
Landmarks: A solution for spatial navigation and memory
experiments in virtual reality

Michael J. Starrett1 & Andrew S. McAvan1
& Derek J. Huffman2

& Jared D. Stokes3,4 & Colin T. Kyle3 & Dana N. Smuda3 &

Branden S. Kolarik3 & Jason Laczko5
& Arne D. Ekstrom6

Accepted: 4 September 2020
The Author(s) 2020

Abstract
Research into the behavioral and neural correlates of spatial cognition and navigation has benefited greatly from recent advances
in virtual reality (VR) technology. Devices such as head-mounted displays (HMDs) and omnidirectional treadmills provide
research participants with access to a more complete range of body-based cues, which facilitate the naturalistic study of learning
and memory in three-dimensional (3D) spaces. One limitation to using these technologies for research applications is that they
almost ubiquitously require integration with video game development platforms, also known as game engines. While powerful,
game engines do not provide an intrinsic framework for experimental design and require at least a working proficiency with the
software and any associated programming languages or integrated development environments (IDEs). Here, we present a new
asset package, called Landmarks, for designing and building 3D navigation experiments in the Unity game engine. Landmarks
combines the ease of building drag-and-drop experiments using no code, with the flexibility of allowing users to modify existing
aspects, create new content, and even contribute their work to the open-source repository via GitHub, if they so choose.
Landmarks is actively maintained and is supplemented by a wiki with resources for users including links, tutorials, videos,
and more. We compare several alternatives to Landmarks for building navigation experiments and 3D experiments more
generally, provide an overview of the package and its structure in the context of the Unity game engine, and discuss benefits
relating to the ongoing and future development of Landmarks.

Keywords Spatial cognition . Navigation . Learning .Memory . Virtual reality . Unity

One challenge in studying naturalistic behaviors, such as nav-
igation, in the laboratory involves the three-dimensional (3D)
nature of such behaviors. There are many solutions for

designing two-dimensional (2D) vision-based experiments,
such as Psychophysics Toolbox (Brainard, 1997), E-Prime
(Psychology Software Tools, 2016), and PsychoPy (Peirce
et al., 2019). Research using 3D environments, however, has
largely relied on video game engines such as Unity (Unity
Technologies, San Francisco, CA) to create experiments. On
their own, these video game engines lack the intrinsic flexi-
bility and features necessary for experimental design. While
such flexibility and features can be developed in game en-
gines, doing so can be extremely difficult for those without
extensive programming experience or knowledge of video
game design principles. While many VR hardware developers
provide “asset packages” specifically for Unity that aid users
in integrating the associated hardware into existing games,
they still do not provide a framework for experimental design.
Moreover, existing solutions for developing 3D experiments
in Unity provide limited, if any, support for the growing se-
lection of VR devices available or their associated asset pack-
ages. Here, we describe a new custom asset package for build-
ing, developing, and deploying navigation-based experiments

Colin T. Kyle is now in the private sector; Dana N. Smuda is now in the
private sector; Branden S. Kolarik is now in the private sector.

* Michael J. Starrett
mjstarrett@gmail.com

1 Department of Psychology, University of Arizona, 1503 E.
University Blvd, Tucson, AZ 85721, USA

2 Department of Psychology, Colby College, Waterville, ME, USA
3 Department of Psychology and Center for Neuroscience, University

of California, Davis, CA, USA
4 Present address: Center for Mind and Brain and MIND Institute,

University of California, Davis, CA, USA
5 BrickOvenGames, Sunnyvale, CA, USA
6 Department of Psychology; Evelyn F. McKnight Brain Institute,

University of Arizona, Tucson, AZ, USA

https://doi.org/10.3758/s13428-020-01481-6

/ Published online: 16 September 2020

Behavior Research Methods (2021) 53:1046–1059

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01481-6&domain=pdf
http://orcid.org/0000-0002-1746-2688
mailto:mjstarrett@gmail.com

on desktop and in VR using the Unity game engine, which is
freely available for personal use. This package, called
“Landmarks,” has been integrated with the Unity engine and
several Unity asset packages to create a user-friendly suite of
tools to facilitate the creation of VR experiments.

A game engine, such as Unity, is the ideal platform
for developing navigation experiments because 3D navi-
gation is a core component of many video games. For
example, many first-person shooter video games include
multiplayer modes where players can compete on a vari-
ety of maps. In addition to mastering game mechanics,
the most successful players in these games often have
intimate knowledge of the layout of the map they are
playing on as well as how other users would use that
map. Another popular style of video game involves mas-
sive open worlds that users must explore while complet-
ing tasks, quests, objectives, etc. A better understanding
of the layout of the world, including important locations
and landmarks, often makes the gameplay objectives
easier.

Unity, even more so than other game engines, is a great
option for building 3D experiments, as it provides many use-
ful features for game development while being free for per-
sonal use. Other free game engines, such as Unreal Engine
(Epic Games, Cary, NC), may provide more advanced fea-
tures than Unity, but have not been available for long. Unity
has extensive online documentation and support as well as a
large, active user community. This is particularly helpful for
developers with no formal training in video game design, as is
the case for most psychologists and neuroscientists.

At the center of the Unity development platform is the
Unity Editor (Fig. 1). The Editor is an integrated development
environment (IDE, i.e., software for writing computer code)
that provides tools to create 3D content (3D models,
spatialized audio, integrated video, animation, etc.) and the
ability to modify, debug, and test applications in real time.
An in-depth description of Unity and the Unity Editor is be-
yond the scope of this paper, but a glossary of Unity terms
(Unity Technologies, 2020) discussed in this paper can be
found in Box 1, and an example configuration of the Unity
Editor is shown in Fig. 1, featuring several often-used win-
dows. Existing content can be used via drag-and-drop func-
tionality across the various windows of the Unity Editor.
Unity’s functionality can be extended through the use of ex-
ternal tools including 3D modeling software and other IDEs
such as Visual Studio (Microsoft Corp., Redmond,WA). Any
custom behavior in an application requires writing custom
scripts using the C# programming language in an IDE, for
which Visual Studio is the default in Unity.

Landmarks was initially commissioned by the Human
Spatial Cognition (HSC) Lab as a means of reducing the
amount of time required for new researchers in this laboratory
to begin conducting spatial navigation experiments with

Unity. The original code base was written in 2009 by Jason
Laczko. This version, referred to as Landmarks 1.0
(BrickOvenGames, Sunnyside, CA), contained a basic frame-
work of custom scripts that controlled the flow of events in
Unity for experimental design and only supported desktop
computer interfaces. Landmarks 1.0 was accompanied by vid-
eo tutorials by Jason Laczko, which were later supplemented
with additional video tutorials by Dana Smuda. Landmarks
1.0 continues to be available in its original form. This version
is free to download, and tutorial videos are made available
upon request.

In 2015, the HSC lab began developing experiments
in v i r tua l rea l i ty (VR) us ing the Oculus Ri f t
Development Kit DK2 (Oculus VR LLC, Menlo Park,
CA) and a prototype of the Cyberith Virtualizer omnidi-
rectional treadmill (Cyberith GmbH, Vienna, AT). To
incorporate these new devices into Landmarks, Michael
Starrett and Jared Stokes revised the code base to pro-
vide support for both desktop and VR user interfaces.
This revision was the first to utilize Git version control
and was featured in an article by Starrett, Stokes,
Huffman, Ferrer, and Ekstrom (2019). With the advent
of the HTC Vive (HTC Corp., New Taipei City, Taiwan)
head-mounted display (HMD), Landmarks required fur-
ther revisions to accommodate yet another new and
unique software development kit (see Huffman &
Ekstrom, 2019a, b; Liang et al., 2018).

