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ABSTRACT: In order to create artificial enzymatic networks
capable of increasingly complex behavior, an improved methodology
in understanding and controlling the kinetics of these networks is
needed. Here, we introduce a Bayesian analysis method allowing for
the accurate inference of enzyme kinetic parameters and determi-
nation of most likely reaction mechanisms, by combining data from
different experiments and network topologies in a single probabilistic
analysis framework. This Bayesian approach explicitly allows us to
continuously improve our parameter estimates and behavior
predictions by iteratively adding new data to our models, while
automatically taking into account uncertainties introduced by the
experimental setups or the chemical processes in general. We
demonstrate the potential of this approach by characterizing systems
of enzymes compartmentalized in beads inside flow reactors. The methods we introduce here provide a new approach to the design
of increasingly complex artificial enzymatic networks, making the design of such networks more efficient, and robust against the
accumulation of experimental errors.

■ INTRODUCTION

Enzymatic reaction networks (ERNs) play key roles in many
cellular processes, such as energy metabolism, signaling
pathways, and cell division.1−3 The fields of synthetic biology
and systems chemistry aim to understand and reproduce the
behavior of these ERNs in artificial systems.4−8 Previous work
has shown the development of small network motifs9 by
autocatalysis and delayed inhibition,10 photochemical control
of oscillations by reversible photoinhibitors,11 coupling to
DNA-based circuits,12 logic-gate responses,13 pattern-forma-
tion,14 adaptive responses to environmental perturbations,15

and coupling to dynamic environments.16 While these
networks can show complex behavior, such as oscillations
and adaptation, scaling up their size toward metabolic scales
remains a significant challenge. To construct complex, yet
functional ERNs, estimating the mechanisms and kinetics of
the enzymatic reactions in these systems is essential in order to
reliably predict the relevant experimental regimes in which a
desired functional output will be observed.17 But while the
development of artificial ERNs with more complex behavior
continues, methods are missing to not only obtain realistic
kinetic parameter estimate but also simultaneously allow for
the evaluation of the relevance and correctness of existing
kinetic models.
This lack of accurate and experimentally realistic parameter

and mechanism estimation greatly limits the efficient

exploration of more complex systems. Furthermore, while the
fitting of a model to experimental data is in principle relatively
simple, in practice numerous sources of uncertainty are
encountered, including experimental errors and unknown
inhibitory or allosteric effects. Typically, the kinetic parameters
of an enzymatic reaction are estimated from a single data set,
using least-squares regression or similar maximum likelihood
estimation methods. Although this approach is well-estab-
lished, there are multiple downsides.18 First, sources of
uncertainty must be explicitly modeled in, which would
require an exact knowledge of the influence of these
uncertainties on the final experimental results.19,20 Second,
this approach often neglects additional sources of data, either
from previous or additional experiments or from literature.
And last, estimation of enzyme kinetics is often done using
rather limited data sets, which should increase the uncertainty
of the obtained parameter values, but in practice potentially
leads to overfitting of the proposed model.21,22
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Here, we demonstrate an analysis framework based on
Bayesian methods for the inference of kinetic parameters and
comparison of reaction mechanisms of compartmentalized
enzymes in a flow reactor. Bayesian methods are probabilistic
in nature, so that any knowledge of kinetic parameters or
reaction mechanisms obtained from experimental data is
expressed in terms of probability distributions, instead of
specific values. Furthermore, they allow for the explicit
incorporation of any information previously obtained on the
system in question through the prior, from either literature or
previous experiments, resulting in a coherent framework for
combining data from different sources.23 Additionally, they are
ideally suited for estimations that contain uncertainty and a
lack of data.24 Bayesian methods have been more widely
implemented in recent years, mainly due to an increase in
available computational power and an increase in general
availability of powerful, yet accessible, algorithms. They are
used in a wide range of fields, from applications in pure
physics,25 medicine,26 and sociology27 to large-scale metab-
olomics in systems biology28 and optimized peak detection in
chromatographic methods.29 Previous research on the
applications of Bayesian methods in enzymatic networks has
mostly been attempted from a systems biology perspective,
focusing on whole-cell metabolomics,28,30,31 or focusing on
simulated data sets and evaluating the feasibility of an
alternative enzyme rate equation.32 The approach introduced
here instead focuses on experimental relevance and the
combination of multiple data sets, specifically for the
construction of encapsulated enzymes in flow, but is readily
adoptable in most experimental enzymatic reactions setups,
without requiring extensive computational expertise to employ.

