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Abstract
The therapeutic approach for the treatment of HIV infection is based on the highly active antiretroviral therapy (HAART), a cock-

tail of antiretroviral drugs. Notwithstanding HAART has shown different drawbacks like toxic side effects and the emergence of

viral multidrug resistance. Nanotechnology offers new tools to improve HIV drug treatment and prevention. In this scenario, gold

nanoparticles are an interesting chemical tool to design and prepare smart and efficient drug-delivery systems. Here we describe the

preparation and antiviral activity of carbohydrate-coated gold nanoparticles loaded with anti-HIV prodrug candidates. The nucleo-

side reverse transcriptase inhibitors abacavir and lamivudine have been converted to the corresponding thiol-ending ester deriva-

tives and then conjugated to ~3 nm glucose-coated gold nanoparticles by means of “thiol-for-thiol” ligand place exchange reactions.

The drugs-containing glyconanoparticles were characterized and the pH-mediated release of the drug from the nanoparticle has

been determined. The antiviral activity was tested by evaluating the replication of NL4-3 HIV in TZM-bl infected cells. The proof-

of-principle presented in this work aims to introduce gold glyconanoparticles as a new multifunctional drug-delivery system in the

therapy against HIV.

http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:chiodo.fabrizio@gmail.com
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Introduction
Acquired immune deficiency syndrome (AIDS), caused by

human immunodeficiency virus type-1 (HIV-1) [1] continues to

be a major leading pandemic disease worldwide with approxi-

mately 34 million people living with HIV [2]. Due to its incred-

ible genetic variance and the specificity for CD4+ T cells, this

virus is responsible for 800.000 deaths per year. In addition to

sexual preventions, the strategies used to inhibit viral replica-

tion in human CD4+ T cells consist in the highly active anti-

retroviral therapy (HAART) [3] and the design of a vaccine that

should protect people among all the different HIV strains [4,5].

Although great results have been obtained by the use of the

HAART regimes since 1996, there are still several problems to

solve, such as toxic side-effects of the HAART drugs and the

emergence of multidrug resistance. Nowadays the safest

prevention against sexual infection relies on physical barriers,

but recently a new type of protection based on microbicides has

started to be developed. Microbicides are a new class of chem-

ical–physical barrier in clinical development that can be directly

applied to the vagina or rectum before sexual intercourses in

order to prevent the transmission of HIV [6]. Recently, a

conventional anti-HIV drug used for HAART was explored as

potential microbicide. A gel formulation containing 1% of the

reverse transcriptase inhibitor tenofovir has shown good results

in the prevention of HIV infections of women in South Africa

[7].

One of the greatest challenges of antiretroviral and microbicide

therapy is to develop drug-delivery systems (DDSs) with high

efficacy and therapeutic selectivity [8] to overcome the draw-

backs of HAART. Nanotechnology allows the construction of

novel systems that could bring changes in this scenario. Over

the last years, different nano-constructions have been designed

as prophylactic agents against HIV. Some of these nanomate-

rials like polymeric nanoparticles, lipid nanoparticles and

nanofibers have shown the ability to improve solubility,

stability and permeability of anti-HIV drugs [9,10], but also to

reduce the viral load by the activation of latently infected CD4+

T-cells [11].

Gold nanoparticles have been explored in biomedicine as multi-

valent and multifunctional scaffolds [12,13]. Thanks to their

relative inertness and low toxicity gold nanoparticles have been

widely explored to conjugate biomolecules on their surface,

because the chemistry of their surface is easy to control [12].

The application of gold nanoparticles as a DDS is an expanding

field due to the inert properties of the gold core, their controlled

fabrication, and multifunctionality [14]. This last property

allows the design of particles simultaneously containing

multiple chemotherapeutics and targeting moieties. Few studies

have described the application of gold nanoparticles for HIV

treatment. In 2008 gold nanoparticles were used as carrier for

an anti-HIV drug [15]. An inactive derivative of the inhibitor

TAK-779 (the active part of the drug was modified to link it to

the gold surface) was multimerized on gold nanoparticles that

showed surprisingly anti-HIV activity, probably due to the

high-local concentration of the drug derivative on the gold

surface. Other inorganic nanomaterials have also been explored

as carriers for therapeutic drugs against HIV. For example,

silver nanoparticles coated with poly(vinyl)pyrrolidone were

found to be effective against different HIV-strains [16].

Aptamer-conjugated gold nanoparticles were also exploited as

effective inhibitors of viral enzymes [17].

