
1.  Introduction
The optical lightning imagers that have been operated in Low Earth Orbit (LEO) by NASA and geostationary or-
bit (GEO) by NOAA record rapid changes in cloud top illumination caused by lightning within the cloud medium 
(Christian et al., 2000). As these instruments are pixelated, the horizontal extent of lightning can be determined 
by projecting the footprint of each pixel on the imaging array to an ellipsoid above the Earth's surface. The cho-
sen ellipsoid should correspond to the upper boundary of the cloud that the optical emissions transmit through, 
otherwise parallax will be introduced into the Geostationary Lightning Mapper (GLM) measurements (Virts & 
Koshak, 2020). However, these optical measurements are only a composite two-dimensional view of lightning 
that describes its geospatial distribution across the Earth (Albrecht et  al.,  2016; Cecil et  al.,  2014; Christian 
et al., 2003) and the horizontal extent of individual flashes (Lyons et al., 2020; Peterson et al., 2018, 2020). The 
third dimension, source altitude, is not resolved natively by these instruments, and this is considered one of their 
primary shortcomings compared to certain ground-based lightning measurements.

Lightning source altitude is an important parameter because it provides unique insights into the intensity of 
convective systems and how thunderstorm kinematics organize charge regions within the thunderstorm (Bruning 
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changes in cloud top illumination. We can determine where the lightning occurred from the location of the 
pixel that was triggered. However, since we are looking down at the Earth from above the cloud tops, there 
is no simple way to determine the altitude of the lightning flash with this kind of instrument, and this is a 
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learning methods to attempt to predict lightning altitude from the spatial distribution of energy across the cloud 
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et al., 2010; Carey et al., 2005; Ely et al., 2008; Stolzenburg & Marshall, 2008; Williams, 1989). Noninductive 
Charging (NIC: Bruning et al., 2014; Jayaratne et al., 1983; Mansell et al., 2005; Reynolds et al., 1957; Saunders 
& Peck, 1998; Saunders et al., 1991; Takahashi, 1978; Takahashi & Miyawaki, 2002) is considered to be a prima-
ry mechanism for creating the charge separation in thunderstorms that leads to lightning activity. Under the NIC 
model, collisions between different species of ice particles within the updraft cause a net transfer of charge (usu-
ally from small ice particles depositing electrons on larger graupel pellets rimed with supercooled liquid water). 
These ice particles are then sorted according to their masses with the smaller ice particles lofted by the updraft 
toward the cloud top while the heavier graupel remains in the midlevels of the storm. Over time, accumulation of 
charged ice particles at different altitudes produces a strong electric field that can overcome the electrical imped-
ance of the air to generate a lightning discharge.

If we can resolve the vertical profile of lightning sources, then we can determine the altitudes of these charge 
regions and track how they evolve over time. Presently, lightning is related to convective intensity and thunder-
storm microphysics through lightning rates (Blyth et al., 2001; Cecil et al., 2005; Liu et al., 2011, 2012; Peterson 
& Liu, 2011; Prigent et al., 2005; Takayabu, 2006; Xu et al., 2010) because this information is widely available 
across broad geospatial domains. Altitude information is only reported on local or regional scales by dense 
networks of ground-based instruments that detect Radio-Frequency (RF) lightning emissions. The most accu-
rate three-dimensional source information is provided by Lightning Mapping Arrays (LMAs: Rison et al., 1999) 
whose effective range is limited to just a few hundred kilometers. The only truly global lightning network that 
attempts to resolve altitude is the Earth Networks Global Lightning Network (ENGLN: Zhu et al., 2017), but their 
intracloud (IC) altitude parameter is not well refined, leading to highly inaccurate results (Peterson et al., 2021a).

If accurate lightning altitudes could be provided across large swaths of the Earth, it would add a new dimension 
to discussions of the connection between lightning and impactful weather. Convective invigoration has been 
linked to the onset of severe weather (such as hail, tornadoes, derechos) (Gatlin & Goodman, 2010; Schultz 
et al., 2009), and is also considered important for hurricane Rapid Intensification (RI) (DeMaria et al., 2012; 
Fierro et al., 2018; Jiang & Ramirez, 2013). These studies look for convective invigoration by tracking how flash 
rates change as the storm develops over time. Rapid increases in source altitude would provide an alternate means 
to identify strengthening updrafts that could either confirm the flash rate trend or potentially catch events that 
are missed due to poor instrument performance. Geostationary Lightning Mapper (GLM: Goodman et al., 2013; 
Rudlosky et al.,. 2019) total flash rates are adversely affected by attenuation from optical sources transmitting 
through thick cloud layers, over-clustering in high flash rate compact thunderstorms, and artificial flash splitting 
in non-convective flashes. The first and third issues can also be amplified by a high instrument threshold, as we 
saw in Part 2 of this study (Peterson et al., 2021b). However, none of these issues would prevent the highest-alti-
tude sources from being resolved from space.

We propose that altitude information can be extracted from GLM measurements of how the surrounding thunder-
clouds are illuminated by lightning. Our previous modeling work (Peterson, 2020a) demonstrated that low-alti-
tude sources result in different spatial radiance patterns than high-altitude sources regardless of cloud geometry, 
and this was confirmed with GLM observations in and Part 1 of this series (Peterson et al., 2021a). Our discussion 
of “optical repeater” flashes in Peterson et al. (2021a) and previous analyses of groups with complex spatial ra-
diance distributions (Peterson, 2020b) further showed that radiance patterns were consistent between subsequent 
illuminations of the same cloud layer. However, these pictures of cloud illumination would change if the flash 
moved into a different layer, for example, during cases in Peterson et al. (2021a) where the LMA sources devel-
oped vertically.