■ METHODS
Bead Production. Two methods were used to immobilize

enzymes through polymerization of the enzyme into
polyacrylamide hydrogel beads. The first method consists of
enzyme-first functionalization with a 6-acrylaminohexanoic
acid succinate linker (AAH-Suc) by coupling to amino groups
of lysine using NHS chemistry, followed by the production of
hydrogel beads using droplet-based microfluidics by UV-
polymerizing water-in-oil droplets containing the function-
alized enzyme, acrylamide, N,N′-methylenebis(acrylamide),
and a photoinitiator yielding monodisperse polyacrylamide-
enzyme beads (PEBs). In the second method, droplet-based
microfluidics techniques are used to produce empty hydrogel
beads consisting of acrylamide, N,N′-methylenebis-
(acrylamide), acrylic acid, and 2,2′Azobis(2-methyl-
propionamidine) dihydrochloride. After UV polymerization
the carboxyl groups of acrylic acid were activated by EDC/
NHS chemistry and later enzyme was coupled via amine
groups of lysine residues forming PEBs. Details of the
procedure used per type of PEB can be found in the
Supporting Information (SI).
Flow Experiments. Flow experiments were conducted

similarly to the description in previous work,33 but replacing
the inflow of the desired enzymes with the desired volume of
PEBs, which remained compartmentalized in a Continuously
Stirred Tank Reactor (CSTR) during the experiment. The
openings of the reactors were sealed with Whatman Nuclepore
polycarbonate membranes (5 μm pore size) to prevent outflow
of PEBs. Cetoni Low-Pressure High-Precision Syringe Pumps
neMESYS 290N were used to control the dispense of the
different solutions, prepared in Gastight Hamilton syringes

(2500−10 000 μL), into the CSTR. The precise flow profile of
the desired flow rates was programmed using the Cetoni
neMESYS software.
To detect and determine outflow concentrations from the

CSTR, both online and offline detection was employed. Online
absorbance detection was achieved with an Avantes
AvaSpec2048 Fiber Optic spectrometer and Avantes AvaLight
355 nm LED combined with a custom designed flow cuvette
provided to us by LabM8. Alternatively, offline measurement
could be achieved by means of connecting the outflow to a
BioRad Model 2110 fraction collector. These fractions could
subsequently be probed for NADH absorbance using a Tecan
Spark M10 platereader, or probed for ATP, ADP, NAD+, and
NADH using a Shidmadzu Nexera X3 HPLC.
Further details on the instrumentation and experimental

protocols can be found in the Supporting Information.
Modeling of Enzyme Kinetics in Flow. We generally

assume that the enzymatic reactions behave according to
Michaelis−Menten-like mechanisms, although other mecha-
nisms might also be considered, and we add flow-dependent
terms to model the dynamics of the flow reactor. Inclusion of
these flow terms yields the following system of Ordinary
Differential Equations (ODEs) for a single-substrate single-
product reaction:
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where Vmax = kcat.[E] and KM are the kinetic parameters ϕ that
generally need to be estimated, and where we introduce a set
of control parameters θ, in the form of [S]in, the effective
substrate concentration flown into the reactor, and

μ= μ( )k flowrate /reactor volume ( L)L
f min

, the flow constant.

Measurements of the product concentration are performed

when the system has reached steady-state conditions ( = 0
t
Cd

d
),

resulting in a set of steady-state concentrations [P]ss and [S]ss.
These values can then be used in a fitting procedure to obtain
kinetic parameter estimates.

