisms in the PrPc gene strongly influence sus-
ceptibility of prion disease [34]. The PrPc allele PrPVRQ is 
present in a significant number in scrapie-infected cells, 
whereas the other allele PrPARR is found only in healthy 
cells. Two other alleles PrPARQ and PrPARH are present in 
both infected and uninfected sheep cells in similar number. 
Rov cells (derived from RK13 cell line of normal rabbit kid-
ney epithelial cells) expressing an ovine PrPc allele PRPVRQ 

are very sensitive to sheep prion transmission and replica-
tion, whereas Rov cells expressing Prpc allele PrPARR are 
resistant to prion infection [35]. 
 Polymorphism of the human PRNP gene, methionine 
(M)/valine (V) at codon129 and glutamic acid (E)/lysine (K) 
at codon 219 affect the sensitivity of host to prion disease. 
129M/M homozygotes are overexpressed in patients with 
sCJD and vCJD, while 219E/K heterozygotes are absent in 
sCJD [36]. Although 219E/K confers resistance against the 
development of sCJD, this genotype does not confer the 
same protection in acquired forms (iatrogenic CJD and 
vCJD) or genetic forms (genetic CJD and GSS) of prion dis-
ease [36]. A mutation at codon 178 (Asp178/Aspn) is associ-
ated with FFI and fCJD disease, depending upon the pres-
ence of Met or Val at codon129 respectively. Polymorphic 
forms of D178N human prion protein can exhibit enhanced 
rat of conversion from PrPc to PrPsc at acidic pH, and to 
thioflavin T-positive amyloid fibrils at neutral pH. A high 
rate of conversion to PrPsc is dependent upon the M/V 
polymorphism at 129. No such high rate of conversion is 
evident in the wild-type protein [37]. 

8. INTERACTIONS OF REDOX-LABILE METALS 
COPPER (Cu) AND IRON (Fe) WITH PrPc AND PrPsc 

 The interactions between redox-labile metals and PrPc 
and PrPsc in causing neurodegeneration are very complex. 
PrPc binds with redox-labile metals Cu and Fe and can act as 
a scavanger of free radicals [38]. However, these metals can 
lead to aggregation of PrPc [38, 39]. On the other hand, in-
teraction between these redox-sensitive metals and the ab-
normal PrPsc leads to increased oxidative stress that is a fac-
tor contributing to neurodegeneration in prion diseases [10]. 
In vitro studies suggest that PrPc facilitates normal uptake 
and metabolism of copper and iron, while PrPsc may induce 
imbalance in metal homeostasis in prion disease [40-42]. In 
an isolated system Cu2+ induced misfolding of normal PrPc 
monomers and these misfolded monomers had a much 
higher affinity for copper than the original native isoform of 
this monomer, and this promoted their oligomerization [11]. 
PrPc-derived copper-binding peptide fragments in the helical 

region catalyze the production of superoxide anion in the 
presence of monoamines which can promote oxidative stress 
[43]. Cu and Fe may remain associated with PrPsc, and 
thereby, making the complex continually redox active 
thereby furthering neurodegeneration [39]. Redox active 
metal-induced oxidative stress caused aggregation of PrPc 
that is toxic in cell culture [39]. In contrast, these metals also 
promoted degradation of PrPsc by hydroxylation and thus 
decreased its infectivity [44]. Thus increased oxidative stress 
can enhance production of toxic PrPsc as well as leading to 
its degradation.  