In this third part of our thundercloud illumination study, we investigate whether the link between source altitude 
and the spatial radiance patterns recorded by GLM is sufficiently robust that we might predict the altitudes of 
the optical sources responsible for arbitrary GLM groups that consist of multiple events. To accomplish this, we 
will construct a new set of group metrics that describe the spatial distribution of GLM-recorded energy and then 
use a random forest generator to construct a machine learning model to predict the mean altitude of coincident 
LMA sources matched with each group. These predictions will be analyzed to determine whether GLM-retrieved 
altitudes can resolve the major features of the LMA source altitude distribution and the vertical development 
of individual flashes mapped by both GLM and the LMA. We limit our analysis to a single thunderstorm case 
(the Colombia case from Peterson et al., 2021a and Peterson et al., 2021b) to demonstrate the feasibility of this 
approach, and leave validation across multiple storm types for future work.
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2.  Data and Methodology
This third part of our thundercloud illumination study will leverage the combined Geostationary Operational 
Environmental Satellites (GOES)-16 GLM and ground-based Colombia LMA (COLLMA: López et al., 2016; 
Aranguren et al., 2018) data generated in Part 1 (Peterson et al., 2021a) and the random forest regressor in the 
Python scikit-learn machine learning module (Pedregosa et  al.,  2011) to generate a random forest model for 
predicting the mean LMA source altitude associated with each multi-event GLM group from a thunderstorm 
of interest. Section 2.1 discusses the lightning measurements that we will consider. Section 2.2 describes how 
the feature and label data that will be input into the machine learning model are generated. Finally, Section 2.3 
documents the random forest regression.

2.1.  Combined LMA/GLM Measurements of a Colombia Thunderstorm

In the first two parts of this study (Peterson et al., 2021a, 2021b), we examined a thunderstorm on 01 Novem-
ber 2019 that occurred in the vicinity of Barrancabermeja in central Colombia that was measured by both the 
COLLMA and GLM. This storm is noteworthy because it contained a diverse collection of convective and non-
convective lightning, was located near the GOES-16 satellite subpoint, and was subject to particularly low GLM 
instrument thresholds (∼0.7 fJ) that allowed GLM to resolve more detail from its flashes and their illumination of 
the surrounding clouds than thunderstorms elsewhere in the GLM Field of View (FOV).

2.1.1.  Colombia Lightning Mapping Array (COLLMA) Data

COLLMA is a six-sensor LMA network that was moved to Barrancabermeja from Santa Marta in 2018. Part 1 
(Peterson et al., 2021a) describes how the LMA source data were handled, which we will summarize here. LMA 
sources collected by the COLLMA on 01 November 2019 were provided over a 1.7° longitude (74.5°W–72.8°W) 
by 1° latitude (6.5°N–7.5°N) box within the LMA domain for comparison with GLM. The source data were 
first processed using the flash clustering and noise reduction algorithms developed by van der Velde and Mon-
tanyà (2013). These algorithms identify noise sources based on their density in 3D space-time boxes with sides 
corresponding to the horizontal distance (XY), vertical distance (Z), and time difference (T). We only consider 
LMA sources that meet the threshold values.

2.1.2.  Earth Networks Global Lightning Network (ENGLN) Data

The COLLMA source data is augmented with ENGLN detections of CG strokes during the thunderstorm of 
interest. ENGLN combines observations from the Earth Networks Total Lightning Network (ENTLN: Zhu 
et al., 2017) and the World-Wide Lightning Location Network (WWLLN: Lay et al., 2004; Hutchins et al., 2012; 
Jacobson et al., 2006; Rodger et al., 2006) to detect and geolocate both CG and IC lightning. However, since we 
have the LMA for IC sources, we do not consider ENGLN ICs.

2.1.3.  Geostationary Lightning Mapper (GLM) Data

GLM is the first lightning imager to be operated in geostationary orbit. It builds on the legacy of NASA's Opti-
cal Transient Detector (OTD: Christian et al., 2003) and Lightning Imaging Sensor (LIS: Christian et al., 2000; 
Blakeslee et al., 2020) that have been flown in LEO over the past 25 years. These instruments consist of a Charge 
Coupled Device (CCD) imaging array behind the instrument optics, which includes a narrowband filter centered 
on the 777.4 nm Oxygen emission line triplet. The dissociation, excitation, and recombination experienced by the 
atmospheric constituent gasses in response to the intense heating of the lightning channels cause strong emissions 
at 777.4 nm, which permits lightning to be detected at all times of day, albeit with decreased sensitivity under 
sunlit conditions.

The basic unit of OTD/LIS/GLM detection is the “event,” which is defined as a single pixel on the imaging array 
that exceeds the instrument threshold during a single integration frame. Events are clustered by the GLM Light-
ning Cluster Filter Algorithm (LCFA: Goodman et al., 2010) into “group” features that describe simultaneous 
emission over a contiguous area on the imaging array, and “flash” features that use tight spatial and temporal 
group proximity to approximate complete and distinct single lightning flashes. We further define a feature level 
between groups and flashes to document persistent illumination over multiple quasi-sequential integration frames 
called “series” features (Peterson & Rudlosky, 2019). Our reprocessed data that includes these features and other 
improvements are available at Peterson (2021a).
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2.1.4.  Matching RF Data to GLM Groups and Flashes

The matching scheme that we employ in this study is based on the GLM/ENGLN matching algorithm used in Pe-
terson and Lay (2020). It works under the assumption that all RF emissions within the footprint of a GLM group 
contribute optical energy to that group. Thus, these RF sources can be considered “events” in the GLM sense and 
clustered into the GLM data hierarchy as children of groups. Groups are nominally assigned the contemporary 
LMA sources or ENGLN CG strokes that occur within their footprint. However, this approach is subject to the 
three important caveats discussed below.

The first caveat is due to what groups actually represent. While groups are intended describe individual optical 
pulses, this association is far from perfect. Optical pulses are generally quick and localized, with durations short-
er than a millisecond and extents smaller than an 8-km GLM pixel. In Peterson et al. (2021a), we saw that the 
active portions of the lightning channel as mapped by the LMA were typically around 2–3km in lateral extent. 
Yet, multievent groups are common, with the largest groups even illuminating cloud areas exceeding 10,000 km2 
(Peterson et al., 2017). Sources located near pixel boundaries (Appendix B in Zhang & Cummins, 2020) explains 
how GLM groups are larger than LMA source extents in certain scenarios, but it does not explain how GLM 
flash footprints can exceed the LMA flash extent or encapsulate cloud regions that do not appear to be electrified. 
These oddities in the GLM data result from scattering in the cloud medium. Multiple scattering causes the optical 
emissions, even from a point source, to be spread laterally throughout the surrounding thunderclouds (Peter-
son, 2020a). This causes the resulting GLM group footprints to overestimate the physical extent of the source. At 
the same time, radiative transfer effects can also cause groups to underestimate the scale of the lightning source 
if the cloud is able to block radiant energy from reaching orbit. In extreme cases, particularly opaque clouds 
generate “holes” in the group footprint where the cloud regions surrounding the poorly transmissive cloud are 
illuminated while its center remains dark and free of events (Peterson, 2020b).