Creation of Bayesian Models. In a Bayesian approach,
the probability distributions for parameters of interest are
obtained by application of Bayes’ theorem

ϕ ϕ ϕ| ∝ |P y P P y( ) ( ) ( )

which relates the posterior probability P(ϕ|y) of a specific
parameter value ϕ given the data y observed during an
experiment, to the likelihood P(y|ϕ) of observing that specific
data given the parameter value, and any previously available
information on the parameter, the prior P(ϕ). As the
likelihood is a function of both the observed data and the
values of the kinetic parameters, and not a probability
distribution, we write ϕ ϕ| =P y y( ) ( , ).
In the case of a single-substrate, steady-state enzymatic

network, the observed data y is given simply by the set of
observed steady-state concentrations [P]ss at specific exper-
imental conditions [S]in and kf, which we here consider to be
exactly known, while the parameter ϕ can be any of the kinetic
parameters that is unknown, such as kcat. or KM. Furthermore,
because the data we collect are inherently noisy, we assume
that the concentrations we observe are part of a normal
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distribution [P]obs ≈ N([P]ss,σ) with a mean equal to the true
steady-state concentration and an unknown standard-deviation
σ. Depending on the measurement techniques, a different
probability distribution that correctly incorporates the physical
details of the noise-generating observation model might be
more suitable. This assumption allows us to write down the
form of the likelihood ϕ σ= [ ] − [ ]y( , ) ( P P , )ss obs , where
[P]ss = g(ϕ,θ) is a function of the kinetic parameters and the
experimental conditions. The likelihood incorporates most
sources of uncertainty, such as the intrinsic fluctuations of
product concentration at steady state and noise from the used
measurement technique, inside the uncertainty-term σ. This
parameter is then inferred simultaneously with the kinetic
parameters kcat. and KM, allowing us to directly estimate the
uncertainty in our observations as well. In addition, if any
uncertainties exist in the experimental conditions, these can be
incorporated into the analysis as informed priors, and inferred
alongside the other parameters. Any other sources of
uncertainty, such as inconclusive data, or a wrong assumed
reaction-mechanism, are implicitly encoded into the posterior
probability distributions of the kinetic parameters.
We use the Python package PyMC334 and custom-written

likelihood functions for observed steady-state concentrations,
from which we can sample with the No−U-Turn Sampler
(NUTS35) by inclusion of likelihood gradients. The steady
states can be obtained either by symbolically solving f(C,ϕ,θ) =
0, or by numerical root-finding of the vector-function f. The
gradients for the numerical steady states are obtained from the
Implicit Function Theorem, which relates the sensitivity of the

steady-state concentrations
ϕ

∂
∂

g to the kinetic parameters

without needing to explicitly write down an expression for
the steady-state concentrations, via ∂g/∂ϕ(ϕ,θ) = −[∂f/

∂c(C,ϕ,θ) ]−1 [∂f/∂ϕ(C,ϕ,θ)], while gradients for symbolic
steady-states are automatically obtained via automatic differ-
entiation in PyMC3. Using the NUTS-algorithm, we can
obtain correlated probability distributions for the value of
every kinetic parameter of interest. Implementations of the
computational models used in this paper and the scripts to
generate the figures can be found in the Supporting
Information in the ‘Model details and sampling diagnostics’
section and on the associated Github page.

■ RESULTS AND DISCUSSION

Obtaining Improved Accuracy from Correlated
Parameter Estimates. We first show the relevancy of our
Bayesian approach by estimating the kinetic parameters of
Trypsin PEBs cleaving a substrate (Cbz-Arg-7-amino-4-
methylcoumarin, R-AMC) while in the presence of an
inhibitor (Suc-Ala-Ala-Ala-7-amino-4-methylcoumarin, AAA-
AMC), shown in Figure 1. The mathematical model for this
system assumes Michaelis−Menten-type kinetics with an
uncompetitive inhibitor effect and can be found in the
Supporting Information and corresponding computational
notebooks. Two experiments were performed, one where the
inhibitor was absent and one where the inhibitor was present
(Figure 1A). Both experiments on their own did not yield
enough information to obtain conclusive estimates of all
kinetic parameters involved (kcat., KM, KI), as shown in Figure
1B. Clearly, from the experiment without inhibitor relatively
precise estimates can be obtained on kcat. and KM, but no
information is obtained on the value of the inhibition constant
KI. Thus, our posterior estimate of the inhibition constant is
equivalent to our prior estimate (a uniform distribution
between 1 and 10 × 103 μM). In contrast, from the experiment
with inhibitor present, a posterior estimate for the inhibition