9. TRANSPORT OF PrPsc FROM INFECTED TO UN-
INFECTED TISSUES 

 Exosomes, membranous vesicles secreted into the ex-
tracellular spaces, may serve as shuttles for the transport of 
PrPsc from infected to uninfected tissues. The ceramide and 
Endosomal Sorting Complex Required for Transport 
(ESCRT-0) plays an important role in the biogenesis of 
exosomes; and may also play a role in the formation, release, 
and spread of PrPsc. Silencing HRS-ESCRT-0, a subunit 
hepatocyte growth factor-regulated tyrosine kinase substrate 
(HRS) of (ESCRT-0), markedly reduces the adoption of a 
PrPsc configuration. Depletion of ESCRT-1 complex subunit 
tsg101 or reduction in the levels of ceramide significantly 
decrease the release and migration of PrPsc [45, 46]. These 
results suggest that ESCRT-dependent pathways are impor-
tant in the release of PrPsc. Increased levels of PrPsc induce 
Endoplasmic Reticulum (ER) stress and lead to an activated 
Unfolded Protein Response (UPR). A major chaperone pro-
tein of the ER, GRP78/Bip, decreases ER stress levels and 
reduces apoptosis. Reduction in levels of GRP78 accelerates 
the progression of prion disease [47]. In the acquired prion 
disease, infection is initially propagated in the lymphoid tis-
sue before invading and spreading in the brain. Cell free me-
dia derived from culture of infected neuronal cells contains 
PrPsc within exosomes, and these can transport PrPsc to un-
infected cells [48]. After infection with sheep PrPsc, both 
PrPc and PrPsc are released into the extracellular environ-
ment where they are associated with exosomes [49]. Plasmi-
nogen markedly stimulates propagation of the PrPsc format 
in a dose-dependent manner by increasing the rate of genera-
tion of this transmissible agent [50].  
 The sequence of steps whereby PrPc is converted to 
(PrPsc), and migration of PrPsc to the brain, eventually lead-
ing to spongiform encephalopathy and death, is summarized 
in Fig. (1). 

10. ROLE OF OXIDATIVE STRESS IN PRION DIS-
EASE 

 Increased oxidative stress plays a central role in the ini-
tiation and progression of several neurodegenerative diseases 
which include familial, sporadic, and infectious forms of 
prion disease. Several studies suggest that oxidative events 
may be one of the important factors in conversion of normal 
prion protein (PrPc) to misfolded infective protein PrPsc.  
 More than 30 mutations in PRNP gene coding for PrPc 
protein are associated with familial prion disease [5] of 
which E200K-associated familial CJD is the most common 
[51]. Increased lipid peroxidation is one of the earliest signs 
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of oxidative damage in regions of the brain infected with the 
PrPsc [6]. In patients with CJD, the levels of lipid peroxida-
tion are increased in the Cerebral Spinal Fluid (CSF) and 
plasma, while the levels of polyunsaturated fatty acids are 
decreased in the plasma. In addition, the levels of ascorbate 
are reduced in both plasma and CSF, and alpha-tocopherol 
levels decreased in the CSF. Serum levels of the antioxidant 
uric acid are also decreased in sCJD [52]. Thus, increased 
oxidative stress may play an important role in the pathogene-
sis of CJD [53].  

10.1. Oxidation of Methionine Residues in PrPc 

 Oxidation of methionine residues in PrPc may be respon-
sible for conformational change from the α-helical form of 
PrPc to beta sheets of PrPsc and this may be a factor in regu-
lating the onset and progression of familial CJD [5]. Oxida-
tion of methionine 213 (Met213) and Met 205/206 converted 
PrPc to a PrPsc [5]. Oxidation of PrPc destabilizes the 
α−helical core of PrPc (Met205, Met212, Val209, Val160 
and Tyr156), and this can facilitate the conversion of PrPc to 
PrPsc [54]. Loss of antioxidant defense systems may then 
contribute to the development and progression of prion dis-
ease [55]. In Fatal Familial Insomnia (FFI), associated with 
mutation in the D178N/129M gene, methionine oxidation 
also converts PrPc to a PrPsc [56]. Oxidation of methionine 
residues (Met 206 and Met 213) in Helix-3 appears to be an 
early biochemical defect that allows the conversion of PrPc 
to protease resistant PrPsc in familial CJD [57, 58]. Muta-
tions in the G114v and A116V genes lie in the hydrophobic 
domain of PrPc. Cells expressing these mutations when ex-
posed to PrPsc result in formation of relatively a protease 
digestible PrPsc structure that is still highly neurotoxic. 
PrPsc can be infective even when not protease-resistant [59]. 