We have previously described the usefulness of carbohydrate-

coated gold nanoparticles (GNPs) as a carrier for different

structures related to HIV envelope [18]. GNPs coated with

oligomannosides of the gp120 (manno-GNPs) were able to

inhibit the DC-SIGN-mediated HIV-1 trans-infection of human

T-cells [19] and gold glyconanoparticles coated with sulfated

ligands showed to interfere with the adhesion/fusion of HIV

during its entry [20]. Our methodology for preparing GNPs

allows the construction of particles simultaneously containing

carbohydrates, peptides and targeting molecules in a controled

way [21]. The use of biocompatible gold glyconanoparticles as

scaffolds for the antiviral drugs could bring some important

benefits such as the improvement of the solubility in water and

biological media of the drugs and the improvement of cellular

uptake due to the presence of carbohydrates on the GNPs. In

addition a local increase of the drug concentration on the gold

surface could also improve their antiviral activity. We reasoned

that the presence of multiple antiretroviral molecules on carbo-

hydrate-coated gold nanoparticles could lead to a drug-delivery

system and/or microbicides able to inhibit viral replication or to

prevent sexual infection. We have previously demonstrated that

glucose-coated gold nanoparticles are water-soluble and non-

cytotoxic to different cell lines at the tested concentrations [22].

Glucose-coated nanomaterials have been proposed as good

intracellular delivery tool and the internalization and uptake of

glucose-coated nanoparticles have been described on different

cell lines [23-26]. In addition glucose-coated gold nanoparti-

cles did not elicit any immune response in animal models

[27,28]. We thus decided to use them as a scaffold to insert anti-

retroviral drugs to construct new multivalent anti-HIV systems.

Here we describe the preparation of anti-HIV prodrug candi-

dates and their assembly on ~3 nm glucose-coated gold

nanoparticles as a potential drug-delivery system. As antiviral

drugs, the nucleoside analog reverse transcriptase inhibitors
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Figure 1: The prepared lamivudine (3TC) and abacavir (ABC) potential prodrugs and the corresponding 3TC- and ABC-GNPs prepared by ligand
place exchange (LPE) reactions. Glucose-GNPs were incubated for 22 h with 0.1 equiv of ABC or 3TC thiol-ending drug derivatives. The reaction
conditions allowed the “thiol-for-thiol” ligand exchange on the gold surface by replacing some glucose ligands on the glucose-GNPs with the prodrug
candidates.

(NRTIs) abacavir (ABC) and lamivudine (3TC) were selected.

NRTIs are drugs that compete in the cytoplasm as triphos-

phates with endogenous nucleoside substrates acting as chain

terminators in the DNA polymerisation reaction catalyzed by

HIV-1 RT [3]. Both drugs were transformed in ester deriva-

tives to prepare the GNPs. The pH-mediated release of the

drugs from the GNPs surface was evaluated and cellular experi-

ments demonstrated that abacavir and lamivudine ester deriva-

tives tailored onto the gold gluconanoparticles have an antiviral

activity similar to the free drugs.

Results and Discussion
Preparation of anti-HIV prodrug-GNPs
As a proof-of-principle for a further exploration of gold glyco-

nanoparticles as drug-delivery system, we prepared glucose-

coated gold nanoparticles and functionalized them with in clin-

ical use antiviral drugs abacavir (ABC) and lamivudine (3TC).

The drugs were functionalized at the primary hydroxy groups

with 11-mercaptoundecanoic acid to obtain the prodrug candi-

date with an easy hydrolysable ester group that allows the

release of the drug from the GNPs by enzymatic or pH medi-

ated hydrolysis. 11-Mercaptoundecanoic acid was chosen as

bifunctional aliphatic linker between the drugs and the gold

nanoparticles. Aliphatic ester prodrugs of the anti-HIV drug

zidovudine have previously shown to promote intestinal lymph

transport (a major reservoir for HIV) [29] and some alkyl and

alkyloxyalkyl esters of nucleotides or acyclic nucleoside phos-

phonates have been explored in clinical studies [30]. In order to

obtain the ester derivatives, 11-(acetylthio)undecanoic acid,

obtained from 11-bromoundecanoic acid and potassium thio-

acetate [31], was reacted with ABC and 3TC in DMF in the

presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

(EDC) and 4-dimethylaminopyridine (DMAP) to obtain the

ester derivative in ~75% yield. After purification, the protecting

group of the thiol was removed with hydrazine acetate to give

the corresponding ester prodrug candidates with a free thiol-

ending group fundamental for their gold chemo-adsorption

(Figure 1 and Supporting Information File 1).
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Figure 2: Time course release of free 3TC and ABC from the corresponding GNPs in 1 N HCl, detected by HPLC–MS measurements. Left: Release
of 3TC from 2 µg/mL 3TC-GNPs for ~150 h. Right: release of ABC from 2 µg/mL ABC–GNPs for 170 h until a stable drug concentration in the release
medium is reached. Both experiments were performed in triplicate.

