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Piperlongumine (PL) is an alkaloid from Piper longum L. with anti-inflammatory and
antitumor properties. Numerous studies have focused on its antitumor effect.
However, the underlying mechanisms of its anti-inflammation remain elusive. In this
study, we have found that PL is a natural inhibitor of Nod-like receptor family pyrin
domain-containing protein-3 (NLRP3) inflammasome, an intracellular multi-protein
complex that orchestrates host immune responses to infections or sterile
inflammations. PL blocks NLRP3 activity by disrupting the assembly of NLRP3
inflammasome including the association between NLRP3 and NEK7 and subsequent
NLRP3 oligomerization. Furthermore, PL suppressed lipopolysaccharide-induced
endotoxemia and MSU-induced peritonitis in vivo, which are NLRP3-dependent
inflammation. Thus, our study identified PL as an inhibitor of NLRP3 inflammasome
and indicated the potential application of PL in NLRP3-relevant diseases.
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INTRODUCTION

Piperlongumine (PL) is a natural product from the fruit of long pepper and a form of traditional
Chinese medicine (Wang et al., 2014). PL exhibits antitumor properties in serials of tumors including
sarcoma, melanoma, gastrointestinal cancers, and bladder cancers by induction of autophagy,
apoptosis, and cell cycle arrest through modulating ROS production (Chen et al., 2019; Rawat et al.,
2020; Shin et al., 2020). Recent studies have found that PL shows potent anti-inflammatory effects in
ovalbumin-induced asthma and airway inflammation, neuroinflammation, and psoriasis-like skin
inflammation (Gu et al., 2018; Kim et al., 2018; Lu et al., 2019). However, the underlying mechanisms
for PL anti-inflammation were all attributed to the NF-κB signal inhibition. Given the broad anti-
inflammatory effects of PL, we speculated that there still exists an unknown mechanism for PL in
suppressing inflammatory responses.

The NLRP3 inflammasome is an intracellular multiprotein complex that is critical in protecting
the host from infections or sterile injuries (Mao et al., 2013). NLRP3 can sense diverse stimuli
including pathogen components, environment irritants, and host danger effectors, so its aberrant
activation leads to many inflammatory diseases, such as sepsis (Mao et al., 2013), gout (Martinon
et al., 2006), type 2 diabetes (Masters et al., 2010), atherosclerosis (Duewell et al., 2010; Bai et al.,
2021), and Alzheimer’s disease (Heneka et al., 2013). It consists of a sensor, a nucleotide-binding
domain, a leucine-rich repeat, pyrin domain-containing protein 3 (NLRP3), an adaptor, the
apoptosis-associated speck-like protein containing a CARD (ASC), and an effector, caspase-1
(Swanson et al., 2019). NLRP3 inflammasome activation is a two-step process. First, it needs a
priming signal to upregulate the expression of NLRP3 and pro-IL-1β, and the priming signal can be
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induced by various pathogen-associated molecular patterns
(PAMPs) or through cytokines such as the tumor necrosis
factor (TNF). Second, the inflammasome is formed and fully
activated, which can be triggered by a wide variety of stimuli.
Oligomerized NLRP3 recruits ASC and then forms a large
complex to activate caspase-1, which induces the maturation
of IL-1β and IL-18 as well as gasdermin D-mediated pyroptotic
cell death.

In this study, we found that PL could inhibit the NLRP3
inflammasome activation in murine and human macrophages.
Moreover, PL alleviated the lipopolysaccharide (LPS)-induced
endotoxemia and MSU-induced peritonitis in vivo, which are
NLRP3-dependent inflammations. Mechanistically, PL blocks
NLRP3 inflammasome assembly by interrupting the
interaction between NLRP3 and NEK7 and subsequent
aggregation of NLRP3. Thus, our study identified PL as an
NLRP3 inhibitor and indicated the potential application of PL
in NLRP3-relevant diseases.

MATERIALS AND METHODS

Animals
Wild-type (WT) C57BL/6 mice (8–10 weeks old, weight between
20–25 g) were bought from Hunan SJA Laboratory Animal Co.,
Ltd. (Changsha, China) and were kept under SPF conditions with
standard chows and a 12- h light/dark cycle. All animal
experiments were conducted in accordance with Animal
Research: Reporting of In Vivo Experiments guidelines (Percie
du Sert et al., 2020) and the Institutional Animal Care and Use
Committee of Central South University.