Of these two possibilities, groups underestimating the extent of the optical sources involved is the primary con-
cern for this work. In these cases, we might not have a full picture of the altitudes of the charge layers that con-
tributed optical energy to the group. We saw in Peterson et al. (2021a) that even in the larger groups, the extent 
of LMA sources within their footprints were either of comparable size to a GLM pixel or smaller. To include 
RF sources in the vicinity of GLM groups that do not occur within their footprints, we add a 10-km buffer to the 
group assignment criteria. RF events are assigned to a GLM group if they occur within 10 km of any event that 
comprised that group.

The second caveat is that the RF sources might not be precisely aligned in time with the parent GLM groups. 
This can happen if the source occurs at the end of a 2-ms GLM integration frame, causing the optical energy to 
be split between two adjacent frames, or in long-lasting processes such as return stroke Continuing Current (CC) 
or in-cloud K-changes (Bitzer, 2017). The LMA might not even register impulsive sources if the channel remains 
ionized during one of these long-duration processes since RF emissions describe changes in current rather than 
current, directly. Thus, the reported time of the RF event might be separated from the time of peak optical emis-
sion by a few milliseconds. Moreover, in these cases, there might be multiple GLM groups that the RF events 
could be assigned to. In these scenarios, we attempt to assign RF events to the peak of the light curve recorded 
by GLM. All GLM groups that meet the spatial matching criteria for the RF event and occur within 10 ms of the 
event are identified, and the brightest GLM group is selected for assignment.

The third and final caveat is related to the limited domain of the available LMA data. Because the LMA data 
were provided over a latitude/longitude box, there are cases of GLM flashes along the edges of the LMA box 
where some groups contain LMA matches, while others do not. As in the previous parts of this study, we limit 
our analyses to flashes whose groups were entirely within the LMA box to mitigate biases from partial matches 
at the edges of the LMA domain. The end result is a combined GLM/RF data set consisting of 2154 GLM flashes 
and 56,399 groups. Of these flashes, 471 (21.9%) contained ENGLN strokes and 90.1% were matched with LMA 
sources. Of these groups, 631 (1.1%) were matched with ENGLN strokes and 22,681 (40.2%) were matched with 
LMA sources.

2.2.  Generating Machine Learning Feature (Input) and Label (Prediction) Data

We propose that the first GLM caveat listed above—of groups primarily describing thundercloud illumination 
rather than the geometry of the optical source—is key to retrieving altitude information optically. As optical 
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signals traverse the cloud medium to the satellite, they become modified through absorption and scattering in the 
cloud. Even identical optical sources located at different altitudes would take on a different appearance to GLM 
based on the optical characteristics of the cloud medium along the paths their emitted photons traveled to the 
instrument. By interpreting the spatial energy distributions of GLM groups (termed “radiance patterns”), we are 
attempting to decode the cloud attributes contained within the optical lightning signals.

2.2.1.  Radiance Patterns From High-Altitude and Low-Altitude Sources

The key mechanism behind the differences in appearance between low-altitude sources and high-altitude sources 
is the number of scattering interactions that the optical emissions encounter before reaching the satellite. The 
emissions from low-altitude sources experience more scattering events than high-altitude sources, which permit 
the optical energy to be spread over a larger area. As a result, the radiance patterns from modeled sources (Peter-
son, 2020a) are broader with a lower amplitude in low-altitude cases, and brighter and more concentrated when 
the source is placed at high altitudes near the cloud top.

We can see these trends in groups observed by GLM. Figures 1 and 2 show two examples of GLM groups from 
the Colombia thunderstorm that the COLLMA determined to be comprised of primarily low-altitude sources 
between 5 and 10 km (Figure 1), and high-altitude sources around 15 km (Figure 2). Both figures are formatted 
following the convention of Figures 10–12 in Peterson et al., 2021a with a central panel (d) showing the nor-
malized group radiance pattern (dark indicating low energy, light indicating high energy) with LMA sources 
(green boxes) and ENGLN strokes (asterisks where blue denotes −CGs and red denotes +CGs) overlaid. Plus 
symbols (+) also indicate the locations of events to clarify which pixels are illuminated. The upper panels show 
the longitude-altitude LMA source distribution in (c) and GLM energy distribution by longitude in (a). The bars 
in (a) denote totals, while plus symbols describe individual events. The panels to the right of the plan view in (d) 
repeat these two plots for latitude. The bottom two plots show timeseries of LMA altitude (g) and GLM group 
energy (i) along with a LMA altitude distribution for the full 15-min period that contained the flash (h). Finally, 
the upper right panel (b) shows the GLM group area/group maximum event energy distribution for the flash with 
a polynomial fit overlaid and its reduced chi2 value listed. Groups are color coded in (i) and (b) according to their 
order in the flash (dark: early, light: late) and the current group is indicated with a dashed line in the timeseries 
and as a red symbol in the energy/area distribution.

The group shown in Figure 1 corresponded to the second ENGN-CG from the flash. The GLM radiance pattern 
was broad, with events exceeding 10% of the maximum event energy occurring in 7 of the 8 columns and 6 of 
the 7 rows on the portion of the GLM CCD array spanned by the group footprint. The group area/max. energy 
curve in Figure 1b also shows that subsequent groups illuminated the surrounding cloud in the same way, such 
that group area could be predicted from maximum event energy following the polynomial fit. By comparison, the 
energy from the group in Figure 2 is highly concentrated in the single brightest event. Despite being a large group 
(half the size of the group in Figure 1), the peak energy of the high-altitude group in Figure 2 reached 200 fJ 
(compared to 30 fJ in Figure 1) and only two other events in the group (immediately to the north and west of the 
brightest group) exceeded 10% of the maximum event energy. This is the same behavior that we saw previously 
during GLM flashes that produced Gigantic Jets (GJ) (Boggs et al., 2019), which extend upward from the cloud 
top. The GLM energy was not only concentrated in a single pixel co-located with the GJ, but this pixel remained 
illuminated over many frames.