Figure 1. (A) Steady-state concentrations of R-AMC cleavage by Trypsin, with and without inhibitor (AAA-AMC). (B) Posterior parameter
estimates obtained from the data without inhibitor present (blue) and with inhibitor present (red). Combining both data sets in one model yields
more precise posterior estimates (dashed, purple). (C) Posterior correlation plots of kcat. and KI from the data without inhibitor present (blue, left),
showing no correlation, and with inhibitor present (red, right), showing high nonlinear correlation. (D) Combining data from both experiments
yields a new posterior distribution (purple) that exactly corresponds to the intersection from the two experiments separately. (E) Comparison of
posterior KI estimates from the individual data sets (blue, red) to the estimate obtained from the combined data set (purple).
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constant can be obtained, albeit not a precise one. Additionally,
from this experiment alone, the posterior estimates for the
other kinetic parameters are also uncertain.
However, while the posterior estimates of the individual

parameters remain uncertain, we do obtain additional
information by analyzing the posterior correlations, shown in
Figure 1C. While the experiment without inhibitor does not
show any correlation between the value of the estimated kcat.
and KI values, the experiment with inhibitor present shows a
nonlinear correlation between low estimated values of kcat. and
high values of KI, and vice versa.
Combining data from both experiments in a single likelihood

function allows us to combine the certainty of the parameter
estimates present in the first experiment with the highly
correlated parameter estimates of the second experiment, to
obtain a posterior distribution that is essentially an intersection
of those obtained from the individual experiments (Figure
1D). As expected, this allows us to obtain a much more precise
estimate of the inhibitor constant, as shown in Figure 1E.
Moreover, this procedure yields improved estimates for every
parameter in the system, not just the inhibition constant, which
can be observed in Figure 1B.
Consequently, the Bayesian approach greatly simplifies the

iterative addition of experimental data to update parameter
estimates. As shown here, subsequent measurements of
enzyme activity in the presence of an inhibitor not only will

allow an estimation of the inhibition constant but also retro-
actively improves the estimates for the Michaelis constant KM

and the turnover number kcat..
Combining Diverse Experimental Data Sets. More

complex ERNs introduce a number of additional challenges in
modeling the system’s behavior. One of these challenges is
combining data from a diverse range of experiments, both with
variations in experimental conditions, and variations in
network topologies due to the enzymes that are present.
Additionally, for some experiments only partial data can be
obtained, for example in the case where only substrates
involved in a single reaction can be observed, while substrates
from a different reaction remain undetected.
In Figure 2, we show how data obtained from these different

types of experiments can be captured in a single probabilistic
model. In Figure 2A, we distinguish between three different
network topologies, two with only a single type of enzyme PEB
present, either glucose-dehydrogenase (GDH) or hexokinase
(HK), and one where both enzymes PEBs are present
simultaneously. For all three topologies, multiple experiments
are performed at different conditions, such as different
substrate input concentrations and PEB volumes used. For
the two single-enzyme topologies, detection of a single
substrate is enough for full observability of the network
(through stoichiometric conservation), while, for the com-
bined GDH+HK topology, only NADH is observed. Thus, the

