organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,14-Dimethyl-2,6,13,17-tetraaza-tricyclo[16.4.0.0^{7,12}]docosane-(naphthalen-1-yl)methanol (1/2)

Jong-Ha Choi,^a Md Abdus Subhan,^a Keon Sang Ryoo^a and Seik Weng Ng^{b,c}*

^aDepartment of Chemistry, Andong National University, Andong 760-749, Republic of Korea, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 7 December 2011; accepted 7 December 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.126; data-to-parameter ratio = 17.1.

In the title co-crystal, $C_{20}H_{40}N_4 \cdot 2C_{11}H_{10}O$, the macrocycle is generated by a crystallographic inversion centre. The N atoms show a pyramidal coordination, and the cyclohexane ring that is fused to the 14-membered $C_{10}N_4$ ring exists in a chair conformation, whereas the methyl substituent occupies an axial site. The (naphthalen-1-yl)methanol molecule forms an O-H···N hydrogen bond to a cyclam N atom. The meansquare-plane passing through the 14-membered ring is approximately coplanar with the naphthalene fused-ring [dihedral angle = $6.6 (1)^{\circ}$].

Related literature

For the synthesis of the cyclam, see: Kang & Jeong (2003).

Experimental

Crystal data

 C_2

M

Tr a

h *c* :

α β

0H40N4 2C11H10O	$\gamma = 96.666 \ (4)^{\circ}$
r = 652.94	V = 883.13 (8) Å ³
iclinic, $P\overline{1}$	Z = 1
= 8.9706 (4) Å	Mo $K\alpha$ radiation
= 9.4967 (6) Å	$\mu = 0.08 \text{ mm}^{-1}$
= 10.5580 (5) Å	$T = 100 { m K}$
$= 92.500 (4)^{\circ}$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
= 97.961 (4)°	

6926 measured reflections

 $R_{\rm int} = 0.027$

3915 independent reflections

2958 reflections with $I > 2\sigma(I)$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\rm min} = 0.978, T_{\rm max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ H atoms treated by a mixture of $wR(F^2) = 0.126$ independent and constrained S = 1.00refinement $\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$ 3915 reflections $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ 229 parameters 3 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1o···N1	0.85 (1)	1.94 (1)	2.786 (2)	171 (2)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank Andong National University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5151).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191 Kang, S. G. & Jeong, J. H. (2003). Bull. Kor. Chem. Soc, 24, 393-396. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, o102 [doi:10.1107/S160053681105272X]

3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane-(naphthalen-1-yl)methanol (1/2)

J.-H. Choi, M. A. Subhan, K. S. Ryoo and S. W. Ng

Comment

We had intended to react the cyclam having 1,2-diaminocyclohexanediamine sub-units, 5,16-dimethyl-2,6,13,17tetraazatricyclo[14,4,0^{1,18},0^{7,12}]docosane, with an alkyl chloride to form the corresponding ammonium salt; however, under the basic conditions, the 1-chloromethyl-naphthalene component was hydrolyzed to 1-hydroxymethyl-naphthalene, which co-crystallizes with the cyclam (Scheme I, Fig. 1). The cyclam lies on a center-of-inversion, and the nitrogen atoms of the 14-membered $C_{10}N_4$ ring show pyramidal coordination. However, these are not enaged in any hydrogen-bonding interactions. The cyclohexane rings that are fused to the 14-membered ring exist in chair conformations, and the methyl substituents in axial configurations.

The 1-hydroxymethyl-naphthalene molecule forms an O-H…N hydrogen bond to the cyclam (Table 1).

The mean-square-plane passing through the 14-membered ring is approximately co-planar with the naphthalene fused-ring (dihedral angle 6.6 (1) $^{\circ}$).

Experimental

The macrocycle 3,14-dimethyl-2,6,13,17-tetraazatricyclo $[16.4.0.0^{7,12}]$ docosane was synthesized by using a published procedure (Kang & Jeong, 2003). To a solution of this marcrocycle (0.61 g, 2.0 mmol) in methanol (10 ml) was added 1-chloromethylnaphthalene (0.80 g, 4.53 mmol) and a solution containing sodium carbonate (0.51 g, 4.77 mmol) dissolved in water (5 ml). The solution was heated for 24 h at 363 K. The white solid that precipitated was collected and recrystallized from acetonitrile–water (1:1) solution to give colorless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.98 to 1.00 Å, $U_{iso}(H)$ 1.2 to 1.5 $U_{eq}(C)$] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88 ± 0.01 , O–H 0.84 ± 0.01 Å; their temperature factors were refined.