Reagents and Antibodies
Reagents
Standard LPS (E. coli 0111:B4, Cat No. tlrl-eblps), ultrapure LPS
(E. coli 0111:B4, Cat No. tlrl-3pelps), nigericin (Cat No. tlrl-nig),
ATP (Cat No. tlrl-atpl), and MSU (Cat No. tlrl-msu) were
purchased from InvivoGen (San Diego, CA, United States); the
cell lysis buffer (CLB) (Cat No. 9803) was bought from Cell
Signaling Technology (Danvers, MA, United States); the mouse
immunoglobin IgG protein (Cat No. ab198772) was purchased
from Abcam (Cambridge, CB2 0AX, United Kingdom); Protein
A/G PLUS-Agarose (Cat No. sc-2003) was obtained from Santa
Cruz (Santa Cruz, CA, United States); mouse IL-1β (Cat No.
88–7013), tumor necrosis factor-α (TNF-α) (Cat No. 88-7324),
interleukin-6 (IL-6) (Cat No. 88-701364), and a human IL-1β
(Cat No. BMS22) ELISA kit was bought from Thermo Fisher
(Waltham, MA United States); and the CellTiter-Glo®
Luminescent Cell Viability Assay (Cat No. G7572) was from
Promega.

Antibodies
Anti-β-actin (1:10,000, BH10D10) was bought from Cell
Signaling Technology (Danvers, MA, United States); Anti-
NLRP3 (1:1,000. Cryo-2) and Anti-ASC (1:1,000, AL177) were
purchased from Adipogen (San Diego, CA, United States); Anti-
Caspase-1 (1:1,000, ab179515) and Anti-NEK7 (1:10,000

ab133514) were bought from Abcam (Cambridge, CB2 0AX,
United Kingdom); Anti-IL-1β (1:000 AF-401-NA; RRID:
AB_416684) was obtained from RD systems (Tustin, CA,
United States); the DyLight 488-labeled secondary antibody (1:
50, A120-100D2) was purchased from InvivoGen (San
Diego, CA, United States); and FITC anti-mouse/human
CD11b (101216, 1:500 for flow cytometry) and APC anti-
mouse Ly-6G (127614, 1:500 for flow cytometry) were from
BioLegend.

Cell Culture
THP-1 cells were obtained from American Type Culture
Collection (Manassas, VA). C57BL/6 mice were injected
intraperitoneally with 3% thioglycolate before collecting
primary peritoneal macrophages. Peritoneal lavage was
performed to harvest exudate cells and seeded in 48-well (2–3
× 105) or 6-well (2 × 106) culture plates. After 2 h, the non-
adherent cells were removed; the adherent monolayer cells were
peritoneal macrophages. Primary peritoneal macrophages and
THP-1 cells were cultured in the RPMI-1640 medium
supplemented with 10% fetal bovine serum, 100 U/ml
penicillin, and 100 μg/ml streptomycin at 37 C in a humidified
incubator of 5% CO2.

Cell Viability Assay
Peritoneal macrophages and THP-1 cells were seeded in 96-well
(4 × 104) culture plates. After treatment with PL (1, 5, 10, 20, and
40) for 30 min, 100 μL of CellTiter-Glo® Reagent was added to
each well. We incubated the plate at room temperature for 10 min
and recorded luminescence.

Inflammasome Activation
As previously reported (Wang et al., 2021), for NLRP3
inflammasome activation, macrophages were primed with LPS
(100 ng/ml) for 3 h, followed by PL or DMSO for 30min and
stimuli as follows: 5 mM ATP or 10 μM nigericin for 1h and
200 μg/ml MSU for 6 h; differentiated adherent THP-1 cells were
induced by 100 nM PMA (phorbol-12-myristate-13-acetate) for
3 h and then primed with LPS (1 μg/ml) for 3 h, followed by
NLRP3 inflammasome activation stimulation: 5 mM ATP or
10 μM nigericin for 1 h or 200 μg/ml MSU for 6 h.