Figure 2. (A) Three different ERN topologies are used in different reactors, and at different experimental conditions (varying input concentrations
and volume of PEBs). (B) Plots showing all collected observations at different input concentrations of glucose (x-axis) and cofactor (color
intensity). Experiment runs for every topology are indicated by symbol. The observed species is topology-dependent. (C) Schematic of the causal
network relating the observation likelihoods x to the inferable parameters, where likelihoods corresponding to either the GDH or HK topology
only relate to a subset of the parameters. The combined GDH,HK likelihood relates to every kinetic parameter in the probabilistic model.
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substrates involved in the hexokinase-reaction are not directly
detected. The resulting complex data set is shown in Figure 2B.
All three topologies have a corresponding likelihood function
that relates the observations to the kinetic parameters in
question, as shown schematically in Figure 2C (see the SI for
the programmatic implementation of these likelihoods). While
the GDH+HK system does not allow for full observability of
the network, its likelihood does allow us to correlate the GDH
and HK kinetic parameters, consequently leading to improved
estimates of all parameters involved.
The resulting posterior estimates of combining all available

data are shown in Figure 3. For the GDH PEBs, two different
batches were used with different enzyme concentration,
resulting in two distinct effective kcat. parameters. Estimation
of their respective values are performed under the assumption
that the KM for the two substrates remain the same for both
batches. By directly encoding this assumption into the
combined likelihood functions, observations on both batches
become relevant for estimation of all the parameters involved.
Correlating the parameter estimates of the individual

enzymes through a joint likelihood function allows us to
potentially improve parameter estimates by observing a system
not directly related to those parameters. Thus, as more
observations are made, any parameter estimates will increase in
accuracy simply by the inclusion of more data. This iterative
improvement of estimates as more data becomes available is
shown by the gradual shrinkage of posterior distributions,
implying that the estimates become more precise. This
improvement is most pronounced when little data are available
(for example from 4 to 6 experiments), but gradually becomes
less for larger data sets (the same figure extended to stepwise
addition of every experiment up to 16 can be found in the SI),
and eventually converges to a final posterior distribution. For
these final posterior distributions, adding new data will not
significantly alter the results, but the estimates will increase in
robustness and become less susceptible to outliers in the data.
Additionally, by estimating the uncertainty in every

experiment individually, it becomes more practical for a large
number of experiments to determine which ones have
corresponding results, and which ones are potential outliers
or contain experimental errors. This can be observed especially
in the uncertainty estimates for two specific HK experiments,
as shown in Figure 4. One experiment, with experiment code
SNKS04, has a relatively low uncertainty estimates (Figure 4A)

and correspondingly, the posterior predictions obtained from
the model are similar to the actual observations (Figure 4B).
However, another experiment stands out with a much higher
uncertainty estimate (σ ≈ 400−600 μM), which indicates
some unknown error in the observations made during that
experiment. Consequently, the posterior predictions show a
very large spread and do not correlate well with the actual
observations (Figure 4C). Importantly, these uncertainty
estimates are obtained by conditioning of the individual
observations on the complete data set of all experiments. Large
uncertainty estimates therefore imply results that do not
correspond with most other performed experiments.

Figure 3. (A,B) Posterior parameter estimates obtained from the model combining all three (GDH, HK, GDH+HK) observation likelihoods. For
every parameter, the distributions are shown for 3 different data set sizes, with respectively 4, 6, and 16 experiments included. Distributions are
shifted and scaled to increase visibility. For the GDH kcat., two estimates are obtained because PEBs with two different enzyme concentrations were
used in different experiments.

Figure 4. (A) Posterior experimental uncertainty estimates for two
specific HK-experiments, obtained from the posterior distributions
calculated from the full data set of all experiments. One experiment
(green, SNKS04) has a low estimated uncertainty, while the other
experiment (blue, SNCA18) has a much higher estimated uncertainty.
(B) Associated observed data points of the low-uncertainty experi-
ment, the posterior predictive distribution of expected observations,
and 95% CI quantiles (black). (C) Associated observation data points
of the high-uncertainty experiment, the posterior predictive
distributions of the expected observations, and 95% CI quantiles
(black).
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By estimating the uncertainty parameters alongside all of the
kinetic parameters, individual experiments are allowed to be
“wrong”, and consequently influence the final parameter
estimates less than other experiments. While not a solution
for badly performed experiments, it does protect against
drawing incorrect conclusions from incorrect data. Con-
sequently, the uncertainty estimates indirectly act as an
automatic weighting factor for individual experiments, where
experiments with higher estimated uncertainty are less relevant
toward the kinetic parameter estimations. It can also function
as a key indicator for experiments influenced by an unknown
source of error or systematic bias, especially in cases where
large data sets collected over longer time periods are involved.
Comparing Reaction Mechanism Hypotheses. The