The (6 0 3) reflection was omitted.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{20}H_{40}N_4 \cdot 2C_{11}H_{10}O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3,14-Dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.0^{7,12}]docosane- (naphthalen-1-yl)methanol (1/2)

Crystal data

$C_{20}H_{40}N_4 \cdot 2C_{11}H_{10}O$	Z = 1
$M_r = 652.94$	F(000) = 356
Triclinic, <i>P</i> T	$D_{\rm x} = 1.228 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.9706 (4) Å	Cell parameters from 2968 reflections
b = 9.4967 (6) Å	$\theta = 2.8 - 29.3^{\circ}$
c = 10.5580 (5) Å	$\mu=0.08~mm^{-1}$
$\alpha = 92.500 \ (4)^{\circ}$	T = 100 K
$\beta = 97.961 \ (4)^{\circ}$	Prism, colorless
$\gamma = 96.666 \ (4)^{\circ}$	$0.30 \times 0.25 \times 0.20 \text{ mm}$
V = 883.13 (8) Å ³	

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	3915 independent reflections
Radiation source: SuperNova (Mo) X-ray Source	2958 reflections with $I > 2\sigma(I)$
Mirror	$R_{\rm int} = 0.027$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 2.8^{\circ}$
ω scan	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)	$k = -12 \rightarrow 9$
$T_{\min} = 0.978, \ T_{\max} = 0.985$	$l = -12 \rightarrow 13$
6926 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.049$
$wR(F^2) = 0.126$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement

<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0516P)^2 + 0.3587P]$ where $P = (F_o^2 + 2F_c^2)/3$
3915 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
229 parameters	$\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates	and isotropic of	r equivalent isotropic	displacement parameters $(Å^2)$	1

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01	0.39115 (13)	0.38946 (12)	0.62565 (11)	0.0246 (3)
N1	0.10202 (14)	0.30725 (14)	0.49130 (12)	0.0167 (3)
N2	0.02690 (14)	0.51309 (13)	0.31361 (12)	0.0169 (3)
C1	0.04567 (17)	0.24648 (16)	0.70859 (14)	0.0187 (3)
H1A	0.1503	0.2922	0.7383	0.022*
H1B	0.0293	0.1613	0.7582	0.022*
C2	0.03614 (18)	0.19676 (16)	0.56804 (14)	0.0195 (3)
H2A	0.0903	0.1121	0.5622	0.023*
H2B	-0.0715	0.1684	0.5318	0.023*
C3	0.07600 (16)	0.26812 (16)	0.35267 (14)	0.0165 (3)
Н3	-0.0335	0.2310	0.3268	0.020*
C4	0.17260 (18)	0.15236 (17)	0.32043 (15)	0.0218 (3)
H4A	0.2808	0.1862	0.3509	0.026*
H4B	0.1442	0.0668	0.3663	0.026*
C5	0.1525 (2)	0.11239 (18)	0.17690 (16)	0.0274 (4)
H5A	0.2219	0.0422	0.1601	0.033*
H5B	0.0473	0.0678	0.1481	0.033*
C6	0.18552 (19)	0.24225 (18)	0.10128 (15)	0.0238 (4)
H6A	0.1632	0.2150	0.0084	0.029*
H6B	0.2943	0.2797	0.1216	0.029*
C7	0.08938 (17)	0.35713 (17)	0.13392 (14)	0.0191 (3)
H7A	-0.0191	0.3223	0.1059	0.023*
H7B	0.1155	0.4420	0.0865	0.023*
C8	0.11388 (16)	0.39903 (16)	0.27810 (14)	0.0161 (3)
H8	0.2240	0.4336	0.3040	0.019*
C9	0.06375 (17)	0.65060 (16)	0.25732 (14)	0.0178 (3)
Н9	0.0493	0.6339	0.1620	0.021*
C10	0.22827 (17)	0.71117 (17)	0.30174 (16)	0.0237 (4)
H10A	0.2950	0.6423	0.2792	0.036*
H10B	0.2441	0.7308	0.3948	0.036*
H10C	0.2516	0.7994	0.2598	0.036*
C11	0.40299 (19)	0.53897 (17)	0.62006 (16)	0.0249 (4)
H11A	0.3248	0.5626	0.5512	0.030*
H11B	0.5035	0.5735	0.5968	0.030*
C12	0.38426 (16)	0.61640 (17)	0.74368 (15)	0.0201 (3)
C13	0.36862 (17)	0.54546 (18)	0.85219 (15)	0.0220 (3)
H13	0.3698	0.4455	0.8498	0.026*
C14	0.35081 (18)	0.61807 (19)	0.96724 (16)	0.0256 (4)
H14	0.3424	0.5668	1.0417	0.031*