Abacavir (ABC) and lamivudine (3TC) were functionalized at

the primary hydroxy groups through an ester bond that will be

cleaved by cellular esterase activity or acid conditions in the

cellular medium (or vaginal acidic pH). The primary hydroxy

group of these NRTIs is fundamental for their antiviral activity:

its intracellular enzymatic phosphorylation will form triphos-

phate derivatives that are the real chain terminators of HIV

reverse transcriptase [3].

Due to the presence of an ester group in the prepared drug

derivatives, NaBH4 could not be used as reducing agent for the

in situ preparation of these gold nanoparticles [32,33]. The

ABC- and 3TC-GNPs were then prepared by the so-called

“thiol-for-thiol” ligand place exchange (LPE) reaction [34]. The

LPE reaction methodology allows the insertion of thiol ending

ligands (the thiol-ending prodrug candidates) on pre-formed

GNPs (GNPs fully covered by a glucose conjugate [35]) by a

“thiol-for-thiol” exchange on the gold surface (Figure 1)

following a reported methodology [24]. Preformed glucose-

GNPs were incubated with 0.1 equivalents of ABC or 3TC

conjugate with respect to the glucose conjugates on the GNP.

This amount allowed the insertion of ~10% of the thiol-ending

drugs. After precipitation and washings with EtOH, the GNPs

were dissolved in a 90:10 mixture of water/DMSO to ensure a

better GNPs water-dispersion that was also used for the cellular

experiments. The GNPs dimension was evaluated by electron

microscopy (Supporting Information File 1) showing an

average gold diameter of ~3 nm. The GNPs contain around 10%

of ABC or 3TC were analysed by HPLC and mass spectrom-

etry (see next paragraph). The ester derivatives were not

detected in the EtOH washings after the GNPs precipitation (by

MALDI–MS and 1H NMR) indicating that practically all the

drug conjugates were linked on the gold surface.

Drug quantification and release of the drug
from GNPs
We studied the stability of the GNPs containing ABC or 3TC

(around 10%) in 1 N HCl at different times by liquid chroma-

tography–mass spectrometry (LC–MS, Figure 2). A solution of

drugs-GNPs (2 mg/mL) in water was treated with 1 N HCl and

1:1000 dilution aliquots (10 μL) of the GNP solutions were

injected into the chromatograph. The free drugs were quanti-

fied by mass spectrometry with an internal standard (for

detailed ion chromatograms and mass spectra see Supporting

Information File 1). In the absence of HCl, the GNPs did not

release the drugs showing no peaks in the LC–MS spectra. The

pH-mediated delivery of the drugs from the GNPs was fol-

lowed for 2–3 days until a plateau in the kinetic curve of the

drug release was reached (Figure 2). Calibration curves of the

free drugs were performed in triplicate by LC–MS (Supporting

Information File 1). The release of the drug from a 2 µg/mL

GNP dilution after 150–170 h was estimated to be around

150–200 nM from the LC–MS quantification. These experi-

ments were performed in triplicate and repeated with two

different GNP batches showing similar results. The pH-medi-

ated release confirmed the estimation of ~10% of the drug on

the gold surface and from these results the estimated amount of

drug per 1 mg of GNPs was calculated to be ~0.1 μmol (the

detailed calculation is given in Supporting Information File 1).

Cellular experiments with lamivudine (3TC)
and abacavir (ABC)-GNPs
TZM-bl cells (derived HeLa-cell immortalized cell line that

expresses high levels of CD4 and co-receptors CXCR4 and

CCR5) were incubated for 30 min with different amounts of

drug-GNPs (expressed as drug concentration, from 0.1 to

10 μM), followed by the addition of NL4-3 HIV virus encoding
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Figure 3: Cellular experiments: The two graphs show the percentage of luciferase activity decrease in the presence of increasing amounts of GNPs.
ABC-GNPs (left) show an antiviral activity with an IC50 of 8 µM. 3TC–GNPs (right) show an antiviral activity with an IC50 of 1 µM.