2.2.2.  Selecting the Prediction Altitude

The flash case in Figure 1 demonstrates a key challenge for predicting the source altitude: even though the flash 
acts like a confined feature in how it illuminates the cloud (Figure 1d), the LMA source altitudes associated with 
individual groups range from 5 to 10 km (or from the ground in the case of the −CGs). Assigning a single altitude 
to optical sources that have a finite vertical dimension is a difficult proposition. Any altitude that we select for 
this type of optical source will be subject to biases from our assumptions of where the peak currents are located 
and how we quantify GLM's detection advantage for higher-altitude sources. For example, we might assume that 
peak emission occurs where the branches come together near the ground in this −CG case, and thus the minimum 
LMA altitude would be the best choice. Or we might assume that low-altitude sources are severely attenuated 
based on the previous modeling work in Peterson  (2020a), so the in-cloud emissions described by either the 
mean or maximum LMA source altitude better represent the optical source altitude. We know from Peterson 
et al. (2021a) that GLM favors detecting sources near the cloud top in the Colombia thunderstorm, and this can be 
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verified by comparing the vertical distributions of all LMA sources in Figure 3a to the distribution of mean LMA 
altitude for all sources matched to a GLM group in Figure 3b over the thunderstorm duration. These two panels 
show that GLM has difficulty detecting optical emissions from low-altitude sources (<7 km), particularly around 
09:00 UTC and in the 10:00 UTC  hr. If GLM does not detect these low-altitude sources, then we will not be able 
to include them in the retrieved GLM altitude distributions. Even if the algorithm performs very well, there will 
still be biases in the GLM-derived vertical altitude distributions from these missed events. As this is a particularly 
complex issue that requires further investigation, we will choose to predict the LMA mean altitude for the groups 
that were detected and accept biases from poor characterization of low-altitude sources as a potential source of 

Figure 1.  The largest Geostationary Lightning Mapper (GLM) group in an example low-altitude Lightning Mapping Array 
(LMA) flash. The plan view (d) shows an image of the group (dark: low energy, light: high energy) with events indicated 
with a + symbol, LMA sources overlaid with small green boxes, and ENGLN -CG (blue) or +CG (red) strokes indicated with 
asterisk symbols. Panels (c) and (e) show LMA cross sections by altitude and either longitude (c) or latitude (e). Panels (a) 
and (f) show cross sections of GLM energy by longitude (a) or latitude (f). Plus (+) symbols in (a) and (f) indicate individual 
events while bars show column totals. Timeseries for LMA source altitude (g) and GLM group energy (i) are shown below 
the map. An LMA source altitude distribution is provided in (h), while the group energy/area distribution for the GLM flash 
is shown in (b). The groups in (b) and (i) are color coded by their time-ordered index number. A polynomial fit is also applied 
to the data in (b) and shown as a dashed line with its reduced chi2 value overlaid.
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error. A different method to derive the prediction altitude or normalization strategies to account for missed events 
can always be considered in future studies to mitigate this issue.

The other key challenge for predicting source altitude with GLM is that these altitudes are determined by top-
down measurements of cloud illumination rather from the ground-up view provided by the LMA. Thus, the ap-
pearance of the group will depend on the cloud layers between the optical source and satellite, making it sensitive 
to the local cloud top height. This is not a new issue for GLM, whose observations are commonly interpreted 
under the assumption that the optical illumination is contained within the boundaries of the thunderstorm core 
where the local cloud-tops approximately reach the height of the tropopause (Virts & Koshak, 2020). The true 
“detection altitude,” where the light escapes the cloud might be taller or shallower than the prescribed ellipsoid 
altitude, and this results in parallax errors in GLM geolocations (Virts & Koshak, 2020). Thundercloud illumina-
tion as viewed from space depends on the depth of cloud between the source altitude and the detection altitude. 
If we attempted to directly predict the altitude of the LMA measurements or predict an altitude normalized to 
the GLM ellipsoid, the resulting predictions would be subject to similar biases. These predictions might be 

Figure 2.  As in Figure 1, but for the largest Geostationary Lightning Mapper (GLM) group in an example high-altitude 
Lightning Mapping Array (LMA) flash.
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reasonable for periods of intense convection, but performance is expected to suffer outside of these periods or 
outside of the convective core.

This issue can be addressed by normalizing the LMA source altitudes to the local cloud top height. The Advanced 
Baseline Imager (ABI) Cloud Top Height (CTH) product is an attractive choice because ABI is on the same sat-
ellite as GLM and has a similar FOV. However, relying on ABI CTH data introduces a number of additional ca-
veats. The ABI Cloud Height Algorithm (ACHA) is an operational algorithm based on joint measurements from 
the ABI infrared bands (CH14: 11.2 μm, CH15: 12.3 μm, and CH16: 13.3 μm), and its CTH estimates are subject 
to the uncertainties described in its Algorithm Theoretical Basis Document (ATBD) (Heidinger, 2012) and the 
less frequent sampling interval of ABI (10 min) relative to GLM (20 s). Perhaps the largest uncertainty for our 
application is its reliance on linear interpolations of temperature profiles supplied by Numerical Weather Predic-
tion (NWP) models. These errors are then compounded by any parallax or location uncertainty between ABI and 
the LMA (or biases from LMA noise sources that are not filtered out) in regions where large CTH gradients exist.

Figure 3.  Timeseries of Lightning Mapping Array (LMA) source altitude (a) and the mean altitudes of LMA sources 
matched to Geostationary Lightning Mapper (GLM) groups (b–e). Measured LMA altitudes are shown for all matched GLM 
groups in (b) and for groups with >5 events in (d), while LMA altitudes normalized to the local ABI Cloud Top Height 
(CTH) are shown in (c) for all groups and (e) for groups with >5 events.
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The effect of these uncertainties on the LMA CTH normalization is shown in the timeseries of GLM-matched 
mean LMA source altitude in Figures 3b–3e that span the duration of the Colombia thunderstorm. Figures 3b 
and 3d show the LMA measured altitudes, while Figures 3c and 3e show the CTH normalizations. Figures 3b 
and 3c contain all matched GLM groups while Figures 3d and 3e examine only the larger groups that consist of 
>5 GLM events. Both normalized timeseries contain activity above the ABI CTH (100%), and this activity is 
particularly common early in the storm (02:15 UTC–07:30 UTC). As we showed in Peterson et al., 2021a (i.e., 
Figure 1), this time period corresponded to the thunderstorm moving into the area. As a result, much of the 
activity contained within the LMA data domain occurred at the edge of the encroaching ABI cold cloud feature 
(CH14 < 234 K) where strong gradients in ABI CTH exist.