supplementary materials

C15	0.34556 (18)	0.76033 (19)	0.97311 (16)	0.0257 (4)
H15	0.3314	0.8074	1.0510	0.031*
C16	0.36112 (17)	0.83948 (17)	0.86337 (15)	0.0217 (3)
C17	0.35874 (19)	0.98840 (19)	0.86739 (17)	0.0276 (4)
H17	0.3427	1.0366	0.9442	0.033*
C18	0.37914 (18)	1.06392 (19)	0.76259 (17)	0.0291 (4)
H18	0.3779	1.1639	0.7669	0.035*
C19	0.40194 (18)	0.99358 (18)	0.64866 (16)	0.0264 (4)
H19	0.4160	1.0463	0.5759	0.032*
C20	0.40408 (17)	0.84951 (18)	0.64119 (15)	0.0230 (4)
H20	0.4200	0.8038	0.5632	0.028*
C21	0.38299 (16)	0.76716 (17)	0.74774 (15)	0.0195 (3)
H1O	0.3056 (15)	0.356 (2)	0.5834 (18)	0.047 (6)*
H1N	0.0599 (18)	0.3847 (13)	0.5061 (17)	0.027 (5)*
H2N	-0.0694 (12)	0.4833 (19)	0.2849 (16)	0.028 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0249 (6)	0.0183 (6)	0.0294 (7)	0.0014 (5)	0.0008 (5)	0.0018 (5)
N1	0.0221 (6)	0.0120 (6)	0.0163 (6)	0.0029 (5)	0.0030 (5)	0.0024 (5)
N2	0.0185 (6)	0.0132 (6)	0.0196 (7)	0.0028 (5)	0.0039 (5)	0.0028 (5)
C1	0.0247 (8)	0.0156 (8)	0.0165 (8)	0.0044 (6)	0.0027 (6)	0.0052 (6)
C2	0.0259 (8)	0.0125 (7)	0.0207 (8)	0.0022 (6)	0.0053 (6)	0.0023 (6)
C3	0.0194 (7)	0.0143 (7)	0.0158 (7)	0.0014 (6)	0.0030 (5)	0.0009 (6)
C4	0.0312 (8)	0.0166 (8)	0.0200 (8)	0.0076 (7)	0.0069 (6)	0.0041 (6)
C5	0.0440 (10)	0.0179 (8)	0.0232 (9)	0.0087 (7)	0.0108 (7)	0.0011 (7)
C6	0.0338 (9)	0.0210 (8)	0.0192 (8)	0.0080 (7)	0.0085 (7)	0.0024 (6)
C7	0.0226 (8)	0.0180 (8)	0.0172 (8)	0.0031 (6)	0.0040 (6)	0.0030 (6)
C8	0.0176 (7)	0.0134 (7)	0.0177 (8)	0.0031 (6)	0.0032 (5)	0.0016 (6)
C9	0.0247 (8)	0.0145 (7)	0.0151 (7)	0.0035 (6)	0.0038 (6)	0.0039 (6)
C10	0.0258 (8)	0.0174 (8)	0.0288 (9)	0.0025 (6)	0.0063 (7)	0.0047 (7)
C11	0.0306 (9)	0.0184 (8)	0.0245 (9)	-0.0028 (7)	0.0042 (7)	0.0013 (7)
C12	0.0142 (7)	0.0213 (8)	0.0233 (8)	-0.0010 (6)	0.0000 (6)	0.0016 (6)
C13	0.0194 (8)	0.0211 (8)	0.0242 (8)	-0.0001 (6)	0.0001 (6)	0.0047 (6)
C14	0.0229 (8)	0.0310 (10)	0.0224 (9)	-0.0009(7)	0.0026 (6)	0.0079 (7)
C15	0.0246 (8)	0.0323 (10)	0.0211 (9)	0.0039 (7)	0.0058 (6)	0.0016 (7)
C16	0.0168 (7)	0.0243 (9)	0.0248 (9)	0.0058 (6)	0.0025 (6)	0.0020 (7)
C17	0.0276 (9)	0.0258 (9)	0.0310 (9)	0.0097 (7)	0.0051 (7)	-0.0012 (7)
C18	0.0266 (9)	0.0209 (9)	0.0400 (11)	0.0090 (7)	0.0002 (7)	0.0032 (8)
C19	0.0246 (8)	0.0253 (9)	0.0287 (9)	0.0034 (7)	-0.0004 (7)	0.0087 (7)
C20	0.0211 (8)	0.0241 (9)	0.0227 (8)	0.0009 (7)	0.0006 (6)	0.0018 (7)
C21	0.0142 (7)	0.0208 (8)	0.0227 (8)	0.0016 (6)	-0.0004 (6)	0.0027 (6)