Thus increased oxidative stress may be one of the early 
events in conversion of PrPc to PrPsc. Additional studies are 
needed to confirm a causal role for increased oxidative stress 
in the initiation and progression of prion disease. 

11. PrPsc-INDUCED INFLAMMATION IN PRION 
DISEASE 

 Increased accumulation of PrPsc causes inflammatory 
events leading to dysfunctional neurons and eventually neu-
ronal death [7]. In the PrPsc infected brain, activated micro-
glia accumulate in the vicinity of abnormal prion aggregates. 
They release inflammatory cytokines such as IL-1β that are 
likely to play an important role in the pathogenesis of prion 
disease [8]. The role of microglia in inducing inflammatory 
events within the brain in prion disease has been recently 
reviewed [60]. The distribution of PrPsc in the neurons, as-
troglia, and microglia in the brain is related to the type of the 
originating PrPsc strain. Strain 22L of PrPsc primarily ac-
cumulates in the astroglia, whereas strain ME7 is mainly 
localized in the neurons and neuropil [61]. In the preceding 
report, expression of all 90 genes that regulate neuroinflam-
mation were found to be upregulated in all three strains of 
PrPsc tested. This correlated with the activation of both as-
troglia and microglia that occurs in the early phase of the 
disease prior to the development of vascular pathology or 
clinical symptoms. Aggregated PrPsc induces inflammation 
and this is likely to contribute to spongiform degeneration of 
the brain [62]. Infection with PrPsc releases a pro-
inflammatory cytokine IL-1β by activating the inflamma-
somes that by this means participate in the progression of the 
prion disease [63]. In CJD, such increased levels of IL-1β 
contribute to the death of neurons [64]. In human prion dis-
ease, inflammation-regulated expression of the micro RNA 
miR-146 was enhanced [65, 66]. In a puzzling contrast to the 
increased induction of inflammatory genes by PrPsc in the 
mouse brain, lymphoid tissues of sheep infected with PrPsc 
exhibit reduced expression of inflammatory genes [67]. In-
creased intracellular accumulation of Ca2+ is present in the 
brain of CJD, and activation of the calpain-cathepsin axis 
occurs at the pre-clinical stage of the disease [68]. It may 
then be that excessive levels of free ionic calcium might also 
have a role in the pathogenesis of this disease. 
 A synthetic peptide homologous to the region 106-126 of 
normal PrPc exhibits many features of PrPsc including the 
ability to produce apoptosis of neurons [69]. This peptide is 
toxic to the cells expressing PrPc, but not to the cells with 
the PrPc gene knocked out [70]. PrP 106-126 also enhances 
the expression of inducible Nitric Oxide (iNOS), and the 
levels of pro-inflammatory cytokines IL-1β and TNF-alpha, 
and activated NF-kB in mouse macrophages. Inhibition of 
NF-kB blocked these effects of PrP 106-126 on markers of 
inflammation [71].  
 In microglial culture, a PrPc fragment containing amino 
acids 90-231 also causes neuropathological changes similar 
to that produced by pathogenic prion protein PrPsc. This was 
preceded by microglial activation that led to release of pros-
taglandin E2 (PGE2) and Nitric Oxide (NO), in amounts 
toxic to neurons. When added to the mesencephalic neurons 
conditioned medium from PrP 90-231 treated microglia also 
induced degeneration. Celecoxib, an inhibitor of COX 2, 

 
Fig. (1). Onset and progression of prion neurotoxicity. 
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prevented PrP 90-231-induced activation of microglia, and 
release of PGE2 and NO. However, Ketoprofen (RS)-2-(3-
benzoylphenyl)-propionic acid), a specific inhibitor of COX1 
was ineffective [72]. These results suggest that PrPsc-
induced inflammatory events make a significant contribution 
to the progression of prion disease in the brain.  
 The findings discussed above suggest that increased oxi-
dative stress and chronic inflammation may be involved in 
the initiation and progression of prion disease.  