for luciferase used as reporter gene. The free drugs and prodrug

candidates were also tested in the same experiment. The viral

replication was followed by the luciferase activity setting 100%

of viral replication (luciferase activity) for untreated TZM-bl

cells. Figure 3 shows the decrease of viral replication (corre-

lated with the percentage of luciferase activity) of the abacavir

and lamivudine-GNPs. Free abacavir and the corresponding

ABC-GNPs showed similar IC50 values of 5 μM and 8 μM, res-

pectively (Figure 3 left and Table 1). Surprisingly, the abacavir

derivative seems to induce viral replication. With the presented

data we are not able to explain this result, but it may be due to

the amphiphilic properties of the drug derivative. Notwith-

standing, the inactive abacavir-derivative showed antiviral

activity when coupled on GNPs; a similar effect was previously

observed for an inactive derivative of TAK-779 [15]. Free

lamivudine and the corresponding GNPs showed IC50 values of

0.35 μM and 1 μM, respectively (Figure 3 right and Table 1),

while the lamivudine derivative showed an IC50 value of

0.2 μM. The antiviral activity of the free drugs and the drugs-

GNPs were in the same order of magnitude, while the control

glucose-GNPs were not able to exhibit any antiviral activity at

the tested concentrations (data not shown). In spite of the fact

that no improvement of viral replication inhibition was obtained

with respect to the free drug (probably due to the low loading of

the drugs on the GNPs) these data indicate that the antiviral

activity after conjugation is maintained and that gold glyco-

nanoparticles can be considered as a promising drug delivery

system.

After 30 min of pre-incubation with TZM-bl cells, the drug-

loaded glyconanoparticles showed an NRTi activity as the free

Table 1: Antiviral activity of tested molecules calculated as IC50 from
the cellular experiments.

Molecule tested IC50

abacavir 5 µM
abacavir derivative –a

abacavir-GNP 8 µM
lamivudine 0.35 µM
lamivudine derivative 0.2 µM
lamivudine-GNP 1 µM

aThe abacavir derivative showed the ability to induce viral replication.

drugs at similar concentration. This activity suggests that the

drug is delivered from the GNPs into the TZM-bl cells and has

been triphosphorylated to active metabolites that can compete

with the natural substrate of RT avoiding the RNA retrotran-

scription, e.g., the viral replication. Abacavir and lamivudine

(being NRTi) inhibit the HIV reverse transcriptase enzyme

competitively and act as a chain terminator in DNA synthesis.

The lack of a 3'-OH group in the nucleoside analogue (NRTi)

inhibits the formation of the 5' to 3' phosphodiester linkage

(essential for the elongation of the DNA chain) terminating the

growth of viral DNA [3].

Conclusion
The preparation and characterization of ~3 nm glucose-coated

gold nanoparticles loaded with anti-HIV abacavir and lamivu-

dine ester prodrug candidates is described. The effects of multi-

merization of the HIV drug derivatives on biocompatible and

water-dispersible glyconanomaterials have been tested. The
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drugs were released from the glyconanoparticles in acidic

conditions and were able to inhibit viral replication in cellular

assays with IC50 values (in terms of drug concentration) similar

to the free drugs (less than 10 µM). These data support the

strategy of developing a drug delivery system based on the

coupling of ester derivatives onto gold glyconanoparticles and

open the way to re-design more complex GNPs with improved

activity carrying different antiviral inhibitors at the same time.

In addition, other types of molecules able to block different

steps of the viral replication can be introduced on the GNPs

surface as previously shown with the microbicide candidates

sulfate and manno-GNPs [19,20]. The combination of the gold

glyconanoparticle properties with the advantage of multiple

presentations of drugs, opens-up the possibility for generating

multivalent nano delivery systems against HIV, combining on

the same nanoparticle scaffold different antiviral inhibitors.

Further experiments need to be performed to investigate the

molecular mechanisms of the described antiviral activity. A

cellular tracking of the GNPs could give a molecular explan-

ation of their behavior in the intracellular milieu. The described

proof-of-principle aims to a further exploration of gold glyco-

nanoparticles as a new multifunctional tool in the world of

drug-delivery system against HIV.

Experimental
General methods: All chemicals were purchased as reagent

grade from Sigma-Aldrich, except chloroauric acid (Strem

Chemicals), and were used without further purification. NMR

analyses were performed with a Bruker DRX 500 MHz spec-

trometer with a broad band inverse (BBI) probe at 25 °C.