ASC Oligomerization
C57BL/6 mice peritoneal macrophages were primed with LPS for
3 h, treated with PL or DMSO for 30min, and stimulated with
nigericin for 1h, and then, the cells were lysed with the Triton
buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Triton X-
100] mixed with 0.1 mM phenylmethylsulfonyl fluoride (PMSF)
and the EDTA-free protease inhibitor cocktail for 10 min on
ice. Then, the cell lysates were centrifuged at 6000 g for 15 min on
ice to collect the supernatant and to resuspend pellets in the
200 μL Triton buffer after washing twice. 2 mM disuccinimidyl
suberate (DSS) was added into the resuspended pellets and cross-
linked for 30 min at 37°C. All samples were dissolved in the
sodium dodecyl sulfate (SDS) loading buffer and heated to 100°C
for 10 min for protein denaturation so as to prepare for Western
blotting.
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ASC Speck Formation
C57BL/6 mice peritoneal macrophages were seeded on chamber
slides overnight. Then, macrophages were primed with LPS for
3 h and treated with PL or DMSO for 30 min and stimulated with
nigericin or ATP for 1 h. After that, the cells were fixed in 4%
paraformaldehyde (PFA) for 10 min, permeabilized with 0.1%
Triton X-100 for 10 min, and blocked with 3% BSA in PBS for 1 h.
Cells were then stained with Anti-ASC (1:200 at 4°C overnight)
and the DyLight 488-labeled secondary antibody (1:50 at room
temperature for 45 min). Macrophage nuclei were dyed with
DAPI. A fluorescence microscope (Nikon Ti2-U) was used to
check these stained cells and ASC specks.

Immunoprecipitation and Western Blot
After indicated nigericin stimulation for 1 h, mice peritoneal
macrophages were lysed in an immunoprecipitation (IP)
buffer mixed with PMSF and the cocktail. Then, these cell
lysates were reacted to specific antibodies ASC or NEK7 and
protein G plus-agarose overnight and washed four times with the
IP buffer. Immunoprecipitates were eluted by boiling with 1% (w/
v) SDS loading buffer.

The supernatants (SN) were immunoprecipitated with NLRP3
antibodies for 12 h at 4°C and protein A/G agarose for 2 h. The
immunoprecipitants were washed six times with the IP buffer and
boiled with 1% (w/v) SDS loading buffer for 10 min for
immunoblot analysis.

ForWestern blot, stimulated macrophages were lysed with CLB
(CST) supplemented with the cocktail and PMSF and subsequently
centrifuged at 12,000 g at 4°C for 10 min. Protein concentrations
were detected with a bicinchoninic acid assay (Pierce). An equal
content of extracts was separated by SDS-PAGE and transferred
onto 0.22-mm PVDF membranes (Merck Millipore).

SDD-AGE
Western blot of the NLRP3 aggregate was analyzed following
published protocols (Hou et al., 2011; Jiang et al., 2017). The
procedure is briefly described as follows: mice peritoneal
macrophages were lysed with the Triton X-100 lysis buffer,
supplemented with PMSF and the cocktail, and then
centrifuged at 12,000 g at 4°C for 5 min. Next, the cell lysates
were resuspended in a 5 × sample buffer (2.5 × TBE, 50% glycerol,
10% SDS, and 0.0025% bromophenol blue) and run onto vertical
1.5% agarose gel. After electrophoresis for 1 h at a constant
voltage of 80 V at 4°C in the running buffer (1 × TBE and
0.1% SDS), the proteins were transferred onto 0.22-mm PVDF
membranes for 1 h for the following immunoblot.

ELISA Assay for Cytokines
Levels of IL-1β, IL-6, and TNF-α obtained from cell culture after
stimulations and mice blood serum were detected in quantitative
ELISA kits (eBioscience), according to the manufacturer’s
instructions.

LDH Release Assay
Levels of LDH release in cells after stimulations were determined
using an LDH Cytotoxicity Assay Kit bought from Beyotime
(Shanghai, China), according to the manufacturer’s instructions.

In vivo Endotoxemia Model
Wild-type C57BL/6 mice were pretreated with PL (50 mg/kg or
100 mg/kg) or an empty solvent (as an empty control) for 0.5 h
and then injected intraperitoneally with LPS (20 mg/kg). After
8 h, mice were sacrificed; the blood serum was collected by heart
puncture to detect concentrations of IL-1β, IL-6, and TNF-α by
ELISA; and the lungs were harvested for histology analysis.

MSU-Induced Peritonitis In Vivo
Wild-type C57BL/6 mice were pretreated with PL (100 mg/kg) or
an empty solvent (as an empty control) for 0.5 h. Next, they were
injected intraperitoneally with 1 mg MSU (dissolved in 500 μL
PBS) for 6 h. Peritoneal lavage was performed using 10 ml ice-
cold PBS to collect peritoneal exudate fluids and concentrated for
ELISA analysis with an Amicon Ultra 10 K filter (UFC900308)
from Millipore. Peritoneal cells were collected and analyzed by
flow cytometry.

