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Abstract

Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation
during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly
expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4
knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the
intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and
colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine
is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a
tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted
small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining
goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also
changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC) staining
and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are
affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT), was not affected. In addition, we found
KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D)
intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human
colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial
cell morphology by regulating proliferation, differentiation and polarity of the cells.
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Introduction

Colorectal cancer is the second most commonly diagnosed

cancer among men and women and the second leading cause of

cancer deaths in the United States [2,3]. Different genetic

variations could lead to abnormal epithelial development and

polyp formation, which could be further induced to progression of

colorectal carcinomas [4]. Wnt signaling plays an important role

in early stages of colorectal carcinogenesis; abnormality in the

gene APC or b-catenin leads to aberrant crypt formation [5,6].

Mutations in other oncogenes and tumor suppressor genes, such as

K-ras and p53, also contribute to colorectal carcinogenesis [4].

KLF4 is a zinc finger transcription factor initially found to be

enriched in the epithelium of intestine and skin [7,8]. Later, it was

found in a variety of other tissues, such as thymus, cornea, cardiac

myocytes and lymphocytes [9,10,11,12]. KLF4 plays an important

role in development and cell differentiation [8,13,14]. In normal

intestine, KLF4 is predominantly expressed in differentiated

epithelial cells near the luminal surface and goblet cells in the

crypts [15,16]. KLF4 is down-regulated in colorectal cancers and

has been identified as a tumor suppressor [17,18,19]. As one of the

four factors that induce pluripotent stem cells, KLF4 plays a role in

cell fate reprogramming and self-renewal of embryonic stem (ES)

cells [20,21]. The roles of KLF4 in differentiated intestinal cells are

not well understood.

Mice homozygous for a null mutation in KLF4 had defects in

terminal differentiation of goblet cells, while further study of KLF4

in mouse intestine was hampered due to early lethality of mutant

mice [14]. Using Villin-Cre recombinase system, another study

found that conditional ablation of KLF4 from the intestinal

epithelium led to failure of goblet cell differentiation [15], which

also highlights the role of KLF4 in maintaining intestinal epithelial

morphology and homeostasis. Interestingly, depletion of KLF4

from two-week-old mice using vil-CreER, an inducible Cre

recombinase, had no effect on goblet cell differentiation [22].

The discrepancy may be due to differential expression of the villin

gene in early and later stages of gut development [23]. In this

study, we analyzed the role of KLF4 in the adult intestine using an

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32492



inducible Cre recombinase, which is driven by native promoter of

KLF4.

Results

KLF4 loss leads to change in number of goblet cells and
morphology of the small intestinal epithelium

In order to test the function of KLF4 in adult intestinal

epithelium cells, we generated inducible KLF4 knockout (Klf42/2)

mice, which are KLF4/CreER (+/2) and KLF4(flox/flox) double

transgenic. The Cre recombinase cDNA fused with tamoxifen-

inducible estrogen receptor gene was inserted into BAC clone at

the initiating methionine of KLF4 gene. Thus, the expression of

Cre recombinase is driven by the KLF4 promoter in transgenic

mice. Induction of KLF4/CreER (+/2) and KLF4(flox/flox)

double transgene with tamoxifen led to activation of Cre

recombinase. The KLF4 function in the skin was studied using

this mouse model. KLF4 depletion resulted in a significant

increase of hair follicle density, as well as changes of suprabasal

cells from a single layer into multiple layers, which is indicating an

inhibitory role of KLF4 in proliferation of mouse skin keratino-

cytes [24]. In the small intestine, the Cre recombinase was

predominantly expressed in the top of the villus, and which is

recapitulating expression pattern of endogenous KLF4 (Fig. 1A).

Tamoxifen-mediated Cre recombinase activation resulted in

partial depletion of KLF4 when compared with non-induced

transgenic mice (Fig. 1A).