If the optical emissions are able to more easily illuminate the storm edge than the dense convective core, the 
group centroids in these edge cases can be located within the CTH gradient region. While the LMA sources 
within the thunderstorm core might still be below their local ABI CTH, the group centroid displaced toward the 
edge of the storm could be above its local ABI CTH. This effect is particularly important with the most opaque 
thunderstorms where only edge illumination is resolved by GLM (as in some cases noted in Peterson et al., 2021a 
from the Colorado thunderstorm). Thus, while these apparent “above-cloud” sources might not make intuitive 
sense, they are still a valuable inclusion in the data set for representing this scenario that is frequently encountered 
with GLM measurements.

2.2.3.  Describing Radiance Patterns With Group-Level Metrics

A key strength of machine learning is that it can help to determine which combinations of input parameters 
(features) best predict the parameters of interest (labels). In total, we have devised 16 parameters in Table 1 that 
could be important for predicting altitude – 14 metrics that describe the groups, and two series/flash level metrics 
that describe the context in which they occur. The example groups in Figures 1 and 2 provide guidance on some 
of the ways that recorded radiance patterns from low-altitude sources and high-altitude sources differ, but these 
differences could be quantified in many ways. We could focus on the spatial concentration of energy or on the 
relationship between group area/energy (as discussed in Peterson et al., 2021a). Alternatively, radiance anomalies 
including “holes” in GLM groups might provide better predictors of source altitude.

Parameter name Units Description

GROUP_ENERGY fJ Group total energy

GROUP_MAX_EVENT_PCT* % Percent of group energy in brightest event

GROUP_AREA* km2 Group footprint area

GROUP_CONVEX_AREA km2 Area of convex hull around all events in the group

GROUP_MAX_LOC_DIS* km Distance between group centroid and brightest event location

GROUP_EVENT_MAX_SEPARATION km Maximum great circle distance between events

GROUP_HWHM km Half Width of Half Maximum of constituent event energy

GROUP_ELONGATION ratio Group elongation factor (major axis length/minor axis length)

GROUP_EVENT_COUNT # Number of events in the group

GROUP_N50 # Min. number of events to capture 50% of the group energy

GROUP_N75 # Min. number of events to capture 75% of the group energy

GROUP_N90 # Min. number of events to capture 90% of the group energy

GROUP_LOCAL_MAX_COUNT # Number of local maxima in the group footprint

GROUP_HOLE_COUNT # Number of holes (pixels with no events) in the group footprint

SERIES_GROUP_MAX_SEPARATION* km Maximum separation of groups in the parent series feature

FLASH_THRESHOLD_APPROX* fJ Approximation of the GLM threshold for the parent flash

Note. Entries with an asterisk symbol were used in the final model.

Table 1 
Geostationary Lightning Mapper (GLM) Metrics That Were Considered as Potential Features for the Machine Learning 
Model
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Intuition based on data is an important place to start determining which parameters should be used. For example, 
Figure 4 compares the percent of the group energy in the brightest event (GROUP_MAX_EVENT_PCT) with 
the overall group energy (GROUP_ENERGY). A two-dimensional histogram of GLM/LMA matches is shown 
in (a), the mean LMA altitude is shown in (b), the number of matches that describe ENGLN strokes is shown in 
(c), and the percent of all matches that originate at high altitudes (>10 km) is plotted in (d). These plots show a 
clear distinction in source altitude with low-altitude sources at GROUP_MAX_EVENT_PCT <25% and source 
altitudes increasing with GROUP_ENERGY and GROUP_MAX_EVENT_PCT. Most of the ENGLN strokes 
that occur in the matched GLM/LMA groups are also located along the bottom of the 2-D histogram (i.e., the 
lowest GROUP_MAX_EVENT_PCT for each GROUP_ENERGY) due to their low altitudes.

Machine learning provides an efficient framework for assessing how well different subsets of the parameters in 
Table 1 can predict the mean LMA altitudes associated with the diverse collection of GLM groups from the Co-
lombia thunderstorm. We collect all of these GLM group metrics into a feature data set and train random forest 
models from unique subsets of the parameters from Table 1 following the methods described in the next section. 
The top model from these tests will be used to analyze the Colombia thunderstorm in Section 3.

2.3.  Scikit-Learn Random Forest Regression

Constructing machine learning models requires dividing the feature and label data into training and testing data-
sets. While we have 22,681 GLM groups matched to LMA sources, this sample of matches is not representative 
of generic GLM data for three reasons:

1.	 �The matching scheme prioritizes assigning LMA sources to the brightest groups in a series rather than the 
nearest group in time.

2.	 �The LMA sources are not distributed uniformly through the cloud depth, but rather are concentrated in the 
primary charge layers of the Colombia thunderstorm.

Figure 4.  Lightning Mapping Array (LMA)/ENGLN attributes of matched Geostationary Lightning Mapper (GLM) groups 
with varying group energy and brightest event percent of group energy values. (a) Two-dimensional histogram of LMA 
matches. (b) Average LMA source altitude contour plot. (c) Two-dimensional histogram of ENGLN CG matches. (d) Fraction 
of high-altitude (>10 km) LMA matches in each bin.
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3.	 �The GLM groups were measured under a low instrument threshold that is not representative of thunderstorms 
elsewhere, particularly during the day.

To account for these biases, we take a judicious approach toward constructing the testing and training datasets. 
We limit the effect of the group matching preference in (1) by only including the brightest group in each unique 
series in the testing/training data. We reduce charge layer bias in (2) by adjusting the number of matches taken 
from each CTH-normalized vertical level as measured by the LMA to ensure nearly equal contributions from 
each vertical layer (through, smaller numbers of sources near the top and bottom of the cloud are still allowed). 
Finally, we address the threshold concerns in (3) by recalculating the group parameters after imposing artificial 
thresholds between 1 and 10 fJ (as in Peterson et al., 2021b), and then adding the surviving groups at each thresh-
old to the testing/training data. Thus, the random forest model is sensitive to how group characteristics change 
under varying instrument thresholds.