12. MECHANISMS OF PRION NEUROTOXICITY 

 The mechanisms of prion neurotoxicity are highly com-
plex.  Studies on cell culture models showed that prion pep-
tide PrP 106-126 induces neuropathology similar to that of 
PrPsc by multiple pathways. It activates microglia that re-
lease ROS and pro-inflammatory cytokines [73].  PrP 106-
126 also increases Ca2+ uptake through voltage-sensitive 
Ca2+ channels, and this activates NMDA receptors leading to 
cell death [74].  Other mechanisms of toxicity were investi-
gated by generating the β-sheet state of oligomeric PrPsc 
from recombinant full-length hamster, human, rabbit, and 
mutated rabbit PrPc, by shaking and sonication.  These β-
sheet oligomers are toxic to primary mouse cortical neurons 
independently of the presence of PrPc in the neurons. The 
mechanisms of toxicity produced by these beta-oligomers 
involve elevation of levels of pro-apoptotic proteins such as 
Bcl2, Bax, and caspase-3 [75]. A parallel mechanism has 
been suggested in the case of the beta-amyloid of Alz-
heimer’s disease that has a beta-sheet configuration similar 
to that of PrPsc.  This is suspected to cause neuronal death 
by the generation of pro-oxidant free radicals [76-78].  It is 
likely that aggregated misfolded PrPsc protein also induces 
neuronal death by this mechanism. This is further substanti-
ated by reports, in which antioxidants prevent the progres-
sion of prion diseases in both cell culture and animals. This 
parallel between prion disease and Alzheimer’s has been 
questioned because there may be an insufficient similarity 
between the β-sheet of Aβ peptides of AD and PrPsc [79]. 
 PrPc acts as an antioxidant and loss of this activity in 
mutant PrPc may further increase the susceptibility of neu-
rons to toxic insults [80]. The protective function of PrPc is 
substantiated by the finding that PrPc slowed neurodegenera-
tion in transgenic mice expressing a pathogenic mutation of 
PrPc [81].  

13. STUDIES WITH INDIVIDUAL ANTIOXIDANTS 
AND PHYTOCHEMICALS 

 Despite significant evidence for the role of increased 
oxidative stress and inflammation in the initiation and pro-
gression of prion disease, there are some reports, both in vivo 
and ex vivo on the potential utility of individual antioxidants 
and phytochemicals in delaying the onset and progression of 
the neurodegenerative changes.  
 Members of the peroxiredoxin class of enzymes have 
antioxidant properties and Peroxiredoxin 6 (Prdx6) protects 
human neuroblastoma cells (SK-N-SH) against oxidative 
stress caused by H2O2, hydroperoxides, or peroxynitrite [12]. 
In mice infected with prion disease, the overexpression of 
the Prdx6 gene protects against oxidative damage, reduces 