Haematoxylin and eosin (H&E) staining results indicated an

increase in the number of secretory cells in Klf42/2 intestine; the

position of these cells appeared to be dislocated compared with

control intestine (Fig. 1B). To analyze the effects of KLF4

depletion on goblet cells, which are one of the secretory cell

lineages in the small intestine, tissue sections were stained with

both Periodic acid-Schiff (PAS) and Alcian Blue (AB), respectively

(Fig. 1C left panel). An enlargement in size and an increase in the

numbers of PAS and AB positive cells indicated an increase in

goblet cell proliferation in small intestine of Klf42/2 mice (Fig. 1C

right panel), which highlights the role of KLF4 in maintaining

numbers of goblet cells in mature small intestine. Time point-

specific changes in number of PAS positive cells due to tamoxifen

treatment further indicated that KLF4 is critical for goblet cell

number maintenance (Fig. 2A). It is worth noticing that our result

is distinct from the finding that KLF4 knockout leads to loss of

Goblet cells in the colon [14], and that conditional ablation of

KLF4 also leads to loss of goblet cells in the intestinal epithelium

[15]. The difference is due to the stage of KLF4 knockout before

or after goblet cell differentiation. KLF4 depletion had no effect on

neuroendocrine cells, as indicated by immunofluorescent staining

for neurotensin (NT) (Fig. 1D), suggesting that function of KLF4 in

small intestine is cell type-specific.

KLF4 ablation leads to abnormal proliferation and
differentiation in small intestinal epithelium

In order to further examine the role of KLF4 in intestinal

epithelial cells, the morphology change was analyzed in Klf42/2

mice compared with non-induced (Day 0) mice by H&E staining

(Fig. 2A): The average length of the crypt-villus axis was increased

in Klf42/2 mouse intestine (Fig. 2A, 2B). The number of secretory-

like cells is increased; these cells either have larger volume of

vacuoles or contain secreted granules like Paneth cells (Fig. 2A). A

large number of cell nuclei lost apical-basolateral polarity, which is

typical of the wild-type enterocytes. Instead of a monolayer of well-

oriented epithelial cells, Klf42/2 intestine had multiple layers of

disorganized cells (Fig. 2A, C). Positions of the secretory cells were

changed; instead of sitting at the bottom of the crypt, the granule-

containing cells dislocated upward in the crypts (Fig. 2A, C). In

order to confirm that the morphology change was not due to

tamoxifen treatment, small intestine from wild-type (WT) mice

treated with tamoxifen was stained as a control; they showed a

normal morphology as non-treated transgenic mice.

The cell proliferation marker Ki67 was analyzed by IHC. The

average length of Ki67+ region along the crypt-villus axis, as well

as numbers of Ki67+ cells increased (Fig. 2A–C), i.e., proliferation

compartment of the intestine was expanded, indicating an increase

in proliferation capacity in Klf42/2 mouse intestine. PCNA is

another proliferation marker; and its change in response to KLF4

loss is consistent with the results from Ki67 staining (Fig. 2A). This

further highlights the role of KLF4 in inhibiting intestine

proliferation.

In addition to goblet cell staining, the role of KLF4 in intestinal

cell proliferation was confirmed by staining for other cell types

including Paneth cells and tuft cells. Tissue slides from both

normal and Klf42/2 intestine were stained for lysozyme, which is a

marker for Paneth cells (Fig. 2A and C). A larger proportion of

cells stained positive for lysozyme in small intestine from Klf42/2

mice compared with control mice, and these cells were dislocated

through the crypt-villus axis, indicating that KLF4 loss also led to

an increase in Paneth cell population and has an effect on position

of these cells. This result re-emphasizes the role of KLF4 in

controlling Paneth cells and strongly supports the finding from the

KLF4 knockout study using villin Cre [15].

Based on the current model, small intestine is composed of the

Paneth cell region (bottom of crypt), the stem cell zone (through +4

location), an amplification compartment (up to top of crypt) and a

differentiation compartment (including crypt-villus junction)

[25,26]. To further analyze the effect of KLF4 on intestinal

homeostasis, tissue sections from Klf42/2 mouse intestine were

stained for stem cell and/or tuft cell marker DCAMKL-1 [27]

(Fig. 2A–C). Surprisingly, DCAMKL-1 positive cells were

increased in the Klf42/2 mouse small intestine along the villus,

but were not restricted to the crypt base, indicating an increase in

number of tuft cells due to loss of KLF4.