The challenge of keeping pace with emergent VR
technology became evident, spurring the development
of multiple character controllers such that the addition
of a new controller for a new interface would not inter-
fere with already functioning controllers. Additional re-
visions extended this modularization to the experimental
tasks available in Landmarks and automation of settings
and configurations that previously required interface- or
task-specific modification by the user. This resulted in a
significantly more user-friendly experience, as users can
now use a single dropdown menu to select from avail-
able controllers.

Here we present a new Unity package, called Landmarks,
that is bundled into a complete Unity project. Landmarks pro-
vides unprecedented integration with desktop and VR inter-
faces for the design of 3D experiments. Users can choose to
create 3D experiments quickly and easily using drag-and-drop
mechanics within the Unity Editor with no programming nec-
essary, or they can choose to program new tasks and features
on their own or alongside frequently released updates to
Landmarks by using Git version control with the public
Landmarks GitHub repository. In this way, Landmarks pro-
vides balance between flexible experimental design and ease
of use. These features are included in the current version of
Landmarks version 2.0, which is the focus of this work and
will subsequently be referred to simply as Landmarks.

1047Behav Res (2021) 53:1046–1059

Landmarks

Software development philosophy

Landmarks is primarily maintained and developed by psycholo-
gists and cognitive neuroscientists from a range of backgrounds
with varying levels of experience in programming and software
development. Landmarks can be described as loosely
conforming to specific, formalized software design principles.
After identifying a question, or problem, experimental design
often involves creating a paradigm to test hypotheses regarding
that problem, piloting these paradigms, and repeating this process
until the paradigm is optimized to address the question/hypothe-
sis. Unsurprisingly, this iterative and incremental process is
paralleled in the development of Landmarks.

With respect to software development, Landmarks is most
consistent with an adaptive software development philosophy
(Highsmith, 2013). Adaptive software development is character-
ized by high speed (i.e., frequent updates or releases) and high

change (i.e., modifications driven largely by uncertain needs).
For example, over the past year (at the time of writing) there
have been over 200 (approximately four contributions per week)
individual contributions to the code base on GitHub, which can
be defined as any addition, deletion, or modification of code that
is then uploaded to the public GitHub repository—indicative of
high speed.While many of these contributions were small, many
involved widespread changes including the addition of a
completely new data logging system, new player controllers,
and integration with third-party hardware and software—
indicative of high change. This high-change and high-speed
model of software development allows Landmarks to adapt to
the demands of users, including staying up to date with the rap-
idly evolving landscape of VR hardware.

Framework

To implement the features in Landmarks while allowing for
high-change development and design, we have broken the

Box 1 Glossary of Unity terms discussed, taken or modified from Unity’s online manual (Unity Technologies, 2020, https://docs.unity3d.com/
Manual/index.html)

Unity Terms

Asset Any media or data that can be used in your game or Project. An Asset may come from a file
created outside of Unity, such as a 3D model, an audio file or an image.

Asset Package A collection of files and data from Unity Projects, or elements of Projects, which are compressed and
stored in one file, similar to Zip files. Asset packages are a handy way of sharing and reusing Unity
Projects and collections of Assets.

Camera A component which creates an image of a particular viewpoint in your scene. The output is either drawn
to the screen or captured as a texture.

Character Controller A simple, capsule-shaped component with specialized features for behaving as a player’s avatar in a game.

Child See Parent.

Component A functional part of a GameObject. A GameObject can contain any number of components. Unity has
many built-in components, and you can create your own by writing scripts.

GameObject The fundamental object in Unity scenes, which can represent characters, props, scenery, cameras,
waypoints, and more. A GameObject’s functionality is defined by the Components attached to it.

Layer Layers in Unity can be used to selectively opt groups of GameObjects in or out of certain processes
or calculations, such as being rendered by the camera.

Parent An object that contains child objects in a hierarchy. When a GameObject is a Parent of another
GameObject, the Child GameObject will move, rotate, and scale exactly as its Parent does. You can
think of parenting as being like the relationship between your arms and your body; whenever your body
moves, your arms also move along with it.

Prefab An asset type that allows you to store a GameObject complete with components and properties. The prefab
acts as a template from which you can create new object instances in the scene.

Project In Unity, you use a Project to design and develop a game. A Project stores all of the files that are related to a game,
such as the Asset and Scene files.

Properties Aspects of a component that can be modified in the Inspector window of the Unity Editor.

Scene A Scene contains the environments and menus of your game. Think of each unique Scene file as a unique level.
In each Scene, you place your environments, obstacles, and decorations, essentially designing and building your
game in pieces.

Tag A reference word which you can assign to one or more GameObjects to help you identify GameObjects for
scripting purposes. For example, you might define an “Edible” Tag for any item the player can eat in your game.

Texture An image used when rendering a GameObject to give it visual detail.

1048 Behav Res (2021) 53:1046–1059

https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html

experimental design process into four main components:
Characters (cameras and player controllers; e.g., the avatar),
Timeline (state machines; i.e., the sequence and structure of
tasks in the experiment), Environment (3D models; e.g.,
streets, props, buildings), and Data (output files; e.g., text files
or tab-delimited files). The first three are visually present in
the implementation of Landmarks (see Hierarchy window in
Fig. 1), _Landmarks_.prefab (Landmarks Prefab) Unity asset
with the Experiment.cs script (Experiment) attached, and the
fourth, data, is handled in the background and automatically
generated for all experiments. We discuss each of these com-
ponents in turn.

Characters

One of the most powerful features in Landmarks is that it is one
of the only 3D experimental design solutions to offer compat-
ibility with VR hardware and is, to our knowledge, the only
solution that allows seamless switching between a variety of
desktop and VR interface configurations. To support this func-
tionality, a core piece of the Landmarks framework involves
managing and handling various player controllers and cameras.
When new player controllers are created and added to
Landmarks and configured with the LM_PlayerController.cs
script (LM_PlayerController), they are automatically detected
and managed by Experiment.

Timeline

As we have mentioned, one of the greatest challenges of 3D
experimental design involves incorporating the intrinsic
framework of experimental design into a game engine such
as Unity. Empirical research often visualizes this intrinsic
framework in methods sections with figures that generally
comprise a “timeline” of the experimental tasks—either pic-
tures or descriptions of each component of the experiment
ordered from left to right or top to bottom. Similarly,
Landmarks implements this framework in the form of Unity
GameObjects and child GameObjects, specifically the
“Tasks” GameObject in the Landmarks Prefab (see Fig. 1,
Hierarchy window). Just as experiments are hierarchically or-
ganized in sessions, blocks, and trials, these tasks that make up
the greater experiment timeline can be set to repeat a specified
number of trials and can be organized into experimental
blocks and phases depending on the visual organization tasks
in the form of child GameObjects of the “Tasks”GameObject.
Next we will describe how these timelines and tasks function
internally as finite state machines following a general struc-
tural framework.

The “Tasks” GameObject contains all of the experimental
tasks that will take place in the experiment. When it comes to
video game design, many of the tools rely on finite state ma-
chines to manage the flow of events (in our case, experimental
tasks). In their simplest forms, finite state machines can

Fig. 1 An example layout of the Unity Editor with commonly used
windows highlighted (red: Scene View, blue: Game View, green:
Hierarchy window, orange: Inspector window, yellow: Console, purple:
Project View). A demo scene, included in Landmarks, is opened in the

editor to illustrate how a user can interact with the environment and
experiment via the graphical user interface of the Unity Editor rather
than via code

1049Behav Res (2021) 53:1046–1059

control simple behaviors such as what happens when a light
switch is flipped on or off. In this simple example, one could
imagine certain aspects that could be programmed into each
state (e.g., ON: any light bulb models associated with the
switch begin emitting light and heat, their temperature rises,
and their remaining lifespan is shortened as time passes in the
on state; OFF: any light bulb models associated with the
switch stop emitting light and heat, their temperature cools
until it reaches baseline, and the lifespan ceases to shorten).
This is only a subset of the behaviors that could be associated
with these two states, and many state machines comprise a
greater number of possible states.