Geometric parameters (Å, °)

O1—C11	1.4159 (19)	C8—H8	1.0000
01—H10	0.852 (9)	C9—C10	1.522 (2)

N1—C2	1.4730 (19)	C9—C1 ⁱ	1.529 (2)
N1—C3	1.4739 (19)	С9—Н9	1.0000
N1—H1N	0.883 (9)	C10—H10A	0.9800
N2—C8	1.4712 (19)	C10—H10B	0.9800
N2—C9	1.4798 (19)	C10—H10C	0.9800
N2—H2N	0.884 (9)	C11—C12	1.509 (2)
C1—C2	1.525 (2)	C11—H11A	0.9900
C1—C9 ⁱ	1.529 (2)	C11—H11B	0.9900
C1—H1A	0.9900	C12—C13	1.370 (2)
C1—H1B	0.9900	C12—C21	1.432 (2)
C2—H2A	0.9900	C13—C14	1.408 (2)
C2—H2B	0.9900	С13—Н13	0.9500
C3—C8	1.531 (2)	C14—C15	1.356 (2)
C3—C4	1.531 (2)	C14—H14	0.9500
С3—Н3	1.0000	C15—C16	1.422 (2)
C4—C5	1.527 (2)	C15—H15	0.9500
C4—H4A	0.9900	C16—C17	1.416 (2)
C4—H4B	0.9900	C16—C21	1.423 (2)
C5—C6	1.521 (2)	C17—C18	1.366 (3)
С5—Н5А	0.9900	C17—H17	0.9500
С5—Н5В	0.9900	C18—C19	1.402 (2)
C6—C7	1.523 (2)	C18—H18	0.9500
С6—Н6А	0.9900	C19—C20	1.369 (2)
С6—Н6В	0.9900	С19—Н19	0.9500
С7—С8	1.536 (2)	C20—C21	1.419 (2)
С7—Н7А	0.9900	C20—H20	0.9500
С7—Н7В	0.9900		
C11—O1—H1O	107.1 (15)	N2—C8—H8	107.7
C2—N1—C3	113.32 (11)	С3—С8—Н8	107.7
C2—N1—H1N	107.1 (12)	С7—С8—Н8	107.7
C3—N1—H1N	109.4 (12)	N2	110.88 (13)
C8—N2—C9	115.46 (11)	N2—C9—C1 ⁱ	109.54 (12)
C8—N2—H2N	106.5 (12)	C10—C9—C1 ⁱ	111.64 (13)
C9—N2—H2N	106.9 (12)	N2—C9—H9	108.2
C2—C1—C9 ⁱ	117.65 (13)	С10—С9—Н9	108.2
C2—C1—H1A	107.9	C1 ⁱ —C9—H9	108.2
C9 ⁱ —C1—H1A	107.9	С9—С10—Н10А	109.5
C2—C1—H1B	107.9	С9—С10—Н10В	109.5
C9 ⁱ —C1—H1B	107.9	H10A—C10—H10B	109.5
H1A—C1—H1B	107.2	С9—С10—Н10С	109.5
N1—C2—C1	112.57 (12)	H10A—C10—H10C	109.5
N1—C2—H2A	109.1	H10B-C10-H10C	109.5
C1—C2—H2A	109.1	O1—C11—C12	113.97 (13)
N1—C2—H2B	109.1	01—C11—H11A	108.8
C1—C2—H2B	109.1	C12—C11—H11A	108.8
H2A—C2—H2B	107.8	O1—C11—H11B	108.8
N1—C3—C8	109.94 (11)	C12—C11—H11B	108.8