severity of behavioral deficits, and diminishes progression of 
neuropathology. Such overexpression increases the survival 
time in comparison to parallel infection of mice with knock-
out of the Prdx6 gene [12].  
 Phytochemicals such as baicalein, the dried root of 
Scutellaria baicalensis (known as Huang-quin in traditional 
Chinese medicine) protect human neuroblastoma cells in 
culture against development of prion disease induced by the 
human PrPc Peptide106-126 (PrP-106-126). This peptide 
fragment induces neuropathological changes similar to those 
produced by PrPsc. The protective effect of baicalein was 
attributed to inhibition of ROS and restoration of mitochon-
drial functions [13].  
 Treatment with melatonin prevented PrP 106-126-
induced damage to human neuroblastoma cells (SH-SY5Y). 
Melatonin activates beta-catenin and this may account for 
some of its antioxidant activity. An inhibitor of beta-catenin 
blocked the protective effect of melatonin [82].  
 Resveratrol has both antioxidant and anti-inflammatory 
activity. Treatment of neuronal cells with resveratrol attenu-
ates PrP 106-126 induced cell death by activating autophagy 
that prevents mitochondrial dysfunction by inhibiting trans-
location of pro-apoptotic protein Bax to the mitochondria 
and cytochrome C release [83]. Resveratrol treatment also 
prevents PrP106-126-induced neuronal death by activating 
SIRT1 [84].  
 Rutin (quercetin-3-O-rutinoside) is a bioflavonoid known 
to possess antioxidant and anti-inflammatory activity. 
Treatment of dopaminergic neurons with rutin prevents 
PrP106-126-induced neuronal death by increasing the pro-
duction of neurotropic factors and inhibiting activation of 
apoptotic pathways [85].  
 An extract of pomegranate seed oil in nanodroplet form 
that exhibits antioxidant activity delayed the manifestation of 
prion disease when administered to an asymptomatic genetic 
mouse model of prion disease [14]. This oil is rich in antho-
cyanins, phytosterols and ω-5 fatty acids but the contribution 
of each individual constituent was not evaluated. 
 Treatment of neuronal PC12 cells in culture with toxic 
PrP 106-126 peptide decreases intracellular levels of glu-
tathione, superoxide dismutase activity, depolarizes the mi-
tochondrial membrane, and increases the activity of caspase-
3. These effects are all reduced in the presence of a synthetic 
antioxidant edaravone, 5-methyl-2-phenyl-4H-pyrazol-3-one 
[86]. 
 Epigallocatechin Gallate (EGCG) and gallocatechin 
gallate are the primary polyphenols in green tea and are anti-
oxidants. In scrapie-infected cells, treatment with EGCG 
prevents proliferation of abnormal prion configurations [87]. 
EGCG thus appears to have the potential to block the pro-
gression of prion disease.  
 Treatment of a mouse model of prion disease with a po-
tent Mn-SOD/catalase mimetic, EUK-189, a salen-
manganese complex, improves survival time and this is cor-
related with reduced oxidative and nitrosylative events and 
lessened spongiform changes [15].  
 Administration of Dimethylsulfoxide (DMSO) a solvent 
that exhibits antioxidant activity, to scrapie-infected ham-
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sters significantly prolongs the period of disease latency, and 
delays the accumulation of PrPsc-induced aggregates in the 
brain [88].  
 These examples provide indirect support for the role of 
increased oxidative stress and inflammation in the develop-
ment and progression of neurodegeneration in prion disease. 
Hence, reducing these cellular defects may reduce the rate of 
neurodegeneration caused by these diseases. This is substan-
tiated by the protective effects of various antioxidants 
against the neurotoxicity caused by PrPsc or PrPc toxic pep-
tide fragments. No studies have been performed in human 
prion diseases. However, in other neurodegenerative diseases 
such as Alzheimer’s disease and Parkinson’s disease, the use 
of single antioxidants has produced inconsistent results vary-
ing from no effects to minimal transient benefits in clinical 
outcomes, although animal and cell culture studies produce 
consistent benefits. We propose that it is essential to simul-
taneously reduce oxidative stress and inflammation in order 
to maximize the benefit of remediation. This is best achieved 
by synchronized enhancement of the levels of antioxidant 
enzymes together with administration of anti-inflammatory 
and antioxidant compounds [89, 90].  

14. POTENTIAL EXPLANATIONS FOR INCONSIS-
TENT RESULTS RESULTING FROM TREATMENT 
OF NEURODEGENERATIVE DISEASES WITH SIN-
GLE ANTIOXIDANTS  

 The reasons for individual antioxidants and phytochemi-
cals failing to produce consistent results in human neurode-
generative diseases are not known; however, some potential 
causes are listed here: (a) antioxidants show differential sub-
cellular distribution and different mechanisms of action; 
therefore, a single antioxidant cannot protect all parts of the 
cell; (b) a single antioxidant in a high internal oxidative envi-
ronment in high-risk patients is oxidized and can then itself 
act as a pro-oxidant rather than as an antioxidant; (c) the 
protects against oxidative damage by elevating antioxidant 
enzymes and dietary and endogenous antioxidants; therefore, 
they all must be elevated, (d) antioxidants neutralize free 
radicals by donating electrons to those molecules with un-
paired electron, whereas antioxidant enzymes destroy free 
radicals by catalysis, converting them to harmless molecules 
such as water and oxygen. Therefore, both of these agents 
may need to be enhanced to achieve substantial protection 
against oxidative damage; (e) the affinity of different anti-
oxidants for free radicals differs, depending upon their solu-
bility; (f) both the aqueous and lipid compartments of the 
cell need to be protected together. Water-soluble antioxi-
dants such as vitamin C and glutathione protect molecules in 
the aqueous environment of the cells, whereas lipid-soluble 
antioxidants such as vitamin A and vitamin E protect mole-
cules in the lipid compartment; (g) vitamin E is more effec-
tive in quenching free radicals in a reduced oxygenated cel-
lular environment, whereas vitamin C and alpha-tocopherol 
are more effective in a higher oxygenated environment of the 
cells [91]; (h) vitamin C is important for recycling the oxi-
dized form of alpha-tocopherol to the antioxidant form [92]; 
(i) Various antioxidants produce protective proteins by alter-
ing the expression of a distinctive suite of different microR-
NAs; [93].  For example, some antioxidants can activate 
Nrf2 by upregulating miR-200a that inhibits its target protein 