When Landmarks is run in a functioning experiment, the
Experiment finds and identifies an “LM_Timeline.” This time-
line is a list of tasks defined by the associated TaskList.cs script
(any object with TaskList.cs attached can be referred to as a
TaskList). TaskList inherits from the base-level class defined in
“ExperimentTask.cs” (any object with an associated script
inherited from ExperimentTask.cs, which can be referred to as
an ExperimentTask—all TaskLists are ExperimentTasks). This
outlines basic experimental task states (e.g., start [what do we
need to do to get ready for this task], update [what happens
during this task], end [what do we need to do to close down
or “clean up” after this task]), and affects operations common to
all tasks that inherit from it. TaskList will hierarchically carry
out any child ExperimentTask, including any other TaskLists.
In summary, Landmarks implements experimental timelines
via a hierarchy (i.e., GameObjects and their child
GameObjects) of ExperimentTasks, with any given
ExperimentTask having essentially three finite states (start, up-
date, end). The “Tasks” GameObject is one of the child
GameObjects of LM_Timeline (both are TaskLists) and repre-
sents the organization of various experimental operations that
would be included in amethods figure depicting the experiment
timeline in an empirical report. For example, LM_Timeline
runs various ExperimentTasks such as showing a general wel-
come message for participants and locating and inventorying
task-relevant target objects in the environment before executing
“Tasks” and any child ExperimentTasks nested within “Tasks”
and then closing down the experiment when there are no more
ExperimentTasks to execute.

Environment

The third component in the implementation of Landmarks is
the 3D environment. Indeed, the need for 3D environments
that comprise a collection of 3D models is one of the primary
reasons for utilizing the Unity game engine software in exper-
imental design. This is largely handled through simple orga-
nization of GameObjects within the Landmarks prefab, be-
cause most of the 3D models serve only as “filler” props
(i.e., task-irrelevant features of the environment), with a select
few serving as experimentally crucial target objects and task-

relevant locations (for either player controllers or target ob-
jects, with the latter being optional). For Landmarks to run, all
users must do is provide one or more task-relevant
GameObjects, with the tag “target” and the layer “targets”
selected (see Box 1; for context, see Fig. 1).

Data

In designing Landmarks, we understand that 3D experiments
are a means to an end, with that end being empirically valid
data for subsequent analysis and publication. Data for any and
all existing tasks are automatically handled by Landmarks via
several logging scripts (dbLog.cs, LM_TrialLog.cs) that use
the StreamReader and StreamWriter class of assets. Any ex-
perimentally relevant variables and values are written line-by-
line to a central log file (.log extension; e.g., player position,
player rotation, task state, etc., on a moment-by-moment ba-
sis) using the dblog class. Variables and values that we antic-
ipate being immediately relevant for processing and analyzing
behavioral data are added to a current trial dictionary and
formatted as a row of header labels and a corresponding row
of data variables; these are then logged into the central log file
at the end of each trial in a task.

In addition to a central log file, which already contains all
recorded data in a line-by-line temporal order, Landmarks
automatically detects unique experimental tasks (logged using
the LM_TrialLog class) included in an experiment, extracts
this data, and formats it as a tab-delimited file (.csv extension)
with a single header row, compatible with most data analysis
software. Table 1 shows actual data, as organized and
preprocessed, from the navigation task of the demo experi-
ment included with Landmarks. Thus, each experiment run
in Landmarks will generate a single raw data file (.log) as well
as a formatted file (.csv) for each unique task included in the
experiment timeline.

User interaction

Every aspect of Landmarks has been designed and updated with
the goal of serving thewidest range of users, with an emphasis on
users who have little to no programming experience. While it is
virtually impossible to automate all aspects of a software package
that caters to a high-change application, such as experimental
design with VR integration, we wanted to provide users with a
comprehensive basis of experimental design that can be used via
a graphical user interface without the need for any
programming—the Unity Editor. Working with Landmarks at
this level involves simple drag-and-drop mechanics (place an
ExperimentTask prefab in the appropriate place as a child of
the experimental timeline) combined with changing values and
properties of the task that are visually displayed in the Unity
editor.We believe that many users will find this to be a sufficient
starting point for building 3D environments and using common,

1050 Behav Res (2021) 53:1046–1059

simple experimental tasks from the field of navigation and spatial
cognition. That said, Landmarks users are by nomeans restricted
to the preconfigured prefab tasks that come bundled with
Landmarks.

An appealing aspect of Landmarks is that users are free to
“challenge by choice” (see Fig. 2). That is to say that users
whose experimental designs or tasks require varying levels of
complex additions or modifications to Landmarks are not nec-
essarily “doomed” to acquire a comprehensive understanding
of the C# programming language to implement such changes.
Rather, Landmarks offers incremental levels of abstract use
cases which require only commensurate, incrementally greater
understanding of Unity and C#. Figure 2 shows four example
tiers of software and programming abilities, sample descrip-
tions for what users could accomplish at each skill level, and
an example implementation in the context of a spatial cogni-
tion experiment built in Landmarks.

The Landmarks Unity project

Landmarks is a custom asset package designed for use in the
Unity game engine. Normally, adding a custom asset package

to Unity would involve users obtaining a compressed file of
the asset package, importing the package into the current
Unity project as a custom package, and ensuring that any other
asset packages required for it to work are also imported into
the project. To streamline this process, Landmarks is bundled
as an entire Unity project folder. This allows users to simply
download the Landmarks project folder (or clone it into a local
Git repository) and open it in Unity. All necessary asset pack-
ages and additional assets are already included using versions
that have been tested for compatibility with Landmarks.

The primary purpose of Landmarks is to provide easy-to-
use, high-quality experimental tasks and the mechanics to im-
plement those tasks in a linear fashion consistent with exper-
imental design and procedures. It is important to note that
Landmarks alone is not sufficient to create 3D, virtual reality
experiments. While Landmarks provides a user-friendly
framework for implementing experimental design in Unity,
many of the features and functionality built into Landmarks
are only possible through the use of other open-source asset
packages for Unity. These include SteamVR (Valve
Corporation, Bellevue, WA), VRTK (Extend Reality Ltd,
https://github.com/ExtendRealityLtd), Oculus Integration

Fig. 2 Landmarks offers a low barrier for entry-level use while maintain-
ing a high ceiling for customizability. Each tier describes a level of soft-
ware ability, use cases available at that skill level, and example imple-
mentation. Tiers are organized from least skill required (blue, top) to most

skill required (red, bottom). SOP refers to the scene- and orientation-
dependent pointing task, a commonly used task in spatial cognition ex-
periments that involves participants seeing a viewpoint from an environ-
ment, orienting themselves, and pointing to a landmark

Table 1 Example data file outputted from Landmarks for a navigation task. The outputted file was opened in Microsoft Excel, pasted into Microsoft
Word, and formatted based on American Psychological Association (APA) guidelines

Task Block Trial Navigate_
target

Navigate_
actualPath

Navigate_
optimalPath

Navigate_
excessPath

Navigate_
duration

NavigationTask 1 1 Sphere 40.72004 13.76897 26.95107 5.892756

NavigationTask 1 2 Capsule 33.50002 34.0213 -0.521286 4.644669

NavigationTask 1 3 Cube 53.64013 51.5936 2.046532 6.048893

NavigationTask 1 4 Cylinder 36.97789 37.99688 -1.018993 4.332535

1051Behav Res (2021) 53:1046–1059

https://github.com/ExtendRealityLtd

(Oculus VR, Menlo Park, CA), and other assets available in
the Unity Asset Store (Unity Standard Assets, VR Samples,
TextMesh Pro). The complete Unity project folder can be
downloaded or cloned from GitHub (https://github.com/
mjstarrett/Landmarks).