Lung W/D Weight Ratio
The severity of pulmonary edema was estimated by calculating
the lung wet/dry (W/D) weight ratio. After sacrifice, the left lobe
of the lung was excised, washed with phosphate-buffered saline
(PBS), and weighed to gain the “wet” weight. The left lung was
then placed in an oven for approximately 72 h at 65°C until there
were no changes in the weight to obtain the “dry” weight.

Histological Analysis
After PBS perfusion to the cardiac, the lower right lobe of the lung
was cut and fixed in 4% paraformaldehyde solution at room
temperature for 24 h. After regular dehydration for histological
sections, these specimens were embedded with paraffin. Next,
sections were cut and mounted on polysine adhesion glass slides
for subsequent hematoxylin and eosin staining using standard
procedures. Slides were examined under a Nikon ECL IPSE Ci
biological microscope, and images were captured with a Nikon
DS-U3 color digital camera.

Statistical Analysis
All values in our experiments are shown as the mean ± SD.
Statistical analysis was performed using GraphPad Prism 8.0
software. Unpaired Student’s t test was used for comparison of
two groups. When comparing more than two groups, ANOVA
with the Bonferroni test was used. The statistical significance was
set at p < 0.05.

RESULTS

Piperlongumine Inhibits NLRP3
Inflammasome Activation in Mouse
Macrophages
We first examined the cytotoxicity of PL (1–40 μM) by cell
viability and proved that the doses of PL were not cytotoxic
(Figure 1A). To explore whether PL inhibits NLRP3
inflammasome, we treated LPS-primed mouse peritoneal
macrophages with PL to exclude the effects of PL on the

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 8183263

Shi et al. Piperlongumine Inhibits NLRP3 Inflammasome

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


priming signal and then added nigericin, an NLRP3 agonist by
causing K+ efflux. Interestingly, PL exhibited dose-dependent
inhibitory effects on LPS + nigericin-induced IL-1β secretion and
LDH release at the doses of 1–10 μM, while it had no effect on
inflammasome-independent cytokine TNF-α production
(Figures 1B–D). Similarly, the cleaved caspase-1 (p10) was
reduced dose-dependently, measured by Western blot.
Moreover, PL barely affected the expression of NLRP3, ASC,
the precursors of IL-1β, or the precursors of caspase-1
(Figure 1E).

We further observed that PL inhibited IL-1β secretion, LDH
release, and caspase-1 cleavage when macrophages were treated
with other NLRP3 agonists, including ATP and MSU (Figures
2A–D). Taken together, these results demonstrated the inhibitory
effects of PL on the NLRP3 inflammasome in mouse
macrophages.

Piperlongumine Suppresses NLRP3
Inflammasome Activation in THP-1 Cells
To further examine whether PL inhibits NLRP3 inflammasome in
human cells, we detected the effects in THP-1 cells. First, we
detected the cytotoxicity of PL (1–40 μM) by cell viability and
proved that the doses of PL were not cytotoxic (Figure 3A).
Treating PL with PMA-primed THP-1 cells, we observed the
declined IL-1β secretion and LDH release when challenged
with nigericin, ATP, and MSU (Figures 3B–E). Thus, PL
exerts an inhibitory role in NLRP3 inflammasome activation
in human cells.

Piperlongumine Interrupts ASC Speck
Formation
Next, we explored how PL inhibits NLRP3 activation. ASC speck
formation is an essential step for NLRP3 activation (Oroz et al.,
2016; Green et al., 2018), and then, we intended to determine
whether PL has a regulatory role in ASC speck formation. With
immunofluorescence microscopy analysis, we observed that PL
markedly decreased the percentage of macrophages containing
the ASC speck after stimulated with nigericin or ATP (Figures
4A,B). In common with the results of microscopy, PL distinctly
reduced appearance of large multimeric ASC complexes in
chemical cross-linking agents by Western blot (Figure 4C).
Thus, the results indicated that PL blocks ASC oligomerization.