Based on our observation of changes in cell position as well as

epithelial apical-basolateral morphology, we proposed that KLF4

is not only responsible for controlling cell differentiation and

proliferation, but also cell polarity. As indicated by H&E staining,

a great part of the cell nuclei lost polarity in Klf42/2 mouse small

intestine. Paneth cells change their position due to depletion of

KLF4. Meanwhile, most of the tuft cells that were positive for

DCAMKL-1 also were out of direction in knockout mice (Fig. 2A,

C). In order to investigate the role of KLF4 in regulating cell

polarity, we generated a three-dimensional (3D) epithelial cyst

formation assay for Caco-2 cells, in which the morphological

structure of cyst and apical-basolateral cell polarity can be

examined in vitro.

KLF4 is essential for cell polarity and crypt-cyst formation
in 3D culture of Caco-2 cells

Normally, Caco-2 cells with high polarity form lumen-

containing cysts in matrigel-based 3D culture and show apical-

basolateral polarity as indicated by ZO-1 as a basolateral marker

and a6-integrin as an apical marker, respectively (Fig. 3A, bottom;

Fig. 3B, top); low- or no-polarity Caco-2 cells only form cysts

without lumen (Fig. 3B, bottom). Staining of a6-integrin and ZO-1

for Caco-2 cells in 2D culture is shown as control, indicating non-

polarization of Caco-2 cells in 2D growth conditions (Fig. 3A, top).

To determine the role of KLF4 in lumen-cyst formation, KLF4

was depleted in Caco-2 cells by siRNA and shRNA delivery

KLF4 Regulates Intestinal Cell Morphology
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approaches, respectively (Fig. 3C and 3D left panels), followed by

3D formation assay. The number of lumen-cysts and total number

of cysts were counted and the percentage of lumen-cyst was

calculated to indicate the measure of cell polarity. We found that

the efficiency of lumen-cyst formation was significantly reduced by

siRNA and shRNA (Fig. 3C and 3D), suggesting that KLF4 is

essential for cell polarity formation in the 3D culture of Caco-2

cells. To examine the role of KLF4 in apical-basolateral polarity in

the intestine, we stained the knockout intestine tissues with ZO-1

antibody and found that KLF4 does regulate ZO-1 expression and

distribution in the intestinal epithelial cells: instead of being highly

expressed in the outer layer of epithelial cells surrounding the

villus, KLF4 knockout intestine had overexpressed ZO-1 in

multiple layers of villus (Figure 2C). This confirmed that KLF4

does not only regulate polarity formation of Caco-2 cells, it also

regulates apical-basolateral polarity in intestinal epithelial cells.

KLF4 facilitates cell polarity and crypt-cyst formation in
colon cancer cells

In order to confirm the role of KLF4 in facilitating cell polarity

formation, 3D culture assay was performed in another colon

cancer cell line to test whether KLF4 can enhance cyst formation

Figure 1. KLF4 loss leads to change in number of goblet cells and morphology of the small intestinal epithelium. (A) Left: IHC staining
for Cre recombinase in Klf42/2 small intestine. Right: IHC staining for KLF4 in control and Klf42/2 small intestine tissues. (B) H&E staining of control
and Klf42/2 small intestine tissues. (C) Small intestine treated with tamoxifen for 5 days were stained for Periodic acid-Schiff (PAS, top) and Alcian Blue
(AB, bottom). (*, P,0.05) (D) Tissue slides from small intestine of control and Klf42/2 mice were stained for neurotensin (NT) antibody and detected
by immunofluorescent antibody.
doi:10.1371/journal.pone.0032492.g001
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in vitro. The LS174T-KLF4 stable cell line expresses KLF4 upon

doxycycline induction [18]. LS174T cells seldom form cysts, even

under 3D culture conditions. However, induction of KLF4

expression in LS174T cells significantly increased the chances of

cyst formation in 3D culture (Fig. 4A, B), indicating that KLF4

indeed enhances cell polarity and thus facilitates cyst formation in

3D formation assay.