Keap1, whereas others activate Nrf2 by downregulating 
miR-21 that binds with 3’-UTR Nrf2 mRNA [94]. 
 Due to these considerations, the use of a single antioxi-
dant cannot be expected to produce optimal protection 
against all the oxidative and inflammatory processes, which 
contribute to the progression of prion disease. It is therefore 
proposed that the best means of restoring the most favorable 
intracellular state, involves using a range of dietary and en-
dogenous antioxidants additions, in concert. While oral sup-
plementation can increase the levels of antioxidants within the 
cell, elevation of the levels of antioxidant enzymes requires 
activation of specific transcription factors, especially Nrf2.  
Understanding the regulation of Nrf2 activation is thus signifi-
cant in amplifying the therapeutic concepts discussed above.	  

15. ACTIVATION OF Nrf2  

15.1. Nrf2 

 The nuclear transcriptional factor, Nrf2 (nuclear factor-
erythroid-2- related factor 2) belongs to the Cap ´N´Collar 
(CNC) family that contains a conserved basic leucine zipper 
(bZIP) transcriptional factor [95]. Under physiological con-
ditions, Nrf2 is associated with Kelch-like ECH associated 
protein 1 (Keap1), which acts as an inhibitor of Nrf2 [96]. 
Keap1 protein serves as an adaptor to link Nrf2 to the ubiq-
uitin ligase CuI-Rbx1 complex for degradation by protea-
somes and maintains the steady levels of Nrf2 in the cyto-
plasm. Nrf2-keap1 complex is primarily located in the cyto-
plasm; Keap1 acts as a sensor for ROS/electrophilic stress.  

15.2. Activation of Nrf2 During Acute Oxidative Stress 

 During acute oxidative stress, ROS activate Nrf2 which 
then dissociates itself from Keap1- CuI-Rbx1 complex and 
translocates in the nucleus where it heterodimerizes with a 
small Maf protein, binds with ARE leading to increased ex-
pression of target genes coding for several cytoprotective 
enzymes including antioxidant enzymes [97-99].  
15.3. Failure to Activate Nrf2 During Chronic Oxidative 
Stress 
 During extended chronic oxidative stress, Nrf2 becomes 
resistant to ROS [100-102], suggesting that activation of 
Nrf2 by a ROS-independent mechanism exists. This is evi-
denced by the fact that increased oxidative stress occurs de-
spite the presence of Nrf2 in prion disease. The question arises 
as to how to activate ROS-resistant Nrf2 in prion disease.  

15.4. Antioxidants and Phytochemicals Activate ROS-
Resistant Nrf2 

 Some examples are vitamin E and genistein [8], alpha-
lipoic acid [103], curcumin [104], resveratrol [105, 106], 
omega-3-fatty acids, [107, 108], glutathione [109], NAC 
[110], and coenzyme Q10 [111]. Several plant-derived phy-
tochemicals, such as epigallocatechin-3-gallate, carestol, 
kahweol, cinnamonyl-based compounds, zerumbone, lyco-
pene and carnosol [95, 112, 113], genistein [8], allicin, a 
major organosulfur compound found in garlic [71], sulforap-
hane, a organosulfur compound, found in cruciferous vege-
tables [114], and kavalactones (methysticin, kavain and yan-
gonin) [115].  
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15.5. Binding of Nrf2 with the Antioxidant Response Ele-
ments (ARE) in the Nucleus 