Once the feature and label data are compiled, we divide the matched groups into training (75%) and testing (25%) 
samples and begin the scikit-learn random forest regressor for various combinations of features. Note that in 
addition to the designated testing sample consisting of the brightest groups per series, we can also test the model 
with groups that had LMA matches but were not the brightest groups in their parent series as a separate data set 
because this much larger sample is not used for training. We find that many of the 16 parameters that we devised 
in Table 1 were not useful for predicting altitude because they provided redundant information. For example, 
both the group energy Half Width of Half Max (GROUP_HWHM) and the percent of the group energy in the 
brightest event (GROUP_MAX_EVENT_PCT) describe the breadth of the spatial energy distribution for the 
group. While these parameters might provide some unique information in certain situations, the model assigns an 
importance score of 0 on a scale from 0 (not important) to 1 (the only important metric) to one of these parameters 
if the other is included as a feature. Moreover, these parameters have vastly different computational costs. While 
GROUP_MAX_EVENT_PCT is based on a simple sum of event energies, GROUP_HWHM requires modeling 
the radiance fall-off with distance from the brightest event in the group and then finding where this model falls 
below 50% of the maximum energy. As having both metrics does not improve the model, there is simply no 
benefit to using GROUP_HWHM. Other examples include group area/group event count, group area/convex hull 
area, and even group area/group energy.

This exercise revealed a set of five features that had considerable skill in predicting the LMA mean source altitude 
for the matched GLM groups: the maximum separation in the parent series (SERIES_GROUP_MAX_SEPA-
RATION: importance: 0.39), which describes the horizontal extent of the lightning process that generated the 
group of interest; the percent of the group energy in the brightest event (GROUP_MAX_EVENT_PCT: impor-
tance: 0.23), which was shown in Figure 4; the distance between the group centroid and brightest event location 
(GROUP_MAX_LOC_DIS: importance: 0.16), which is sensitive to radiance anomalies in the group footprint; 
group footprint area (GROUP_AREA: importance 0.15); and the approximate GLM threshold for the parent 
flash (FLASH_THRESHOLD_APPROX: importance: 0.06). We ran the random forest regressor with only these 
parameters included as features and then used the resulting machine learning model to predict the source altitudes 
for the GLM groups that were detected in the Colombia thunderstorm.

3.  Results
This section will evaluate the GLM source altitudes retrieved by the random forest model. We will first evaluate 
model performance using the testing sample of matched GLM groups/LMA sources in Section 3.1. Then, Sec-
tion 3.2 will compare GLM and LMA altitude trends within individual flashes and at the storm level over the 
duration of the Colombia thunderstorm.

3.1.  GLM Source Altitude Model Performance With Testing Data

Histograms of LMA mean altitude, GLM predicted altitude, and the altitude difference between the LMA meas-
urements and GLM predictions for the matched groups in the testing data set are shown in Figure 5. Note that we 
do not include single-event groups in these analyses because they lack sufficiently unique information for sources 
at different altitudes to be distinguished. The model mostly assigns these single-event detections to a single layer, 
which is not useful.
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The rows in Figure 5 correspond to various artificial thresholds that have been applied. No threshold is applied 
in Figures 5a–5c, a 2 fJ threshold is imposed in Figures 5d–5f, a 4 fJ threshold is applied in Figures 5g–5i and  
6 fJ threshold is applied in Figures 5j–5l. While the initial sample of LMA mean source altitudes in Figure 5a 
has a nearly equal number of sources between 40% and 100% of the ABI CTH, this near parity is not maintained 

Figure 5.  Comparisons between Lightning Mapping Array (LMA) measured altitudes (a, d, g, j) and Geostationary 
Lightning Mapper (GLM) predicted altitudes (b, e, h, k) in the model testing data set. Model errors are shown in (c, f, i, l). 
Each row corresponds to a different imposed threshold on the GLM groups: 0 fJ (a–c), 2 fJ (d–f), 4 fJ (g–i), or 6 fJ (j–l).
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at higher thresholds (Figures 5d–5j). The same sample of group data from Figure 5a is used to generate these 
higher-threshold samples, but groups associated with LMA sources outside of the primary charge layer (∼70% 
ABI CTH) preferentially fall below the higher imposed thresholds.

Similar biases can be found in the GLM predictions in Figures 5e–5i. Despite matched groups being chosen to 
ensure the LMA mean source altitudes were evenly distributed between vertical layers, the illumination of the 
surrounding clouds leads to group radiance patterns that the model suggests come from the primary charge layer 
at 70% ABI CTH rather than elsewhere in the vertical profile. This could be an indication that the input data is not 
sufficiently robust to account for certain group radiance patterns, as the filters described in Section 2 leave only 
on the order of 100 groups in each vertical level. If this is the case, then adding matched LMA-GLM data from 
additional thunderstorms might improve the model, particularly if the matched data is supplied from multiple 
LMAs across the GLM FOV and represent a diverse collection of thunderstorm charge structures. Another likely 
cause of this bias in the predictions is that our choice of estimating the optical source altitude from the mean LMA 
source altitude is not properly representing sources with finite vertical extents (as we saw with the example flash 
in Figure 1). Rather than taking the mean or maximum LMA source altitude, a normalization scheme to account 
for GLM's detection advantage for high-altitude sources developed from Monte Carlo radiative transfer modeling 
could improve the agreement with observations.

Despite this apparent bias, the model errors in Figures 5c–5i remain low. With no artificial threshold imposed, the 
median absolute error is 9.7% of the ABI CTH, or 1.33 km. Generating similar plots from LMA-matched groups 
that were not the brightest in their series yields similarly low errors. Histograms for the groups not included in 
the training or testing data are shown in Figure S1. The median absolute errors for these predictions range from 
6.62% (0.95 km) for >1 event groups to 4.18% (0.60 km) for >7 event groups.

In most cases, we can at least correctly predict the charge layer within the Colombia thunderstorms that the opti-
cal emissions originated from. Interestingly, imposing a higher threshold actually improves these error statistics. 
This could be an effect of the increasing concentration of sources in the layer centered at 70% CTH, or it could 
signify that removing the fainter events along the periphery of the GLM groups by imposing a higher threshold 
improves the altitude estimate by limiting the cloud-edge illumination that results in CTH uncertainty.

To test if these reduced errors under higher thresholds are physical, we construct new altitude histograms based 
on event count under a 6 fJ threshold in Figure 6. As we saw in Peterson et al., 2021a, the altitude profiles depend 
on group size with single-pixel groups primarily originating from near the top of the cloud and large multi-pixel 
groups originating from low altitudes. These trends are expected to be amplified under a high threshold. Indeed, 
while the peak in the altitude distribution for all >1 event groups (Figures 6a–6c) is at 70% ABI CTH, increasing 
the event count to >3 events in Figures 6d–6f, >5 events in Figures 6g–6i, and >7 events in Figures 6j–6l causes 
the peak to descend in altitude. Meanwhile, the median absolute errors in Figures 6c–6i decrease from 4.56% 
(0.64 km) to 3.83% (0.54 km), 3.45% (0.51 km), and 1.89% (0.3 km) as the groups increase in size and the peak 
becomes displaced vertically from the primary charge layer in the thunderstorm. Thus, higher thresholds proba-
bly do improve the altitude estimates. However, these improvements come at the cost of limiting the number of 
predictions that can be made, as the abundant dim groups most quickly fall below threshold.