In order to address the mechanism by which KLF4 regulates

cell polarity both in a knockout mouse model and in a 3D culture

system, a panel of cell fate and polarity-related genes were

analyzed by semi-quantitative RT-PCR. KLF4 was induced by

doxycycline in LS174T-KLF4 colon cancer cells (Fig. 4C).

Though we didn’t see significant changes in DCAMKL-1

transcription, several polarity-related genes, LKB1, EPHB2, and

EPHB3, were down-regulated. Intestinal stem cell markers LGR5

and CD44 were also down-regulated. As controls, the differenti-

ation marker IAP and cell cycle inhibitor P21, which are known

KLF4 target genes, were up-regulated by KLF4 (Fig. 4D). These

findings suggest that KLF4 regulates epithelial cell polarity by

regulating the transcription of multiple genes.

Discussion

As an important regulator in intestinal cell differentiation during

early development, KLF4 is also essential in maintaining normal

homeostasis and morphology in adult intestine. Previous studies

have deleted KLF4 in embryonic stages of mouse intestine; the

terminal differentiation of goblet cells was decreased in these mice

[14,15]. Here, we reported that in mature mouse intestine, partial

depletion of KLF4 resulted in an increase in the number of goblet

cells, indicating that KLF4 is required not only for goblet cell

differentiation in early stages, but also for maintaining the number

of differentiated goblet cells, probably by inhibiting cell prolifer-

ation. This is consistent with the observation that KLF4 is strongly

expressed in goblet cells [15,16,19]. We found that the average

length of crypts was increased in KLF4-depleted small intestine,

and the number of Ki67 positive cells was also increased. In

agreement with previous findings, the number and position of

Paneth cells had also changed [15]. DCAMKL-1 is a marker for

tuft cells, and a potential marker for quiescent intestinal stem cells

[28,29]. We found that the number and position of DCAMKL-1

positive cells was also altered by KLF4 depletion. The changes in

morphology and polarity of intestinal epithelial cells were

confirmed by H&E staining. These data suggest that KLF4 plays

a key role in maintaining normal intestinal homeostasis and

morphology by regulating cell differentiation, proliferation and

polarity. The roles of KLF4 in cell polarity were further analyzed

in 3D culture, and several novel KLF4 target genes involved in cell

differentiation and polarity were identified.

Our results suggest tamoxifen-induced knockout of KLF4 is

advantageous in tissue- and stage-specificity. We were able to

partially deplete KLF4 in the villi of small intestine, where KLF4

normally predominantly expresses. In addition, the inducible

knockout strategy allows normal development of small intestine in

the early stage of development, which assures that lineage

differentiation (i.e., the ability to differentiate Paneth and goblet

cells) and intestine function is not affected by KLF4 depletion. The

limitation of our model is that KLF4 depletion is not complete.

KLF4 is more efficiently deleted in differentiation cells, but less

efficiently deleted in progenitor cells that have low levels of KLF4.

The daughter cells differentiated from these progenitor cells may

express high levels of KLF4. Thus, this mouse model can be used

to study KLF4 function in differentiated cells, but is not suitable to

study KLF4 function in cell fate determination during stem cell

differentiation.

As to the function of KLF4 in cell proliferation, KLF4 plays a

crucial role in maintaining the integrity of the cell cycle [30]. Low

levels of KLF4 mRNA are essential for cell proliferation [7]. In our

study, the proliferating compartment of the intestine in Klf42/2

mice was increased while the total length of the villus-crypt axis

turned out to be increased as well, suggesting the role of KLF4 in

inhibiting outgrowth of the intestine villus-crypt beyond normal

length. The numbers of goblet cells, Paneth cells and tuft cells were

increased in KLF4 depleted small intestine, further suggesting that

KLF4 inhibits proliferation of certain cell types and thus

contributes to maintaining normal cell populations in the intestine.