microscopic mechanisms underlying enzymatic reactions often
allow for the creation of more complex kinetic models than
simple Michaelis−Menten kinetics. However, a more complex
model, with more kinetic parameters, does not necessarily
imply a more useful model. Instead, in the presence of
uncertain data, it can lead to overfitting and unrealistically high
certainty in the estimates.
In Figure 5 we show how the posterior estimates obtained

using our Bayesian approach can be used to compare different
hypotheses for the reaction mechanism and associated kinetics
of glucose-6-phosphate dehydrogenase (G6PDH) PEBs. From

a set of experiments performed at varying experimental
conditions (Figure 5A), we propose a number of different
hypotheses describing the suspected mechanism of product
inhibition by NADH on the reaction rate (Figure 5B). We also
include a 0-hypothesis describing a mechanism where the
formation of NADH has no inhibiting effect, although the
inclusion of a 0-hypothesis is not necessary for using this
methodology.
We consider four modes of NADH inhibition: competitive

inhibition of the NAD-binding site (H1), competitive
inhibition of the G6P-binding site (H2), noncompetitive
inhibition of the enzyme activity (H3), and cooperative
noncompetitive inhibition of the enzyme activity (H4). All
five hypotheses result in posterior distributions that give well-
defined parameter estimates (Figure 5C), from which it is
difficult to conclude the most likely hypothesis. Instead,
because the experimental noise per experiment is estimated
alongside the kinetic parameters, the zero-hypothesis yields
unrealistically precise estimates, due to the algorithm
indicating that under the assumption that this hypothesis is
true, the experimental uncertainties are much larger. The four
hypotheses that do model the influence product inhibition
have similar precisions in their parameter estimates.
To compare all hypotheses and determine the most (and

least) likely ones, we performed a Leave-one-out (LOO) cross-

Figure 5. (A) Steady-state concentrations obtained during two experiments, from a G6PDH system at different glucose-6-phosphate input
concentrations and NAD input concentrations. Every measurement point is obtained in triplicate. (B) Five different hypotheses for Michaelis−
Menten mechanisms without (H0), and with NADH product inhibition (H1−H4). Only the reaction rate is shown, but full sets of ODEs with
additional flow terms are used in the probabilistic model. (C) Posterior parameter estimates for all five hypotheses. H0 does not include an
inhibition constant KINADH, but all other hypotheses do. (D) Comparison of the leave-one-out cross-validation information criterion for all five
hypotheses (colored), and standard errors of the difference in information criterion with respect to the top-ranked model (gray). A higher log-score
indicates a hypothesis with more predictive power.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.2c00659
Anal. Chem. 2022, 94, 7311−7318

7316

https://pubs.acs.org/doi/10.1021/acs.analchem.2c00659?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00659?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00659?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.2c00659?fig=fig5&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.2c00659?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


validation directly from the posterior probability distribu-
tions.36 This test used the Pareto Smoothed Importance
Sampling (PSIS) approximation for most observed data points
and exact LOO for data points where this approximation was
not valid. This test efficiently determines the model that
approximates the observed data best and possesses the highest
predictive accuracy, while taking into consideration the
complexity of the models (e.g., the number of kinetic
parameters involved) to prevent overfitting. From this
hypothesis comparison, we can conclude that given the
experiments performed up to this point, a cooperative
noncompetitive inhibition (H4) is the most likely product-
inhibition mechanism occurring in the G6PDH PEBs, although
the noncooperative variant (H3) cannot be ruled out. The
zero-hypothesis cannot be ruled out completely, only requiring
high experimental uncertainties to be explained by the data,
although it remains unlikely. Both hypotheses for competitive
inhibition can be ruled out with some confidence. Similarly,
while the zero-hypothesis is likely not correct, a small chance
exists that indeed one experiment does contain large
experimental errors and is therefore unreliable.
Hypotheses comparisons can be a useful exploratory or

diagnostic tool to evaluate which proposed reaction mecha-
nisms are relevant and worth investigating further. However,
numerous sources of error and uncertainty still exist in (PSIS-
)LOO and similar cross-validation algorithms, making them
susceptible to decreased robustness when comparing many
models, or when little data are available.36 This should be
taken into consideration when evaluating these results and
considering new experiments to perform.