3.2.  GLM Source Altitude Model Predictions of Flash Structure/Thunderstorm Trends

The GLM source altitude prediction model is next applied to all GLM groups from the Colombia thunderstorm, 
regardless of whether they match any LMA sources. Applying the model generally will allow us to examine how 
well it captures major LMA altitude trends at the flash and thunderstorm level.

We begin by using the LMA-matched data to reproduce the altitude timeseries from Figures 3b–3e with GLM 
predictions in Figure 7. Figures 7a and 7c are identical to Figure 3, while Figures 7b and 7d replace the ABI CTH 
timeseries with GLM-retrieved altitude timeseries. Note that these GLM altitudes have been converted back to 
units of kilometers using the local ABI CTH at each group centroid for direct comparison with Figures 7a and 7c. 
As before, the first two panels consider all matched groups (including single-event groups) while the last two 
panels consider only groups with >5 constituent events.

Despite the expected uncertainty from ABI CTH gradients and the use of LMA mean source altitudes as a proxy 
for the optical source altitude, the GLM predictions are able to reproduce the primary features in the LMA 
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altitude distribution over the thunderstorm duration, including periods of intensification leading to increases in 
source altitude at 07:00 UTC, 09:00 UTC, and 10:00 UTC and maturation causing source altitudes to decrease 
after 11:00 UTC. Still, the GLM altitude timeseries for all groups (Figure 7b) and >5 event groups (Figure 7d) 
over-estimate the peak source altitudes during periods of intensification. This appears to be due to the ABI CTH 

Figure 6.  Comparisons between Lightning Mapping Array (LMA) measured altitudes (a, d, g, j) and Geostationary 
Lightning Mapper (GLM) predicted altitudes (b, e, h, k) for a 6 fJ threshold in the model testing data set. Each row 
corresponds to a minimum number of events per group: >1 event (a–c), >3 events (d–f), >5 events (g–i), or >7 events (j–l).
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normalization. The group radiance profile suggests that the source is above the local ABI CTH value, but the ABI 
CTH is high enough that the altitudes retrieved from the GLM data are predicted to be between 17 and 20 km. 
If we re-run the model without the normalization (not shown for brevity), these 17–20 km predicted altitudes 
disappear, but the model then over-estimates the altitudes of low-altitude sources that are embedded in shallower 
clouds. A 90th percentile altitude product or something similar applied to the ABI CTH normalized data might 
preserve these low sources while still permitting changes in source altitudes to be tracked.

GLM-retrieved altitudes could also be used to generate new GLM gridded products (Bruning et al., 2019). Fig-
ure 8 examines the spatial distributions of these LMA measured and GLM predicted altitudes by computing a 
Mean Source Altitude (MSA) grid over 1.5 hr intervals between 07:30 UTC and 12:00 UTC. LMA measurements 
of MSA are shown in the left column (Figures 8a, 8e, 8i and 8m) and the LMA vertical profile is shown in the 
second column (Figures 8b, 8f, 8j and 8n). These plots are then repeated for the GLM predicted altitudes in the 
right two columns. The MSA grid at 07:30 UTC contains a single concentrated feature with high source altitudes 
surrounded by a small number of matched groups around its edges. This MSA feature describes an isolated thun-
derstorm that was active during this period before the larger and more mature storm system moved into the LMA 
data domain. As we saw in Figure 7b, the GLM predictions overestimate the tallest LMA source altitudes at this 
point in time, though the peak in the altitude profile (Figure 8d) is nearly identical to the LMA (Figure 8b). The 
isolated matched groups around the storm edges are also at low altitudes (3–6 km) in both the LMA and GLM 
plots. Normalizing by ABI CTH allows the GLM predictions to pick up on these lower edge sources.

Figure 7.  Timeseries of the mean altitudes of Lightning Mapping Array (LMA) sources matched to Geostationary Lightning 
Mapper (GLM) groups (a,c) and GLM predicted altitudes from matched groups (b,d). As in Figure 3, (a) and (c) include all 
matched groups while (b) and (d) only consider groups with >5 events.
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The MSA grids become more complex by 09:00 UTC (Figures 8e–8h) with multiple lightning centers containing 
flashes at different altitudes. By this point in the storm, the larger and more mature thunderstorm feature had 
moved into the LMA domain and was generating low-altitude propagating flashes. These horizontal flashes 
occurred between 5 and 9 km in the LMA data (Figure 8e) and the GLM predicted altitudes largely agree (Fig-
ure 8g). The key difference between the LMA measurements and GLM predictions here is in the quantity of 
low-altitude sources (Figures 8f and 8h), not the average source altitudes.

The previous trends for 07:30 UTC and 09:00 UTC persist to the 10:30 UTC time step (Figures 8i–8l). The GLM 
predictions are occasionally higher than the LMA measurements, but the peak of the distribution is identical 
and both MSA grids show the same trends of higher sources in the eastern convective feature while low-altitude 
sources dominate the western flank of the storm. Finally, by 12:00 UTC (Figures 8m–8p), the low-altitude prop-
agating flashes overtake the higher-altitude convective flashes, causing both the LMA and GLM altitude profiles 
to peak at just 7 km altitude.

To evaluate the performance of the GLM altitude prediction model at the flash level, we repeat the analyses in 
Figures 1 and 2, while adding a new overlay to represent the GLM predicted altitude for every multievent group 
during the flash of interest. GLM altitude predictions for the low-altitude flash in Figure 1 are shown in Figure 9 

Figure 8.  Mean Source Altitude (MSA) grids (left) and source altitude profiles (right) constructed from LMA measured 
altitudes (a–b, e–f, i–j, m–n) and Geostationary Lightning Mapper (GLM) predicted altitudes (c–d, g–h, k–l, o–p). Each row 
corresponds to a unique time during the Colombia thunderstorm in 1.5 hr increments starting at 07:30 UTC (a–d).
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while the predicted altitudes from the high-altitude flash in Figure 2 are shown in Figure 10. These new GLM 
altitude overlays are added to the longitude/altitude cross sections (Figures 9c and 10c), latitude/altitude cross 
sections (Figures 9e and 10e), and altitude timeseries (Figures 9g and 10g) in the same style as GLM groups in the 
plan view (Figures 9d and 10d) and area/energy distribution (Figures 9b and 10b). The GLM groups are depicted 
with greyscale box symbols whose color corresponds to the time-ordered group index. GLM predicted altitude 
histograms are also added to Figures 9h and 10h.