The Landmarks Unity package

While Landmarks is made available in the form of a complete
Unity project, for compatibility reasons, the Landmarks pack-
age is a custom asset package that appears as a folder in the
Project View window of the Unity Editor (see Fig. 1), just as
any other imported asset package would appear. Indeed, the
Landmarks package folder appears with the other imported
assets that come bundled with the Landmarks Unity project.
Moreover, when developing Landmarks, we followed a struc-
ture of organization similar to many other Unity asset pack-
ages (subdirectories in the package folder that organize assets
by their function in the Unity game engine, e.g., materials,
prefabs, scenes, scripts). Several major categories used to or-
ganize the Landmarks package will be covered briefly.

Materials

The Unity engine uses materials to define the visual appear-
ance of GameObjects in a scene. Materials reference assets
called shaders and textures that provide information on how
to wrap images around a GameObject’s geometry and subse-
quently render that image in the scene and game. A detailed
description of Unity’s materials, shaders, and textures system
is beyond the scope of this paper. This folder of the
Landmarks package contains any materials, shaders, and tex-
tures that were created specifically for Landmarks.
Contributors are encouraged to add any additional materials
they create and configure to this folder. A set of basic color
shaders (e.g., Red.mat) are included with Landmarks in a sub-
directory named “base_shaders.”

Text files

Text files are the source for any written information that will
be presented during an experiment. Out of the box, this folder
will contain several text files, which are used by some of the
prebuilt tasks included with Landmarks. These files use the
“.txt” extension and are used to supply prewritten text to any
object that supports text assets. For example, “Break_VR.txt”
contains the unformatted text, “Please remove the VR headset
and take a short break.” If this file is dragged onto the “mes-
sage” p rope r ty o f the “Beg inExpe r imen t”—an
InstructionsTask ExperimentTask—GameObject (see Fig. 1,
Hierarchy window), the next time the experiment is run, par-
ticipants will be greeted with a display that reads, “Please
remove the VR headset and take a short break,” instead of

the default welcome message preconfigured in the
Landmarks Prefab. Thus, users can easily change the task
instructions that are presented to participants by creating
new text files.

Scripts

The functionality of Landmarks is powered by custom scripts
we have written to implement the framework outlined above.
Landmarks scripts are written in C#. Novice users may choose
not to interact with these scripts at all or they may choose to
only interact with them through the inspector window of the
Unity Editor (see Fig. 1). Clicking on a GameObject reveals
any scripts attached as components of that GameObject, so
that basic properties (e.g., the number of times to run a navi-
gation task) can be edited in the Unity Editor’s Inspector win-
dow (see Fig. 1). For those interested in programming or see-
ing the code for a component, the associated script can be
opened directly from the Unity Editor (using Visual Studio
or some other IDE).

In principle, configuring all of these scripts properly would
require extensive documentation and troubleshooting.
Fortunately, because these configurations are largely shared
across experiments, Landmarks comes packaged with
preconfigured GameObjects that already have all the neces-
sary scripts attached and configured. In Unity, such
GameObjects are called “prefabs,” which contain the neces-
sary configurations of properties (i.e., variables that can be
accessed within the Unity Editor) in common Landmarks
scripts. Users without programming knowledge can easily
modify these prefabs in the Unity Editor by selecting them
in the Hierarchy window and changing their properties in
the Inspector window (see Fig. 1). Users with C# program-
ming experience can further customize and modify these pre-
fabs and their scripted components to create new tasks (i.e., for
other tests of spatial memory that are not currently implement-
ed within Landmarks). For more information on components
and requisite programming required, see Box 1 and Fig. 2.
The LM_Dummy.cs (LM_Dummy) script is an example tem-
plate for an ExperimentTask (see section on Framework).
LM_Dummy includes comments in the code that serve to
aid users to change and add public variables, or properties,
as well as code for the three states of an ExperimentTask (start,
update, end). LM_Dummy is an ideal candidate to examine
for users looking to get started with programming their own
new tasks and scripts in Landmarks.

Prefabs

The Unity game engine provides a convenient system for
creating preconfigured GameObjects, called prefabs. These
prefabs may already have scripted components attached to
them as well as other GameObjects nested within them as

1052 Behav Res (2021) 53:1046–1059

https://github.com/mjstarrett/Landmarks
https://github.com/mjstarrett/Landmarks

“children” (children are objects that inherit the properties of
their “parents,” objects that are higher up in the programming
hierarchy; see Box 1 for more details). In addition to being
prebuilt (i.e., already containing any necessary GameObjects),
Unity prefabs are also preconfigured (i.e., those GameObjects
have any necessary scripts already attached with all parame-
ters and properties already defined). Unity’s prefab system
also provides flexibility by allowing users to replace the
preconfigured parameters and properties with their own cus-
tom values; users can even save their custom settings as their
own prefab. In Landmarks, prefabs are at the core of the user-
friendly framework and facilitate the drag-and-drop creation
of experiments.

The only prefab required for design is the Landmarks
Prefab, which contains child GameObjects that correspond
to core components of the experimental design: Characters,
Timeline, Environment, and Data (see section on Framework
and Fig. 1). Characters are handled by selecting the desired
user interface on the “LM_Experiment” userInterface proper-
ty (e.g., ViveRoomspace for HTC Vive in an open room),
Timeline is handled by adding any prefabs with the
“TASK_” prefix or any GameObject that has an associated
ExperimentTask component (see section on Framework),
Environment is handled by organizing 3D models that make
up the environment (e.g., a cube or a building prefab) in the
“LM_Environment” child of the Landmarks Prefab, and Data
is handled in the background by automated scripts that output
data files (.log and .csv extensions).

Scenes

InUnity, a scene is often synonymouswith a level in a video game
(see Box 1). Scenes are saved individually in a Unity project using
the “.unity” extension and can be opened in the Editor or loaded at
runtime in a game. In Landmarks, a scene is the environment used
for an experimental session, e.g., a 50 × 50 meter arena with col-
ored walls or a 10 × 10 meter room with fluorescent lighting and
wood flooring. The GameObjects that make up these environ-
ments are integrated into Landmarks prefabs, such that they can
automatically interface with a variety of task prefabs (e.g.,
Landmarks-specific prefabs that facilitate specific experimental
tasks, such as a navigation task or a map learning task) that users
can drag and drop into the scene. This structure makes it easy to
change the environment used for an experiment developed with
Landmarks (e.g., replace amuseum environment containing target
exhibits to visit with an outdoor space containing sports equipment
to collect). More scenes will be added in the future, and users are
encouraged to contribute their scenes with their own customized
environments. Landmarks comes with an example scene
(demo_SimpleSample_50x50.unity) that demonstrates a working
experiment in Landmarks. The scene comprises a Landmarks
Prefab, a 50 × 50meter environment with geometric target objects
(sphere, cube, capsule, cylinder), and two experimental prefab

tasks (TASK_LearnTargets.prefab and TASK_NavigationTask)
configured. Users need only open the scene and click “play” in
the Unity Editor to test the experiment.

Proprietary

Some resources that have been used with or created for
Landmarks rely on proprietary software or packages that the
authors cannot freely distribute. For example, an omnidirec-
tional treadmill may require a Unity script or asset package
that is only made available by the manufacturer to those who
have purchased one of their treadmills. It may be the case that
Landmarks has been made compatible with this treadmill, but
such scripts are not useful unless a user has access to the
proprietary assets. In this case, users can contact us to be given
the Landmarks assets that will work with the proprietary hard-
ware. This is because including these Landmarks assets
(which we can distribute freely) in the Landmarks Unity pro-
ject download without the proprietary software, code, or pack-
age they depend on (which we cannot distribute freely) would
cause bugs and errors. At the time of writing, Landmarks
provides support for proprietary assets and code for
Cyberith’s Virtualizer line of omnidirectional treadmills,
KatVR’s Katwalk omnidirectional treadmill (KatVR, Los
Angeles, CA), and Tobii Pro’s VR integration for eye tracking
with HTC Vive (Tobii Pro, Washington, D.C.). A complete,
up-to-date list of all proprietary products and assets that are
supported by or have confirmed compatibility with
Landmarks is available on the Landmarks Wiki “About
Landmarks” page, https://github.com/mjstarrett/Landmarks/
wiki/About-Landmarks.