Chemical shifts (δ) are given in ppm relative to the residual

signal of the solvent used. Coupling constants (J) are reported

in Hz. Splitting patterns are described by using the following

abbreviations: br, broad; s, singlet; d, doublet; t, triplet; q,

quartet; m, multiplet. For transmission electron microscopy

(TEM) examinations, a single drop (10 µL) of an aqueous solu-

tion (ca. 0.1 mg/mL in milli-Q water) of drugs-GNPs was

placed onto an ultrathin carbon film (<3 nm thickness)

supported by a lacey carbon film on a 400 mesh copper grid

(Ted Pella). The solution on the grid was left to dry in air for

14 hours at room temperature. TEM analysis was carried out in

a JEOL JEM-2100F-UHR, operated at 200 kV. UV–vis spectra

were carried out with a Beckman Coulter DU 800 spectrometer.

The mass spectrometry detection was carried out in positive ion

mode with electrospray ionization. The capillary and the cove

voltages were set to 100 and 30 V, respectively. The desolva-

tion gas was set to 600 L/h at 120 °C. The cone gas was set to

50 L/h and the ion source temperature at 120 °C. The instru-

ment was operated in W mode with a resolution higher than

10.000. Data were obtained in centroid mode from m/z 50 to

1000 using a acquisition rate of 1 s/scan. The extracted-ion

chromatograms for each compound were obtained with a mass

tolerance window of ±0.1 Da (m/z 230.06 for 3TC, m/z 287.16

for ABC, 244.09 for cytidine, m/z 205.1 for tryptophan). An

Acquity UPLC coupled to LCT Premier XE mass spectrometer

(Waters, Mildford, MA) was employed for the drug quantifica-

tion. The chromatographic separations were performed on a

100 × 2.1 mm Acquity BEH 1.7 µm C18 column (Waters,

Mildford, MA). The gradient elution buffers were A (water and

0.1% formic acid) and B (methanol). The column temperature

was set to 35 °C and eluted with a linear gradient consisted of

95% A over 0.5 min, 95–5% over 0.5–7 min, 5% over 7–8 min,

returned to 95% for 0.5 min and kept for a further 1.5 min

before next injection. Total run was 10 min, volume injection

5 µL and the flow rate 300 µL/mL.

Synthesis and characterization of thiol-ending prodrugs and

GNPs: The preparation and characterization of the abacavir and

lamivudine prodrug candidates and the corresponding GNPs is

described in the Supporting Information File 1.

LC–MS analysis: GNPs and calibration curve samples were

spiked with 10 µL of the appropriate internal standard solution

before the LC–MS analysis (tryptophan and cytidine at 1 µM

were used for quantification of 3TC and ABC, respectively).

Calibration curves were designed over the range of 1–200 nM

in triplicate. All the standard solutions were above the lower

limit of quantification and within a linear range of quantifica-

tion (R2 > 0.998). Peak ratios of the drug and the internal stan-

dard were calculated and the calibration curves adjusted by

fitting these ratios to the concentrations by a linear regression

method.

Cellular viral inhibition assay: The ability of lamivudine and

abacavir-GNPs to block HIV-1 infection was tested using a

luciferase reporter cell line (TZM-bl) as described in [36].

TZM-bl is a Hela cell line that stably expresses CD4, CCR5 and

CXCR4 (viral receptor and co-receptors). These cells also

contain separate integrated copies of the luciferase and β-galac-

tosidase genes under the control of the HIV-1 promoter [37-40].

Drugs, ester derivatives and GNPs were incubated with HIV-1

virus (NL4-3 strain) in triplicate for 30 min at 37 °C. The

virus–drug mixture was added (1:1 by volume) to 10,000 TZM-

bl cells per well. The plate was then placed into a humidified

chamber within a CO2 incubator at 37 °C. The luciferase

activity was measured from cell lysates when the levels were

sufficiently over the background to give reliable measurements

(at least 10 fold) using Luciferase Assay System (Promega) and

following the manufacturer’s recommendations. A virus equiva-

lent to 4 ng of p24 capsid protein (quantified by an antigen-

capture assay; Innogenetics, Belgium) of the NL4-3 strain of

HIV-1 was chosen as the lowest level of viral input sufficient to
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give a clear luciferase signal within the linear range at day 3

post-infection. Infectivity was measured in triplicate and

reported as the percentage of luciferase activity compared to the

luciferase activity corresponding to the wells with virus and no

drug. The concentration of drug required to inhibit 50% of the

viral infectivity (IC50) was determined.

Supporting Information
Supporting Information File 1
Synthesis and characterization of thiol-ending prodrugs and

GNPs; HPLC–MS chromatograms, mass spectra and drugs

calibration curves; calculation of drug-loading on GNPs.

[http://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-10-136-S1.pdf]
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