As with the previous thunderstorm trends, the GLM predicted altitudes from the low-altitude flash in Figure 9 are 
largely consistent with the vertical range of LMA source altitudes (Figure 9h). While differences arise between 
GLM and the LMA for individual groups, much of this can be attributed to the vertical extent of LMA sources 
involved in each match. GLM, likewise, correctly predicts that the LMA sources in the high-altitude flash in 
Figure 10 occur around 15 km altitude. However, GLM adds more detail to this flash case, as the LMA only re-
corded one source before 550 ms into the GLM flash (which could be noise due to its low altitude and horizontal 

Figure 9.  As in Figure 1, but with Geostationary Lightning Mapper (GLM) predicted source altitudes (greyscale boxes) 
added to (c), (e), and (g). Box colors are identical to (b) or (i), but single-event groups are not shown. Lightning Mapping 
Array (LMA) source (green) and GLM group (gray) altitude profiles for the specific flash in question are added to (h).
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separation from the other sources). All of the GLM predicted source altitudes are above 10 km in this case, which 
is consistent with the LMA flash.

Figure  11 performs the same analysis as Figures  9 and  10 for the ascending flash discussed in Peterson 
et al., 2021a. This flash produced LMA sources primarily in the 5 km layer early on and generated two ENGLN 
-CGs before developing upward into the 10 km layer between 300 and 400 ms into the GLM flash. We see the 
same behavior in the GLM predictions in Figure 11g. There were five groups in the early portion of the flash 
(before 300 ms), and the model predicted that four were located in the 5 km layer. The later development into the 
upper layer was accompanied by sustained optical illumination, and the GLM-predicted source altitudes during 
this period likewise ascend into the upper layer. As discussed in Peterson et al. (2021a), the upward development 
of the flash causes the group area/energy distribution to have a “forked” appearance due to the low-altitude sourc-
es producing a different area/energy relationship than high-altitude sources. This can be seen in Figure 11b here. 
These differences in how clouds are illuminated by sources at different altitudes are key to being able to predict 
source altitude with GLM.

Figure 10.  As in Figure 9, but for the high-altitude Geostationary Lightning Mapper (GLM) flash in Figure 2.
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The final flash that we examine in Figure 12 is the case of a long horizontal lightning flash that descended in 
altitude as it developed from the rear of the convective line into the stratiform region. This flash spawned a sin-
gle ENGLN +CG and was unique from a GLM perspective for generating large, elongated groups that traced 
significant fractions of the existing lightning channel. Despite the limited quantities of stratiform flashes in the 
testing/training datasets, the GLM predictions are able to map the descent of the LMA flash from 14 km altitude 
at its origin in the northeast down to 5 km as it traversed the electrified stratiform region. The longitude/altitude 
(Figure 12c), latitude/altitude (Figure 12e), and timeseries (Figure 12g) all show reasonable matches between the 
LMA measurements and GLM predictions until the end of the flash (beyond 1,500 ms). After this point, GLM 
predicts vertical development to high altitudes (10–15 km). While LMA sources are not present at this point to 
confirm or refute these GLM altitudes, we do see this behavior with the LMA sources earlier in the flash around 
the time of the +CG.

The storm-level analyses in Figures 7 and 8, and the flash-level analyses in Figures 9–12 demonstrate that the 
GLM altitude prediction model is able to resolve the temporal and spatial variations in LMA altitude that result 

Figure 11.  As in Figure 9, but showing the Geostationary Lightning Mapper (GLM) predicted altitudes following the 
ascent of Lightning Mapping Array (LMA) sources in the upward-developing LMA flash that was discussed in Peterson 
et al., 2021a.
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from changes in the kinematics of the Colombia thunderstorm and are consistent with the physical structure of 
the flashes mapped by the LMA. The ability of the model to predict storm-scale and flash-scale trends in the 
LMA data that are not supplied as training data to the random forest regressor confirms that its skill does not 
come from overfitting the data, but instead that altitude information can be extracted from GLM measurements 
of thundercloud illumination.

4.  Conclusion
In this third part of our thundercloud illumination study, we use machine learning methods to determine whether 
source altitude information can be retrieved from the spatial energy distributions of GLM groups. To do this, 
we find the LMA sources that match the GLM groups recorded from a thunderstorm in Colombia, construct 
group-level metrics to describe attributes of their radiance patterns that are relevant to thundercloud illumination, 
and then use the Python scikit-learn random forest regressor to construct a model for predicting mean LMA 
source altitude (normalized by ABI Cloud Top Height) from these group-level metrics.

Figure 12.  As in Figure 9, but showing the Geostationary Lightning Mapper (GLM) predicted altitudes resolving the descent 
of Lightning Mapping Array (LMA) sources in a long horizontal flash.
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We find that the machine learning model can retrieve source altitudes in the testing data set (and also in data not 
used for testing or training) well enough to determine which charge layer the optical emissions originated from 
(median absolute error: 1.33 km). The model also has skill in capturing changes to the LMA source altitude 
distributions from the thunderstorm in response to convective invigoration or maturation and in resolving the 
vertical extent of individual lightning flashes, including cases where the flash ascends or descends in the cloud.

Additional work is needed to expand these methods into a general source altitude retrieval algorithm that can 
work with arbitrary measurements. Future work will expand our collection of matched GLM-LMA data to en-
able the construction of such a retrieval. The eventual goal is to be able to derive flash-level, storm-level, and 
climatological lightning altitude trends over the full 25-year global lightning data set provided by OTD, LIS, 
GLM, and other similar instruments. Currently, these analyses are only possible with a reasonable accuracy over 
limited regional domains (for example, within ∼300 km of an LMA). Adding this capability to all of the lightning 
imagers will provide an unparalleled view of the three-dimensional extent of global lightning and its response to 
a changing climate.

Data Availability Statement
Open Research: The GLM/LMA matched data used in the study are available at the Harvard Dataverse and may 
be accessed via the DOI listed in Peterson (2021b). The machine learning models developed in this study are also 
available at the Harvard Dataverse and may be accessed via the DOI listed in Peterson (2021c).
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