Resources for using Landmarks

The Landmarks Wiki

Landmarks cannot, yet, completely eliminate the need for
some additional learning and familiarization with designing
3D navigation experiments in Unity, but we intend to support
Landmarks users through freely available resources by main-
taining a public wiki. The Landmarks Wiki covers a range of
topics, including setting up Landmarks with GitHub, using
existing scenes to create your own experiment in minutes,
using a new scene to create your own environments and ex-
periments from scratch, citing Landmarks in manuscripts and
presentations, and contributing to Landmarks using Git. This
wiki serves as living documentation and reference material for
Landmarks. It will be revised and updated to keep up with the
development of Landmarks. The Landmarks Wiki can be
found within the Landmarks repository on GitHub (https://
github.com/mjstarrett/Landmarks/wiki).

1053Behav Res (2021) 53:1046–1059

https://github.com/mjstarrett/Landmarks/wiki/About-andmarks
https://github.com/mjstarrett/Landmarks/wiki/About-andmarks
https://github.com/mjstarrett/Landmarks/wiki
https://github.com/mjstarrett/Landmarks/wiki

Video tutorials

At the time of writing, an initial series of six videos have been
produced and uploaded to the YouTube (YouTube LLC, San
Bruno, CA) platform. The series, entitled “Getting Started
with Landmarks,” serves as the most comprehensive user
manual currently available and covers accessing the GitHub
page to download Landmarks, building 3D environments with
free 3D assets in Unity, creating drag-and-drop experiments in
minutes, and more. Additional videos on more advanced use
cases, discussed here, and specialized situations will be added
over time. These videos are intended to allow users to follow
along in order to learn general principles for using Landmarks,
while encouraging users to attempt variations of what is
shown. The videos are publicly available on YouTube, and
the corresponding author can provide direct links upon
request.

Other solutions

We now turn to an overview of several other solutions for 3D
experimental design that most closely resemble the goals of
Landmarks. However, this is not meant to provide an exhaus-
tive list. All of the solutions that we discuss are freely avail-
able or have a free option available. Our discussion will center
on the features of each solution (mainly the game engine that
powers it, and if virtual reality is supported) as well as how
content (the experiment) is created, implemented, and ana-
lyzed by that solution.

Virtual SILCton

Virtual SILCton (Schinazi et al., 2013; Weisberg et al., 2014;
Weisberg & Newcombe, 2016) is a re-creation of the Temple
University’s Ambler campus using models created in Google
Sketchup (Google, LLC, Mountain View, CA), which were
then imported into the Unity game engine. Virtual SILCton is
administered primarily via a website portal and does not sup-
port immersive VR or other extended reality (XR). The soft-
ware can be obtained from the Open Science Framework
(https://osf.io/m8w24/). The primary purpose of Virtual
SILCton is not to facilitate the creation of experiments, but
rather as a tool to assess general navigation ability.

Virtual SILCton uses a route-learning task where various
routes, and their connections, are learned. In addition, Virtual
SILCton provides widely used and validated measures that
can be deployed along with the route-learning task, including
the Santa Barbara Sense of Direction (SBSOD) scale (Hegarty
et al., 2002), the Philadelphia Spatial (Verbal) Ability Scale(s)
(Hegarty et al., 2010), the Mental Rotation Task (Vandenberg
& Kuse, 1978), and a modified version of the Spatial
Orienting Task (Hegarty & Waller, 2004). Researchers can

also opt to include free exploration, on-site pointing, map
arrangement, off-site pointing, or distance estimates tasks
(for descriptions of each task and recommended use, see the
documentation for Virtual SILCton). While Virtual SILCton
imposes limitations on the tasks that can be implemented, it is
ideal as an assessment of general navigation ability and a
viable solution for collecting and sharing large, standardized
data sets across research groups and institutions. Virtual
SILCton provides tools for data analysis in Microsoft Excel
(Microsoft Corp., Redmond, WA).

The navigational test suite: Intersections

The navigational test suite (Wiener et al., 2019) was devel-
oped in Unity and is delivered as a stand-alone application for
Windows platforms, named Intersections. While the stand-
alone application does not support VR, the Unity package in
which it was developed is openly available from the Open
Science framework (https://osf.io/u7yrh/), and thus could
presumably be modified to support immersive VR or XR.
Similar to Virtual SILCton, the Navigational Testing Suite is
marketed primarily as a battery for assessment, with a focus
on identifying navigational deficits associatedwith typical and
atypical aging.

The navigational test suite provides users with the option of
collecting data from three tasks: original, route repetition, and
route retracing (for descriptions of each, see Wiener et al.,
2019). All three tasks take place in a four-way intersection
that serves as the virtual environment. Users can also modify
the parameters of the various tasks, using the configuration
files detailed in the documentation and publication, to better
suit their needs. Because the project is available as a down-
loadable Unity project folder, it is also possible to perform
more extensive customizations and modifications, but these
are not discussed by the authors.

Experiments in Virtual Environments (EVE) framework

The Experiments in Virtual Environments (EVE) framework
(Grübel et al., 2017) is a Unity project designed to assist ex-
perimenters in the creation, implementation, and analysis of
3D experiments. Because the design of the experiment takes
place in the Unity Editor, it is possible for users to build stand-
alone applications to run their experiment on any platform.
The authors note, however, that the database system used to
store experimental data, a structured query language (SQL)
database, is only configured to work with the Windows oper-
ating system, meaning that additional configuration may be
required to store data on other platforms (e.g., macOS).
Similarly, it is possible to configure EVE for immersive VR
or XR, but this requires the user to configure these devices
independently in Unity or externally using third-party plugins.
The EVE framework is freely available on GitHub (https://

1054 Behav Res (2021) 53:1046–1059

https://osf.io/m8w24/
https://osf.io/u7yrh/
https://github.com/cogthz/EVE

github.com/cog-ethz/EVE). Of the solutions discussed, EVE
is the most similar to Landmarks, focusing on the creation of
new experiments that utilize 3D virtual environments.

EVE comes packaged with several ready-to-use environ-
ments, and users are able to create their own environments as
well in the Unity Editor. Like Virtual SILCton, EVE also
includes questionnaires such as the SBSOD, available out of
the box. As with Landmarks, EVE contains several
preconfigured tasks that can be dragged and dropped into an
experiment. In-depth instructions can be found on the EVE
GitHub page. One major difference between EVE and
Landmarks is that EVE uses structured query language
(SQL) commands to read and write information into a data-
base. Landmarks, on the other hand, outputs a “.log” that can
be inspected and manipulated by any text editing software,
making it effectively identical to a “.txt” file. While there are
many advantages to using a centralized database, SQL pre-
sents additional installation and system requirements for EVE
to function out of the box, as well as a learning process for
users who are not familiar with SQL or databases. EVE also
includes a dedicated R package, evertools, which aids users in
accessing and analyzing data stored in the SQL database.

The Unity Experiment Framework (UXF)

Another recently developed solution is the Unity Experiment
Framework (UXF; Brookes et al., 2020), a Unity project that
provides the core building blocks of an experiment via a struc-
tured framework that users harness to design their experiments
in Unity. The authors note that UXF is only compatible with
Windows-based Unity projects. UXF is also the only solution
that explicitly includes support for immersive VR HMDs out
of the box. UXF is freely available on GitHub (https://github.
com/immersivecognition/unity-experiment-framework).