Piperlongumine Inhibits NLRP3
Inflammasome Assembly
Since ASC speck formation is a result of ASC recruitment to
NLRP3 (Martinon et al., 2009; Davis et al., 2011), we next
investigated whether PL influenced the interaction between
them. By performing immunoprecipitation of ASC and NLRP3,
we observed that PL markedly interrupted the ASC-NLRP3
association (Figure 5A), suggesting that PL targets the upstream
of recruitment of ASC to NLRP3. Before recruiting ASC, NLRP3
first aggregates with the help of NEK7, a newly described
component of NLRP3 inflammasome (He et al., 2016). We then
detected the interaction between NEK7 and NLRP3. When treated
with PL, the NEK7-NLRP3 association was disrupted (Figure 5B).
Accordingly, the endogenous oligomerization of NLRP3 was

FIGURE 1 | PL dose-dependently inhibits nigericin-induced NLRP3 inflammasome activation. (A) Cell viability of PL (1–40 μM) in peritoneal macrophages. (B–D)
ELISA of IL-1β (B), TNF-α (C), and release of LDH (D) in supernatants from LPS-primed mouse peritoneal macrophages treated with 1–10 μM PL and stimulated with
nigericin. (E) Immunoblot of supernatants or cell lysates from LPS-primedmouse peritoneal macrophages treated with 1–10 μMPL and stimulated with nigericin. All data
were representative of three independent experiments. Values shown are mean ± SD. For statistical analysis, A–D were analyzed using one-way ANOVA and the
Bonferroni test. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 2 | PL inhibits ATP or MSU-induced NLRP3 inflammasome activation. (A–C) ELISA of IL-1β (A), TNF-α (B), and release of LDH (C) in supernatants from
LPS-primedmouse peritoneal macrophages treated with 10 μMPL or DMSO and stimulated with ATP orMSU. (D) Immunoblot of supernatants or cell lysates from LPS-
primed mouse peritoneal macrophages treated with 10 μM PL and stimulated with indicated stimuli. All data were representative of three independent experiments.
Values shown are mean ± SD. For statistical analysis, A, B, and C were analyzed using two-way ANOVA and the Bonferroni test; **p < 0.01; ***p < 0.001;
****p < 0.0001.

FIGURE 3 | PL blocks NLRP3 inflammasome activation in THP-1 cells. (A) Cell viability of PL (1–40 μM) in THP-1 cells. (B–C) ELISA of IL-1β (B) and release of LDH
(C) in supernatants from PMA-primed THP-1 cells treated with 1–10 μM PL and challenged with nigericin. (D–E) ELISA of IL-1β (D) and release of LDH (E) in
supernatants from PMA-primed THP-1 cells treated with 10 μM PL or DMSO and stimulated with ATP or MSU. Values shown are mean ± SD. For statistical analysis,
A–Cwere analyzed using one-way ANOVA and the Bonferroni test. D and E were analyzed using two-way ANOVA and the Bonferroni test; *p < 0.05; ***p < 0.001;
****p < 0.0001.
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dramatically decreased by using semi-denaturing detergent agarose
gel electrophoresis (SDD-AGE) (Figure 5C). Thus, PL suppresses
NLRP3 inflammasome activation through inhibiting the NLRP3
inflammasome assembly.

Piperlongumine Suppresses
NLRP3-Dependent Inflammation in vivo
Finally, we investigated whether PL could inhibit NLRP3
inflammasome activation in vivo. Intraperitoneal injection of

LPS or MSU induces IL-1β secretion and neutrophil
infiltration in a NLRP3-dependent manner (Martinon et al.,
2006). Pretreatment of PL (50 mg/kg or 100 mg/kg) could
markedly attenuate release of IL-1β without affecting IL-6 and
TNF-α in serum induced by LPS injection (Figures 6A–C).
Moreover, the PL-treated group showed moderate lung edema
by calculating the W/D ratio (Figure 6D) and smaller bleeding
spots, less inflammatory cell infiltration, and less impaired
structures in lungs evaluated by histopathology, compared to
the control group (Figure 6E). In another MSU-induced

FIGURE 4 | PL suppresses ASC speck formation. (A, B) Immunofluorescence microscopy analysis of ASC specks in LPS-primedmouse peritoneal macrophages
treated with 10 μM PL or DMSO and stimulated with ATP or nigericin. (A) Representative images of ASC speck distribution in cells; ASC, green; nuclei, blue. White
arrows indicate ASC specks. (B) Quantified percentage of cells containing an ASC speck. At least 100 peritoneal macrophages were collected for analysis. (C)
Immunoblot analysis of ASC oligomerization in cross-linked cytosolic pellets of LPS-primed mouse peritoneal macrophages treated with 10 μM PL and then
stimulated with nigericin. Values shown are mean ± SD. For statistical analysis, two-way ANOVA and the Bonferroni test were used; ****p < 0.0001. Data were collected
from three independent experiments.