 An activation of Nrf2 alone is not sufficient to increase 
the levels of antioxidant enzymes. AREs are gene promoters 
that mediate the transcriptional induction of a battery of 
genes which comprise much of the chemoprotective response 
system. Nrf2 binds to and activates this promoter and thus 
increases the expression of target genes coding for a suite of 
antioxidant enzymes. The binding ability of Nrf2 to ARE 
was impaired in aged rats and this defect was restored by 
supplementation with alpha-lipoic acid [103]. The issue as to 
whether the binding ability of Nrf2 with ARE is impaired in 
prion disease is of interest but remains unknown. 

16. REDUCTION OF CHRONIC INFLAMMATION 

 Activation of Nrf2 also suppresses chronic inflammation 
[116, 117]. Many antioxidant compounds also reduce infla-
mmation [118-123] suggesting that these two adverse events 
are closely linked.  

17. PROPOSED MIXTURE OF MICRONUTRIENTS 
IN THE MANAGEMENT OF PRION DISEASE 

 Because each antioxidant exhibits differing sub-cellular 
distribution, various mechanisms of action, preferential af-
finity for diverse types of free radicals a mixture of micronu-
trients containing vitamin A, mixed carotenoids, vitamin C, 
alpha-tocopheryl acetate, a-tocopheryl succinate, vitamin 
D3, alpha-lipoic acid, n-acetyl cysteine, coenzyme Q10, L-
carnitine, omega-3-fatty acids, curcumin, resveratrol, all B-
vitamins, selenomethionine, and zinc is proposed. This mix-
ture would increase the levels of antioxidant enzymes by 
activating the Nrf2 pathway and enhancing the levels of die-
tary and endogenous antioxidant compounds, which could 
lead to simultaneously reduction in oxidative stress and 
chronic inflammation in prion disease. Many of these agents 
also activate an Nrf2 pathway that does not respond directly 
to oxidative stress. These allows them to act as an anti-
oxidant by several distinct mechanisms. 
 There are no effective strategies for delaying the progres-
sion of prion diseases. Although the use of single antioxi-
dants has protected against neutoxicity of aggregated mis-
folded prion proteins in cell culture and animal models, a 
single agent cannot elevate antioxidant status in all cell com-
partments and induce antioxidant enzymes all at the same 
time. The suggested micronutrient mixture may reduce the 
rate of progression prion disease in individuals who have 
been infected with PrPsc but have not developed the symp-
toms of the disease. This mixture of micronutrients, in com-
bination with standard care, may also be useful in decreasing 
the rate of progression of the disease. Pre-clinical and clini-
cal studies are needed to substantiate this potential role of 
such a mixture of micronutrients in reducing the rate of pro-
gression of prion disease.  

CONCLUSION 

 Prion diseases are a group of transmissible incurable pro-
gressive fatal neurodegenerative diseases. They are caused 
by an infective aggregated misfolded isoform of the cellular 
protein (PrPsc.) that induces Transmissible Spongiform En-

cephalopathy (TSE).  Studies suggest that increased oxida-
tive stress is one of the factors that initiate conversion of 
PrPc to PrPsc.  Redox-labile metals Cu and Fe bound with 
PrPsc may promote neurodegeneration by increased Fenton 
cycling leading to excessive production of free radicals.  
From the studies in mice, it appears that some phagocytes 
may help disseminate PrPsc of exogenous origin by facilitat-
ing their entry into lymphoid tissues where they propagate.  
In contrast, other types of phagocyte may remove infective 
peptides by phagocytosis. Since administration of individual 
single antioxidant produces inconsistent results varying from 
no effects to transient beneficial effects on clinical outcomes 
in other neurodegenerative diseases, a mixture of micronutri-
ents that can simultaneously reduce oxidative stress and in-
flammation in prion disease is proposed. This mixture of 
micronutrients alone or in combination with standard care 
may reduce the progression of prion disease.  
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