supplementary materials

N1—C3—C4	110.78 (13)	H11A—C11—H11B	107.7
C8—C3—C4	109.82 (12)	C13—C12—C21	119.27 (15)
N1—C3—H3	108.8	C13—C12—C11	121.36 (15)
С8—С3—Н3	108.8	C21—C12—C11	119.36 (14)
С4—С3—Н3	108.8	C12—C13—C14	121.18 (16)
C5—C4—C3	112.30 (14)	С12—С13—Н13	119.4
C5—C4—H4A	109.1	C14—C13—H13	119.4
C3—C4—H4A	109.1	C15-C14-C13	120 84 (16)
C5—C4—H4B	109.1	C15-C14-H14	119.6
C3—C4—H4B	109.1	C13—C14—H14	119.6
H4A—C4—H4B	107.9	C14-C15-C16	120 42 (15)
C6-C5-C4	111 15 (13)	C14—C15—H15	119.8
С6—С5—Н5А	109.4	C16-C15-H15	119.8
C4—C5—H5A	109.4	C17 - C16 - C15	121.61 (15)
C6—C5—H5B	109.4	C17 - C16 - C21	119 41 (15)
C4—C5—H5B	109.4	$C_{15} - C_{16} - C_{21}$	118.96 (15)
H5A_C5_H5B	108.0	C_{18} C_{17} C_{16}	121.05 (16)
C5_C6_C7	110.49 (13)	C_{18} C_{17} H_{17}	119.5
C5-C6-H6A	109.6	C16-C17-H17	119.5
C7_C6_H6A	109.6	$C_{17} - C_{18} - C_{19}$	119.5
C5-C6-H6B	109.6	C17 - C18 - H18	120.1
C7 C6 H6B	109.6	$C_{1}^{10} = C_{18}^{18} = H_{18}^{18}$	120.1
	109.0	$C_{19} = C_{18} = 1118$	120.1
C6 $C7$ $C8$	111 04 (13)	$C_{20} = C_{19} = C_{18}$	120.03 (10)
$C_{0} = C_{1} = C_{0}$	100.2	C18 C19 H19	119.7
$C_{0} = C_{1} = H_{1} A$	109.2	$C_{10} = C_{10} = C_{11}$	117.7 121.27(15)
C6 C7 H7P	109.2	$C_{19} = C_{20} = C_{21}$	121.27 (13)
$C_{0} = C_{1} = H_{1}B$	109.2	$C_{19} = C_{20} = H_{20}$	119.4
	109.2	$C_{21} = C_{20} = C_{120}$	117.4
$\Pi/A - C / - \Pi/B$	107.9	$C_{20} = C_{21} = C_{10}$	117.77(13) 122.02(14)
$N_2 = C_0 = C_3$	110.00 (11)	$C_{20} = C_{21} = C_{12}$	122.93(14)
$N_2 = C_0 = C_7$	113.03(13) 100.72(12)	C10-C21-C12	119.29 (13)
	109.72 (12)		
C3—N1—C2—C1	-172.40 (12)	C21—C12—C13—C14	0.2 (2)
$C9^{1}$ — $C1$ — $C2$ — $N1$	74.70 (17)	C11—C12—C13—C14	-179.85 (14)
C2—N1—C3—C8	166.81 (12)	C12-C13-C14-C15	1.3 (2)
C2—N1—C3—C4	-71.62 (16)	C13-C14-C15-C16	-1.3 (2)
N1—C3—C4—C5	-178.15 (12)	C14—C15—C16—C17	-178.88 (15)
C8—C3—C4—C5	-56.50 (16)	C14—C15—C16—C21	-0.3 (2)
C3—C4—C5—C6	55.34 (18)	C15-C16-C17-C18	177.67 (15)
C4—C5—C6—C7	-54.34 (19)	C21-C16-C17-C18	-0.9 (2)
C5—C6—C7—C8	56.62 (17)	C16-C17-C18-C19	0.4 (2)
C9—N2—C8—C3	174.49 (11)	C17-C18-C19-C20	0.0 (2)
C9—N2—C8—C7	-61.91 (16)	C18-C19-C20-C21	0.2 (2)
N1—C3—C8—N2	-55.05 (15)	C19—C20—C21—C16	-0.7 (2)
C4—C3—C8—N2	-177.19 (12)	C19—C20—C21—C12	179.92 (14)
N1—C3—C8—C7	178.97 (11)	C17—C16—C21—C20	1.0 (2)
C4—C3—C8—C7	56.83 (16)	C15—C16—C21—C20	-177.60 (14)
C6—C7—C8—N2	178.14 (12)	C17—C16—C21—C12	-179.56 (14)

C6-C7-C8-C3 C8-N2-C9-C10 C8-N2-C9-C1 ⁱ O1-C11-C12-C13 O1-C11-C12-C21 Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.	-58.10 (16) -62.00 (16) 174.34 (12) 4.5 (2) -175.56 (13)	C15—C16—C21—C12 C13—C12—C21—C20 C11—C12—C21—C20 C13—C12—C21—C16 C11—C12—C21—C16		1.8 (2) 177.61 (14) -2.3 (2) -1.8 (2) 178.28 (13)
Hydrogen-bond geometry (Å, °) D—H···A O1—H10···N1	<i>D</i> —Н 0.85 (1)	H…A 1.94 (1)	<i>D…A</i> 2.786 (2)	<i>D</i> —Н… <i>А</i> 171 (2)

Fig. 1