FIGURE 5 | PL interrupts NLRP3 inflammasome assembly. (A) Immunoblot analysis (immunoprecipitation) of the interaction between NLRP3 and ASC in LPS-primed
mouse peritoneal macrophages treated with 10 μM PL or DMSO and then stimulated with nigericin. (B) Immunoblot analysis (Immunoprecipitation) of the interaction
between NEK7 and NLRP3 in LPS-primed primary macrophages treated with 10 μM PL or DMSO and then stimulated with nigericin. (C) Immunoblot analysis of NLRP3
oligomerization using SDD-AGE or SDS-PAGEassays in LPS-primedmouse peritoneal macrophages treatedwith 10 μMPLor DMSOand then stimulatedwith nigericin.
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peritonitis model, PL also exhibited inhibitory effects on NLRP3
inflammasome reflected by reduced IL-1β (Figure 6F) and
recruitment of neutrophils (Figure 6G) in the lavage fluid.
Taken together, these data proved that PL could inhibit
NLRP3-dependent inflammation in vivo.

DISCUSSION

Piperlongumine, a kind of amid alkaloids, is an extract from the
fruits of long pepper plants in Southern India and Southeast Asia.
It not only flavors food tastes but also protects human health.
Numerous studies have reported its anticancer function in
different types of tumors both in vitro and in vivo, including
colon, pancreatic, gastric, cholangio, lung, and prostate cancers
(Randhawa et al., 2013; Dhillon et al., 2014; Ginzburg et al., 2014;
Duan et al., 2016; Thongsom et al., 2017; Hałas-Wiśniewska et al.,
2020). The anticancer properties of PL were demonstrated
through cell cycle arrest, pro-apoptosis, anti-invasiveness,

and antiangiogenesis by targeting JAK-STAT, NF-kB, or PI3K/
AKT/mTOR pathways (Farooqi et al., 2018; Piska et al., 2018).
Recently, a few studies have uncovered the role of PL in
alleviating sorts of inflammatory disorders, such as colitis,
amyloidogenesis, liver fibrosis, diabetes, and psoriasis-like skin
inflammation, suggesting an anti-inflammatory effect of PL (Gu
et al., 2018; Chilvery et al., 2020; Thatikonda et al., 2020; Xu P.
et al., 2021). In addition, these studies have proved that PL
inhibits pro-inflammatory cytokine (TNF-α and IL-6)
production mainly through suppressing the NF-κB signal and
iNOS expression. However, only this mechanism could
not explain the role of PL under so many inflammatory
conditions.

In this study, we demonstrated that PL is an inhibitor of NLRP3
inflammasome (Figure 7). Treated human or murine LPS–primed
macrophages with PL could inhibit NLRP3 inflammasome-
induced IL-1β production and pyroptotic cell death without
affecting inflammasome-independent cytokine TNF-α production.
We noted that different from the previous study, PL did not suppress