KLF4 also regulates the proliferation of stem cells and/or tuft cells,

as indicated by DCAMKL-1 staining (Fig. 2). In control mouse

intestine, DCAMKL-1 positive cells were mainly located in the

stem cell zone and amplification compartment; in Klf42/2 mouse

intestine, the number of DCAMKL-1 positive cells increased

significantly in both the amplification and differentiation com-

partments. DCAMKL-1 has been suggested to be a marker for

gastrointestinal stem cells and adenoma stem cells [28,29].

However, others suggest that DCAMKL-1 only identifies tuft

cells since they are not always located at the stem cell position, nor

do they co-express with markers of any of the main lineages

constituting the intestinal epithelium [27]. The identity of

DCAMKL-1 positive cells and the potential roles of KLF4 in

intestinal stem cells remain to be determined.

Our previous work demonstrated that KLF4 crosstalks with

Wnt signaling in the intestine [16,18]. Wnt signaling induces

maturation of Paneth cells [31] and mediates cell positioning in the

intestinal epithelium [32]. The abnormal numbers and locations of

Paneth cells could be partially due to enhanced Wnt signaling as a

result of KLF4 depletion. The role of Wnt signaling in goblet cell is

not clear. Goblet cell numbers were decreased by either activation

of Wnt signaling through APC deletion or inhibition of Wnt

signaling by DKK1 overexpression [33,34]. Notch signaling also

regulates goblet cells [22]. It is possible that the differentiation and

proliferation of goblet cells are regulated by multiple signaling

pathways and different developmental stages.

Based on the observation of changes in cell position and apical-

basolateral polarity in Klf42/2 intestine epithelia, together with

results from the 3D intestinal epithelial cyst formation assay, we

demonstrated that KLF4 regulates intestinal epithelial cell polarity

in addition to cell differentiation and proliferation, thus affecting

morphology and homeostasis of the intestine.

Several genes that regulated cell polarity were repressed by

KLF4, including LKB1. As a ‘master’ regulator of cell polarity,

LKB1 was reported to induce complete polarity in intestinal

epithelial cells; depletion of LKB1 in Caco-2 cells led to

impairment of spontaneous polarization [35,36]. Recently, it was

reported that that CDX2 deficiency leads to abnormal apical-basal

polarity in intestinal epithelial cells [37] and that CDX2 deficiency

Figure 2. KLF4 ablation leads to abnormal proliferation and differentiation in small intestinal epithelium. (A) Small intestine from
Klf42/2 mice induced by tamoxifen for different time endurances were stained by H&E and PAS, and also immunohistochemistry staining was
performed with anti-Ki67, anti-Lysozyme, anti-DCAMKL-1, and anti-PCNA antibodies respectively. (B) Statistic analysis of IHC staining results from (A).
(*, P,0.05) (C) IHC staining from (A) in higher magnification of highlighted frames. Bottom panel: IHC staining with ZO-1 antibody in one-month
knockout intestine tissue.
doi:10.1371/journal.pone.0032492.g002
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leads to elevated expression of LKB1 [38]. Since KLF4 expression

is dependent on CDX2 in human colon cancer cells [39], our

finding is consistent with these reports and suggests that KLF4

regulates cell polarity through multiple genes, including LKB1.

In summary, the results from this study and previous studies

suggest that KLF4 has multiple functions. In the early embryonic

stage, KLF4 induces goblet cell differentiation in intestinal

epithelium; throughout intestinal development, KLF4 maintains

homeostasis of normal intestinal growth and keeps epithelial cells

from over-proliferation. Meanwhile, KLF4 regulates apical-

basolateral polarity of the intestinal epithelial cells. After all, the

intestinal homeostasis and morphology are regulated by multiple

factors, including KLF4 and its target genes.