One potential advantage of using UXF is that it was devel-
oped as a more general-purpose experiment building tool,
relative to EVE and Landmarks, which were developed based
largely on the research and experiments in the field of spatial
cognition and navigation. One disadvantage is that UXF does
not provide any resources for experiment presentation (i.e.,
3D models for stimuli, environments, etc.). While the authors
describe this as an advantage of UXF, it inevitably imposes
the need for users to have a working proficiency in the C#
programming language (although the authors do provide de-
tailed tutorials and other resources on their website; https://
immersivecognition.com) in order to generate functioning
experiments, a point that the authors make clear in their
documentation.

Experiment-programming libraries (EPLs)

Python has become a widely used programming language,
and several solutions have utilized the language in developing

solutions for creating 3D navigation experiments. The Python
Experiment-Programming Library (PyEPL; Geller et al.,
2007) provides a flexible framework for more technically pro-
ficient users. Unlike Landmarks, PyEPL focuses on flexible
customization through programming rather than drag-and-
drop mechanics. This is an obvious disadvantage for less tech-
nically oriented users who may not be familiar with Python, or
any programming language, and may struggle to access the
full utility of PyEPL. PyEPL is only available for macOS,
Linux, and Ubuntu (i.e., not Windows).

Another Python solution, PandaEPL (Solway et al., 2013),
provides more 3D capabilities than PyEPL and utilizes the
Panda3D graphics engine (Goslin & Mine, 2004) as opposed
to the in-house engine used for PyEPL. Despite these added
benefits over PyEPL, PandaEPL is still marketed for those
proficient in the Python programming language. Although
personal preference may play a role, novice users may find
the Unity game engine’s extensive documentation and large
user community to be an advantage over the Panda3D engine.
Ultimately, the goals of PyEPL and PandaEPL are different
from those of Landmarks in terms of the end users they were
developed for. Additional information as well as other soft-
ware from the creators of PyEPL and PandaEPL can be found
online (memory.psych.upenn.edu/Software). Neither PyEPL
nor PandaEPL appear to support immersive VR interfaces.

Advantages to using Landmarks

Landmarks is a Unity project developed to excel in balancing
customizability with ease of use. Landmarks provides added
flexibility over options like Virtual SILCton or the navigation-
al test suite, without including some of the complicated con-
figurations required to use alternatives like EVE, UXF,
PyEPL, or PandaEPL. Like other Unity-based solutions,
Landmarks is freely available on GitHub (https://github.
com/mjstarrett/Landmarks) and can be used to create stand-
alone applications for many target platforms, and is presently
compatible with macOS andWindows. Landmarks is also one
of the only 3D solutions that provides compatibility with XR
applications such as immersive VR, which utilizes HMDs and
omnidirectional treadmills (UXF and EVE are the only other
solution discussed that address XR compatibility, and both
appear to require additional configuration by the end users to
utilize this functionality). Moreover, the functionality of these
devices is built into Landmarks such that users need only
change an option to use a different interface (e.g., Keyboard
and Mouse, HTC Vive, etc.). To our knowledge, Landmarks
provides direct compatibility with more immersive VR de-
vices, out of the box, than any other solution described, with
support for more devices currently in development.

As we mentioned above, some alternatives to Landmarks
include data analysis tools. For example, EVE has an associ-
ated R package, evertools. Despite the R package for

1055Behav Res (2021) 53:1046–1059

https://github.com/cogthz/EVE
https://github.com/immersivecognition/unityxperimentramework
https://github.com/immersivecognition/unityxperimentramework
https://immersivecognition.com
https://immersivecognition.com
https://github.com/mjstarrett/Landmarks
https://github.com/mjstarrett/Landmarks

Landmarks, discussed later, which is still in development, it is
worth noting that many of the functions for extracting and
preprocessing data in EVE are actually built directly into the
data logging system in Landmarks. For example, evertools
requires functions to retrieve data from the SQL database
and compute performance measures from common tasks such
as the judgments of relative direction (JRD) pointing task
(e.g., get_participant_path_length or compute_jrd_2d_error,
respectively, from https://rdrr.io/github/cog-ethz/evertools/
api/). In this task, participants are asked to imagine standing
at one landmark, facing another landmark, and then point to a
third landmark. In contrast, Landmarks derives, formats, and
saves this data automatically at runtime from the experiment
application (see Table 1 for an example from a navigation
task; for comparison, a Landmarks JRD task would output
absolute and signed pointing errors for each JRD trial at
runtime). Thus, users could load the associated data files
(saved in a .csv format) into their favorite software package
(e.g., Python, R, MATLAB, Excel, SPSS) for data analysis.

In summary, there are a variety of solutions available
for 3D experimental design, each offering a unique
framework for designing experiments and collecting em-
pirical data. Landmarks is the only solution to offer
fully interchangeable functionality for multiple, current
VR interface configurations in addition to traditional
desktop computer interfaces. Landmarks also has a low
barrier for entry use in terms of software and program-
ming knowledge required by users, while maintaining a
high degree of flexibility and customizability at varying
levels of software and programming skills. Lastly,
Landmarks provides a more centralized framework to
go from design to data, in that no additional tools or
applications, beyond the Unity Editor, are required to
obtain preformatted data ready for individual- or
group-level analysis.

Discussion

We present a novel tool for creating ecologically enriched
experiments in realistic virtual environments, with a focus
on spatial navigation and memory. While there are several
solutions for this purpose, we believe that Landmarks
provides an ideal balance between ease of use and
customizability, making it useful for novice and experi-
enced users alike in terms of the Unity engine or coding
in C#. Landmarks is freely available, open-source soft-
ware (https://github.com/mjstarrett/Landmarks). Out of
the box, users have access to everything they need to
create simple navigation experiments in minutes by
dragging and dropping prefab resources into existing
Unity scenes, with no coding required. Information on

how to acquire, use, and even help develop Landmarks
is available on the dedicated Landmarks Wiki.

Promoting collaboration and open science

The primary purpose of Landmarks is to provide a freely
available, reproducible, open-source solution for designing
and implementing navigation experiments that requires no
programming experience. While we will continue expanding
the library of drag-and-drop tasks and refining the functional-
ity of Landmarks, open-source software only truly evolves
when users contribute their own work to the code base. By
using Git as the version control system, Landmarks provides a
means for users to manage their own code or even contribute
their work for others to use. This may have the added benefit
of reducing the number of bugs in the code by having more
users actively testing and reviewing it. However, this can be a
daunting task for many (especially given that a lack of com-
puter science background is one of the primary reasons for
using Landmarks in the first place).

To help make this task more manageable, the Landmarks
Wiki provides information and links to resources on Git
workflow models, how to fork or clone a repository, how to
manage your own version of Landmarks with Git, how to
update Landmarks without losing your own existing work,
and how to merge your work into the current version of
Landmarks to share with others. Ultimately, using Git is op-
tional, and any user who wants to benefit from Landmarks can
simply download the Unity project and begin working.

Even if users do not wish to utilize Git or contribute directly
to Landmarks, simply using the package can help to promote
open science. Because experimental sessions and environ-
ments are encapsulated in Unity scenes (files with the “.unity”
extension), these single files can be shared and added to an-
other instantiation of Landmarks in order to replicate proce-
dures or reuse the environmental stimuli. An example scene
containing an environment with a navigation experiment is
included in the Landmarks asset package and has a file size
of only 76 kilobytes.

Another way that collaboration is facilitated in Landmarks
is through the ability to distribute experiments as individual,
stand-alone applications that participants can download and
run, with data being sent to a cloud-based server until the
experimenter retrieves it. Currently, this is implemented using
Microsoft Azure (Microsoft Corp., Redmond, WA) and an
accompanying asset package (https://github.com/BrianPeek/
AzureSamples-Unity), and functionality for other services
such as Amazon Web Services (Amazon Web Services, Inc.,
Seattle, WA) may be implemented to the same end. While
Landmarks and all packages included with it are freely
available, users should note that using these cloud-based ser-
vices, Azure for example, may incur charges for data storage.