FIGURE 6 | PL disrupts NLRP3 inflammasome activation in vivo. (A–E) Effects of PL in endotoxemia. Wild-type mice with the C57BL/6 background were
pretreated with intraperitoneal injection of PL (50 mg/kg or 100 mg/kg) or N.S 30 min before intraperitoneal injection of LPS (20 mg/kg) for 8 h. ELISA analysis of IL-1β
(A), IL-6 (B), and TNF-α (C)was performed in mice blood serum. (D) Lung W/D ratio of endotoxemic mice treated with PL (50 mg/kg or 100 mg/kg). (E) Representative
images of HE staining in lungs. (F, G) Effects of PL in MSU-induced peritonitis. Wild-type mice with the C57BL/6 background were intraperitoneally injected of PL
(100 mg/kg) or N.S 30 min before intraperitoneal injection of MSU (1 mg) for 6 h. ELISA of IL-1β (F) and neutrophils (flow cytometry) (G) in the peritoneal cavity fluid were
quantified. Values presented are mean ± SD. Two-way ANOVA and the Bonferroni test were used for the statistical analysis; ***p < 0.001; ****p < 0.0001. Data were
collected from three independent experiments.
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TNF-α production in this model because of the fact that PL addition
was after the NF-κB signal activation. Moreover, it presented the
specificity of PL in NLRP3 inflammasome without affecting the NF-
κB signal. To further demonstrate whether PL could inhibit NLRP3
inflammasome in vivo, we first adopted an LPS-induced
endotoxemia murine model and observed that PL markedly
alleviated the inflammation, which is in line with a previous
study (Lee et al., 2013). In another MSU-induced peritonitis
model, PL exhibited similar effects by suppressing IL-1β
production and neutrophil infiltration, both of which were
dependent on NLRP3 inflammasome. Mechanistically, PL could
inhibit the NLRP3 inflammasome assembly. By checking the ASC
speck, an NLRP3 inflammation activation marker, we noticed that
PL may target the upstream of ASC speck formation. Although
performing SDD-AGE and immunoprecipitation, we demonstrated
that PL interrupted NLRP3 oligomerization and the interaction
between NLRP3 and NEK7, a newly recognized partner that
bridges the bond of adjacent NLRP3 to form NLRP3 aggregates
(He et al., 2016). However, the detailed molecular mechanism for PL
that blocks the interaction between NLRP3 and NEK7 is not clear,
which still remains further investigation.

A previous study treated macrophages with PL before LPS
priming and found that PL could inhibit NLRP3 inflammasome
activation through disruption of the NF-κB signaling pathway
(Huang et al., 2021). However, in our study, we treated PL
after LPS priming to exclude affecting the NF-κB signal, and
we found that PL could inhibit NLRP3 inflammasome
activation through inhibiting the interaction of NLRP3 and
NEK7 rather than the expression of NLRP3. Our study found
a different anti-inflammatory mechanism of PL. Taken together,
our study and previous study indicated that PL not only widely
suppresses inflammatory response through the NF-κB signaling
pathway but also specifically inhibits NLRP3 inflammasome
activation.

NLRP3 inflammasome is the most well-studied
inflammasome. Numerous studies have indicated that
excessive NLRP3 inflammasome activation is harmful to the
host immune system and can lead to many diseases that are
related to the long-term inflammatory process including type 2
diabetes mellitus, atherosclerosis, rheumatoid arthritis, and
gout (Swanson et al., 2019). Disruption of NLRP3
inflammasome activation exhibits a therapeutic role to these
diseases, thus apparently indicating its promising property in
dealing with inflammatory related disorders. Accordingly, several
compounds have been discovered for inhibiting NLRP3
inflammasome, and among them, MCC950 is the most well-
studied NLRP3 inhibitor. By directly interacting with NLRP3,
MCC950 leads to an inactive NLRP3 conformation (Tapia-
Abellán et al., 2019). Besides MCC950, there are a serial of
inhibitors directly interacting with NLRP3 and inhibiting
NLRP3 ATPase activity, including CY-09, Bay 11–7082,
OLT1177 dapansutrile, INF39, MNS, and BOT-4-one
(Swanson et al., 2019). Apart from directly interacting with
NLRP3, there are some inhibitors that control the NLRP3
activation in a posttranslational modification manner, such
as SP600125, which disrupts the phosphorylation of NLRP3
and ASC; G5 prohibits the deubiquitination of NLRP3 (Jiang
et al., 2020). In addition, some inhibitors target the association
between NLRP3 and ASC, such as cardamonin (Jiang et al.,
2020), SI-2 (Liu et al., 2020), and C646 (Xu X. et al., 2021), and
some inhibitors block the interaction between NLRP3 and
NEK7, including ordonin (Swanson et al., 2019) and
ginsenoside Rg3 (Jiang et al., 2020). Our study added another
natural inhibitor for NLRP3 by interrupting the interaction
between NLRP3 and NEK7.

In summary, our study identified PL as an NLRP3 inhibitor by
interrupting the assembly of the inflammasome, providing a new
view of the anti-inflammatory mechanism of PL. Moreover, given

FIGURE 7 | Mechanism of PL inhibits NLRP3 inflammasome activation. PL blocks NLRP3 inflammasome activation by disrupting the interaction between NEK7
and NLRP3 and subsequent NLRP3 oligomerization.
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aberrant activation of NLRP3 inflammasome leads to many
inflammatory diseases; our study indicated the potential
application of PL in NLRP3-related diseases.
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