Materials and Methods

Transgenic mice and animal work
Ethics Statement. Mouse experiments were performed

under the approval by the Institutional Biosafety Committee

(IBC) and by the Institutional Animal Care and Use Committees

(IACUC) of University of South Carolina (Proposal number 1573).

Transgenic mice were generated using a Cre recombinase

derived from a bacterial artificial chromosome (BAC, RP23-

322L22) containing mouse KLF4 gene [40]. A Cre recombinase

cDNA was fused with estrogen receptor gene and was inserted into

KLF4 locus at the initiating codon, and the CreER gene

transcription is under the control of KLF4 promoter. KLF4

Figure 3. KLF4 is essential for cell polarity and crypt-cyst formation in 3D culture of Caco-2 cells. (A) Immunofluorescent staining of
Caco-2 cells in 2D and 3D culture with anti-a6-integrin and ZO-1 antibodies. (B) Caco-2 cells in 3D culture were stained for differentiation markers
indicating cell polarity and cyst formation (definition of lumen-cyst vesus cyst structures). (C) Left: western blotting showing knockdown of KLF4 in
Caco-2 cells. Right: statistical analysis of percentage of lumen-cyst formation in Caco-2 cell 3D cultures, comparing between control and KLF4 siRNA-
transfected cell cultures. (*, P,0.05) (D) Left: western blotting showing expression of KLF4 in 293T cells co-transfected with human KLF4 and KLF4
shRNA plasmids. Right: statistical analysis of percentage of lumen-cyst formation in Caco-2 cell 3D cultures, comparing between control and KLF4
shRNA-infected cell cultures. (*, P,0.05).
doi:10.1371/journal.pone.0032492.g003

Figure 4. KLF4 facilitates cell polarity and crypt-cyst formation in colon cancer cells. (A) LS174 cells in 3D culture system were stained for
differentiation markers indicating cell polarity and cyst formation. (B) Statistical analysis of percentage of cyst formation in LS174T cell 3D cultures,
comparing between doxycycline (Dox)-induced and non-induced cells.(*, P,0.05) (C) Western blotting indicating expression of KLF4 in LS174T cell
line with or without induction of doxycycline. (D) Semi-quantitative RT-PCR showing expression of genes related to KLF4-regulated cell polarity and
related to Wnt signaling.
doi:10.1371/journal.pone.0032492.g004
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knockout in KLF4/CreER (+/2)/KLF4 (flox/flox) double

transgenic mice was induced by 100 mg/kg tamoxifen intraper-

itoneally (i.p.) for 5 consecutive days at 4 weeks old. Expression of

KLF4 as well as multiple genes in wild-type (Klf4+/+) and knockout

(Klf42/2) mice was analyzed 3, 5 or 30 days after induction by

immunohistochemistry (IHC) staining of fixed intestine tissues.

Cell culture and 3D formation assay
Caco-2 human colonic epithelial cell line [41] was cultured in

high glucose Dulbecco’s modified Eagle’s medium (DMEM),

supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin. For 3D culture, approximately 1.56105 cells were

embedded into 250 ml of 80–90% matrigel. The 3D matrix was

allowed to harden in a 24-well plate at 37uC for 30 minutes, then

500 mM of DMEM medium with 2% fetal bovine serum was

added and cysts were allowed to form over 5–7 days at 37uC.

LS174T colon cancer cell line [18] was grown in RPMI

medium (Mediatech) supplemented with 5% fetal bovine serum

and 1% penicillin/streptomycin. Stable cell line LS174T-tet/on-

KLF4 has been described previously (Zhang et al., 2006). LS174T-

tet/on-KLF4 cells were plated at approximately 26105 cells per

well in a 6-well plate. The following day, doxycycline (1 mg/ml)

was added to the culture medium. After 24 h of incubation, cells

were trypsinized and counted, then followed by 3D formation

assay as indicated with Caco-2 cells.

Western Blotting
Cells were lysed in the appropriate volume of lysis buffer

(50 mM HEPES, 100 mM NaCl, 2 mM EDTA, 1% glycerol,

50 mM NaF, 1 mM Na3VO4, 1% Triton X-100, with protease

inhibitors). The following antibodies were used: mouse anti-b-

Actin (Sigma, A1978), mouse anti-Flag (Sigma, F1804).