■ CONCLUSION

We have demonstrated how a Bayesian approach toward
analyzing enzymatic reaction networks allows for more
accurate inference of the kinetics in these networks, while
simultaneously taking into account any experimental or model-
related uncertainties. Using this approach, we have shown how
experimental data can be combined in one coherent frame-
work, in order for us to correlate the findings in these
experiments and improve the estimation of parameters, as well
as outlier detection. This approach essentially allows us to
continuously improve these estimates further by iteratively
adding more experimental data to our models. Moreover, this
means that any new experiment might have the potential to
unlock more information from older experiments in the
process, enabling much more efficient data gathering. Lastly,
we have shown how this approach can be used to compare the
likelihood of different reaction mechanism hypotheses.
Comparing reaction mechanisms from a probabilistic perspec-
tive is a potentially powerful tool that can be used to make
informed decisions about the next best experiments to perform
when many different mechanisms are under consideration.
Importantly, it can equally well be used in reanalyzing old data
sets in light of newly discovered or proposed mechanisms, or
when new data become available. However, care should be
taken in interpreting the results from these comparisons as
final conclusions. It is not a suitable method to make
statements about the absolute truth of a hypothesis, as the
test only checks the predictive power of each hypothesis
relative to all other hypotheses under consideration. Therefore,
if no correct reaction mechanism is included in the hypotheses,
then it will also not be considered in the test.

Bayesian methods open up multiple new areas of
possibilities for the design of more complex enzymatic reaction
networks, and for systems chemistry in general. In addition to
the findings presented here, significant potential exists in the
usage of knowledge from literature for more informative and
realistic prior distributions, such as informed log-normal or
gamma distributions, which could improve the obtained
estimates further, and could allow for direct comparison
between new results and previous studies, as well as help in
deciding initial experimental designs. Furthermore, more
advanced hierarchical models and the inclusion of latent
variables could potentially aid in discovering previously
unknown interactions or hidden factors affecting the behavior
of ERNs,37 from both a chemical point-of-view (allosteric
effects, influence of pH) and an experimental point-of-view
(systematic measurement errors, equipment deterioration). In
principle, the methods discussed here could be combined with
other network analysis techniques (both analytical and
experimental) for enhanced network discovery or, additionally,
used in combination with other machine learning techniques
to enhance predictive capabilities. Finally, calculation of the full
posterior probability distributions opens the door for
determining optimal experimental designs.38,39 These designs
could be aimed at a variety of different goals, such as
experimental conditions for the maximum information gain for
a certain kinetic parameter, but also the maximum production
of a specific substrate or set of substrates, taking automatically
into account any uncertainties that still exist about the
behavior of these systems.
We do note that the methods introduced here are still

computationally relatively expensive, and some of the sampling
techniques are not yet suitable for every type of data. We have
also limited our present study to small enzymatic networks at
steady state. For larger networks, determining the steady state
via numerical optimization may be less viable, and explicit
solving of the full ODE system may be necessary. While
inference on time-dynamic data is in principle possible, we
found that current implementations are computationally
demanding, while they do not yet significantly improve
parameter estimates. This, however, is an area of active
research that we hope can be improved in the future to allow
for the inclusion of time-varying data and more complex
models. Additionally, while our approach can indicate the
presence of bad data and experimental errors, it does not
guarantee the absence of sources of error. Care should still be
taken to avoid a false sense of security when precise parameter
estimates are obtained.
In conclusion, we have shown that the Bayesian approach we

demonstrate here is highly relevant for the construction of
complex enzymatic networks, allowing researchers to increase
the predictability and reproducibility of artificial enzymatic
networks, and allowing the field of enzymatic reaction
networks to mature beyond toy models and proof-of-concepts.
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