1056 Behav Res (2021) 53:1046–1059

https://rdrr.io/github/cogthz/evertools/api/
https://rdrr.io/github/cogthz/evertools/api/
https://github.com/mjstarrett/Landmarks
https://github.com/BrianPeek/AzureSamples-nity
https://github.com/BrianPeek/AzureSamples-nity

Future developments

As we continue to develop Landmarks, our main goals are to
maintain and add compatibility for XR and VR interfaces and
to expand the library of available experimental tasks and en-
vironments. Each time a new task is created, it will be added to
the library of drag-and-droppable task prefabs (for novel tasks
we may embargo this process until after publication of the
new task). This process moves even more quickly with other
users contributing to the source code. We outline several ad-
ditional goals that we hope to achieve to improve the usability
of Landmarks even beyond the design and data collection
phases of research.

LandmarkR: An analysis package for R

Several alternatives to Landmarks offer custom analysis func-
tions and even packages for analyzing data acquired using
those solutions. The data output process for Landmarks has
been configured with this in mind, and many of the operations
carried out by these packages are done at runtime in
Landmarks (e.g., computing error and formatting data into
tab-delimited .csv files with headers). We hope to further en-
courage the use of Landmarks by eventually providing addi-
tional advanced analysis tools. We are in the early stages of
developing a set of helper functions in the R environment (R
Development Core Team, 2016) that will eventually become
an open-source R-package, using the working title
LandmarkR. The package will include existing functions that
we have used in previous work but which have not yet been
incorporated into formal R packages [e.g., permutation test to
compute individual chance performance on pointing tasks
(see Huffman & Ekstrom, 2019a, b) or functions to draw
traversed routes from navigation over 2D images (see
Figure S2 from Starrett et al., 2019)], as well as new analysis
and plotting functions. As with the Landmarks Unity package,
this analysis package will be freely available. Moreover, this
will further enable users to easily improve code and recreate
results obtained using Landmarks, in line with the open sci-
ence objectives of Landmarks.

Navigate by Starr LITE: A stand-alone application
for experimental design

Landmarks was coded with ease of use in mind, and many of
the updates thus far have focused specifically on making
Landmarks easier to use out of the box while maintaining
users’ ability to modify and create new experiments from
existing source code. However, this still requires that users
download both Unity and Landmarks and then use Unity to
create their experiment within the Landmarks framework. As
users create and contribute to Landmarks, the library of avail-
able ready-to-use environments and drag-and-drop tasks will

grow. Once Landmarks has reached a critical mass of
environment-task combinations, even the need to drag and
drop objects in a Unity scene may become somewhat
unnecessary.

A long-term goal of Landmarks is to create a stand-alone
application that accomplishes all of this behind the scenes.
Ideally, users would simply run a Landmarks application
(.app for macOS; .exe for Windows), which would launch a
series of menus where users could select from the library of
environments and then add sessions, blocks, and/or trials with
tasks from the included library of Landmarks tasks. The ap-
plication would then allow users to save this as an experiment
that can be easily rerun the next time the application is opened
(e.g., for another subject). Thus, users could create 3D navi-
gation experiments not only without any programming, but
also without even installing Unity.

It is important to note, however, that the growth of
Landmarks environment and task libraries would be greatly
bolstered by user contributions to the public GitHub reposito-
ry or through sharing of such assets via other file sharing
platforms or even email attachments to the corresponding au-
thor. The development of this stand-alone Landmarks appli-
cation would only take place once Landmarks has built up a
stable library of environments and/or tasks (through our own
updates and additions or through the formation of a commu-
nity of developers and contributors).

Long-term support for Landmarks

Originally written in 2009, Landmarks has already received
ongoing support for over a decade from within the HSC lab
under Dr. Ekstrom’s supervision (author ADE). Most recent-
ly, Landmarks has been significantly reengineered and
refactored to facilitate a lower barrier for entry into designing
3D experiments in Unity. These changes were largely moti-
vated by two goals: (1) to promote the continued development
of Landmarks within the HSC lab, and (2) to prepare
Landmarks to follow departing HSC lab members as they
begin the next stage of their careers.

In line with the first goal, one of the authors (ASM) was
hired primarily to work on future projects with Landmarks and
continue development within the HSC lab. The hiring of ded-
icated research staff to support Landmarks development and
internal use will serve to reduce the time required for new lab
members (e.g., research specialists, graduate students, and
postdoctoral fellows) who are not intimately familiar with
Landmarks to orient themselves with Unity and begin
conducting experiments. Thus, we aim to ensure that
Landmarks can continue to exist at least in its current working
form and expand to meet the experimental design needs of the
HSC lab and other spatial cognition and navigation
researchers.

1057Behav Res (2021) 53:1046–1059

The second goal aims to sow the seeds for Landmarks to
expand its user base and applications to new laboratories and
research questions, respectively. For example, one of the au-
thors (DJH) is now the principal investigator of his own inde-
pendent laboratory, which will continue to use and develop
Landmarks internally and in conjunction with the HSC lab.
Another author (MJS) has dedicated a substantial amount of
his PhD work to the development of Landmarks to provide a
flexible 3D experimental design solution for his postdoctoral
and faculty research.

Ultimately, meeting these goals will serve to establish three
initial development hubs for Landmarks (ADE via ASM,
DJH, and MJS). Consistent with our aim to promote collabo-
ration and open science, the establishment of a Git workflow
has provided the foundation for long-term support. Each of
these authors (ADE, via ASM, DJH, andMJS) maintains their
own GitHub fork and is capable of coordinating any pull/
merge requests with the master fork (MJS). This redundancy
will help bolster the ability to provide long-term support to
users and hopefully to increase the appeal for users to adopt
Landmarks or even become a contributor.

Is Landmarks right for my research?

We have outlined a need in the field for a comprehensive yet
user-friendly solution to creating 3D virtual reality experi-
ments. This is particularly critical at a time when VR is
experiencing widespread and growing adoption in research
applications. We have outlined the philosophy and framework
through which Landmarks meets this need while also compar-
ing Landmarks to a range of other solutions for 3D experi-
mental design. Ultimately, it will remain up to the researcher
to decide whether Landmarks fulfills their 3D experimental
design needs, or whether another solution is right for them.

As noted in our discussion of alternative solutions, many
labs already have software in place to meet the needs that
Landmarks serves to address. Labs such as these, or labs that
employ in-house programmers permanently or on an as-
needed basis, may find little immediate benefit to using
Landmarks given the at-hand expertise available in their
own lab. We still encourage these users to try Landmarks,
although these were not our target audience. Instead, we be-
lieve that Landmarks will be most useful to small labs who
cannot fund professional in-house solutions, labs whose in-
house solutions are outdated, labs who want to reallocate
funds from paying professional programmers to data collec-
tion and analysis, and labs who are making their initial foray
into 3D experiments or VR. For example, we hope that
Landmarks will benefit labs that study memory more gener-
ally but not necessarily navigation, as we believe that VR
represents a paradigm shift in how researchers in cognitive
neuroscience will conduct experiments. Our hope is that the
ease of getting started with Landmarks will contribute to its

growth, as those initially drawn to Landmarks may be more
likely to continue developingwith it and encourage colleagues
to do so as well.

Concluding remarks

Our primary aim is for Landmarks to be widely implemented
in VR experiments and as user-friendly as possible.
Landmarks is freely available via a public repository on
GitHub (https://github.com/mjstarrett/Landmarks) and
contains a wiki with information and instructions for using
Landmarks to design experiments (https://github.com/
mjstarrett/Landmarks/wiki). Information is also available via
the Human Spatial Cognition Laboratory’s website (http://
humanspatialcognitionlab.org/software/), which provides
links to obtain the current version of Landmarks, as well as
the original release, and contact information for questions
regarding Landmarks. We encourage interested parties and
current users to reach out with any questions, issues, bug
reports, and suggestions.