RT-PCR
LS174T-tet/on-KLF4 cells were plated at approximately 26105

cells per well in a 6-well plate. The following day, doxycycline

(1 mg/ml) was added to the culture medium. After 48 h of

incubation, RNA was isolated using the RNeasy kit (Qiagen).

Reverse transcriptase PCR (RT-PCR) was performed as described

previously (Zhang et al., 2006). The following primers were used:

b-actin, 59-CAACCGCGAGAAGATGAC-39 and 59-AG-

GAAGGCTGGAAGAGTG-39; IAP, 59-CCATTGCCGTA-

CAGGATGGAC-39 and 59-CGCGGCTTCTACCTCTTT-

GTG-39; p21Cip1/WAF1: 59-CGACTGTGATGCGCTAATGG-39

and 59-AGAAGATCAGCCGGCGTTTG-39; LGR5: 59-CCT-

GCTTGACTTTGAGGAAGAC-39 and 59-ATGTTCACTG-

CTGCGATGAC-39; CD44: 59-CAGAATGGCTGATCATCT-

TG-39 and 59-CAAATGCACCATTTCCTGAG-39; LKB1: 59-

GAGGAGGTTACGGCACAAAA-39 and 59-CTGTCCAG-

CATTTCCTGCAT-39; MARK2: 59-GCCAGAATCAAAAG-

CAAC and 59-ATGATGTTTAGTGGGAGG-39; BMI1: 59-

AGCAGAAATGCATCGAACAA-39 and 59-CCTAACCAGAT-

GAAGTTGCTG-39; EPHB2: 59-AAAATTGAGCAGGTGA-

TCGG-39 and 59-TCACAGGTGTGCTCTTGGTC-39; EPHB3:

59-AGCAACCTGGTCTGCAAAGT-39 and 59-TCCATAGCT-

CATGACCTCCC-39.

Interference RNA, H&E staining, immunohistochemistry,
PAS and AB staining

Interference RNA and immunohistochemistry were tested as

described previously (Zhang et al., 2006). Lentiviral stocks were

prepared using control shRNA or human KLF4 shRNA on pGIPz

vector containing a marker of turbo GFP (Open Biosystems). H&E

staining was performed based on standard protocol by Histology

Laboratory of the Imaging Facility at University of Kentucky.

For immunohistochemistry staining, the following antibodies

were used: KLF4 (Zhang et al., 2006), rabbit anti-human

Lysozyme (Diagnostic BioSystems, RP 028-05), rabbit anti-

DCAMKL-1 (Abgent, AP7219b), rabbit anti-Ki67 (Novus Bio-

logicals, NB110-89717).

PAS staining was performed based on standard protocol using

reagents of PAS Staining System from Sigma (395-B). Alcian Blue

(AB) staining was performed according to standard protocol using

Alcian Blue 8GX and Fast Red from Sigma (kindly provided by

Dr. Tianyan Gao).

Immunofluorescent staining
Cells grown on cover glass were fixed in 4% paraformaldehyde

in PBS at room temperature for 15 min, washed 3 times with PBS,

permeabilized with 0.1% Triton X-100 in PBS for 10 min, and

then blocked in 5% goat serum in PBS at room temperature for

1 h. Cells were incubated with primary antibodies at room

temperature for 2 hours. Antibodies used include rat anti-human

CD49f (a6-integrin, BD Pharmingen, 555734) and rabbit anti-

ZO-1 (Invitrogen, 61-7300). Then cells were washed 3 times with

PBS and further incubated with Alexa-488-labeled anti-rat IgG

(1:500) and Alexa-568-labeled anti-Rabbit IgG (1:500) diluted in

PBS for 40 min. Nuclei were stained by DAPI (Sigma). The cover

glasses were washed, mounted on glass slides, viewed and

photographed with an Olympus FW1000 confocal microscope.
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