Acknowledgements The authors would like to thank past and present lab
members and undergraduate research assistants who have worked with
Landmarks as well as anyone outside the lab who has downloaded and
used Landmarks. The authors also acknowledge the help of Dr. Oliver
Kreylos, who provided consultation and assistance in acquiring new vir-
tual reality hardware and interfaces.

Author Note This work was supported by funding from the National
Science Foundation (NSF BCS-1630296), the Sloan Foundation, the
Hellman Young Investigator Award, and the National Institute of
Neurological Disorders and Stroke (NINDS R01NS076856) awarded to
ADE. DJH was supported by the National Institute of Mental Health
(NIMH F32MH116577).

Author Contributions MJS wrote the majority of the revised code in the
update to version 2.0 and is the primary contributor of new code and wiki
content as well as maintaining the code and repository. MJS, ASM, CTK,
JDS, DJH, DNS, and BSK contributed to the modification and updating
of prefabs, scenes, scripts, and text files. JL wrote the code base and
released version 1.0 of the package. All contributions were made under
the supervision of ADE. MJS wrote the manuscript. ADE and DJH pro-
vided critical revisions. All authors approved the final version of the
manuscript for submission.

Compliance with ethical standards

Open Practices Landmarks is licensed under the GNU General Public
License v3.0. All relevant files and source code are available at https://
github.com/mjstarrett/Landmarks.

Data Availability Statement Data sharing is not applicable to this article
as no data sets were generated or analyzed.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were

1058 Behav Res (2021) 53:1046–1059

https://github.com/mjstarrett/Landmarks
https://github.com/mjstarrett/Landmarks/wiki
https://github.com/mjstarrett/Landmarks/wiki
http://humanspatialcognitionlab.org/software/
http://humanspatialcognitionlab.org/software/
https://github.com/mjstarrett/Landmarks
https://github.com/mjstarrett/Landmarks

made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision,
10(4), 433–436. https://doi.org/10.1163/156856897X00357

Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., &
Mushtaq, F. (2020). Studying human behavior with virtual reality:
The Unity Experiment Framework. Behavior Research Methods,
52(2), 455–463. https://doi.org/10.3758/s13428-019-01242-0

Geller, A. S., Schleifer, I. K., Sederberg, P. B., Jacobs, J., &Kahana,M. J.
(2007). PyEPL: A cross-platform experiment-programming library.
Behavior Research Methods, 39(4), 950–958. https://doi.org/10.
3758/BF03192990

Goslin, M., & Mine, M. R. (2004). The Panda3D graphics engine.
Computer, 37(10), 112–114. https://doi.org/10.1109/MC.2004.180

Grübel, J., Weibel, R., Jiang, M. H., Hölscher, C., Hackman, D. A., &
Schinazi, V. R. (2017). EVE: A Framework for Experiments in
Virtual Environments. In T. Barkowsky, H. Burte, C. Hölscher, &
H. Schultheis (Eds.), Spatial Cognition X (pp. 159–176). Springer
International Publishing.

Hegarty, M., Crookes, R. D., Dara-Abrams, D., & Shipley, T. F. (2010).
Do All Science Disciplines Rely on Spatial Abilities? Preliminary
Evidence from Self-report Questionnaires. In C. Hölscher, T. F.
Shipley, M. Olivetti Belardinelli, J. A. Bateman, & N. S.
Newcombe (Eds.), Spatial Cognition VII (pp. 85–94). Springer
Berlin Heidelberg.

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., &
Subbiah, I. (2002). Development of a self-report measure of envi-
ronmental spatial ability. Intelligence, 30(5), 425–447. https://doi.
org/10.1016/S0160-2896(02)00116-2

Hegarty,M., &Waller, D. (2004). A dissociation betweenmental rotation
and perspective-taking spatial abilities. Intelligence, 32(2), 175–
191. https://doi.org/10.1016/J.INTELL.2003.12.001

Highsmith, J. (2013). Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. Addison-Wesley.

Huffman, D. J., & Ekstrom, A. D. (2019a). Which way is the bookstore?
A closer look at the judgments of relative directions task. Spatial
Cognition & Computation, 19(2), 93–129. https://doi.org/10.1080/
13875868.2018.1531869

Huffman, & Ekstrom, A. D. (2019b). A Modality-Independent Network
Underlies the Retrieval of Large-Scale Spatial Environments in the

Human Brain.Neuron, 104(3), 611–622.e7. https://doi.org/10.1016/
j.neuron.2019.08.012

Liang, M., Starrett, M. J., & Ekstrom, A. D. (2018). Dissociation of
frontal-midline delta-theta and posterior alpha oscillations: Amobile
EEG study. Psychophysiology, 55(9), e13090. https://doi.org/10.
1111/psyp.13090

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,
Sogo, H., Kastman, E., & Lindeløv, J. K. (2019). PsychoPy2:
Experiments in behavior made easy. Behavior Research Methods,
51(1), 195–203. https://doi.org/10.3758/s13428-018-01193-y

Psychology Software Tools, Inc. (2016). E-Prime 3.0 [computer
software].

R Development Core Team. (2016). R: A language and environment for
statistical computing. R Foundation for Statistical Computing. R
Foundation for Statistical Computing. https://www.r-project.org/

Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein,
R. A. (2013). Hippocampal size predicts rapid learning of a cogni-
tive map in humans. Hippocampus, 23(6), 515–528. https://doi.org/
10.1002/hipo.22111

Solway, A., Miller, J. F., & Kahana, M. J. (2013). PandaEPL: A library
for programming spatial navigation experiments. Behavior
Research Methods, 45(4), 1293–1312. https://doi.org/10.3758/
s13428-013-0322-5

Starrett, M. J., Stokes, J. D., Huffman, D. J., Ferrer, E., & Ekstrom, A. D.
(2019). Learning-dependent evolution of spatial representations in
large-scale virtual environments. Journal of Experimental
Psychology: Learning Memory and Cognition, 45(3), 497–514.
https://doi.org/10.1037/xlm0000597

Unity Technologies. (2020). Unity User Manual (2020.2 alpha). https://
docs.unity3d.com/Manual/UnityManual.html

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test
of three-dimensional spatial visualization. Perceptual and Motor
Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599

Weisberg, S. M., & Newcombe, N. S. (2016). How Do (Some) People
Make a Cognitive Map? Routes, Places, and Working Memory.
Journal of Experimental Psychology-Learning Memory and
Cognition, 42(5), 768–785.

Weisberg, S. M., Schinazi, V. R., Newcombe, N. S., Shipley, T. F., &
Epstein, R. A. (2014). Variations in cognitive maps: Understanding
individual differences in navigation. Journal of Experimental
Psychology: Learning Memory and Cognition, 40(3). https://doi.
org/10.1037/a0035261

Wiener, J. M., Carroll, D., Moeller, S., Bibi, I., Ivanova, D., Allen, P., &
Wolbers, T. (2019). A novel virtual-reality-based route-learning test
suite: Assessing the effects of cognitive aging on navigation.
Behavior Research Methods, 2. https://doi.org/10.3758/s13428-
019-01264-8

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1059Behav Res (2021) 53:1046–1059

https://github.com/mjstarrett/Landmarks
https://doi.org/10.1163/156856897X00357
https://doi.org/10.3758/s13428-019-01242-0
https://doi.org/10.3758/BF03192990
https://doi.org/10.3758/BF03192990
https://doi.org/10.1109/MC.2004.180
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1016/J.INTELL.2003.12.001
https://doi.org/10.1080/13875868.2018.1531869
https://doi.org/10.1080/13875868.2018.1531869
https://doi.org/10.1016/j.neuron.2019.08.012
https://doi.org/10.1016/j.neuron.2019.08.012
https://doi.org/10.1111/psyp.13090
https://doi.org/10.1111/psyp.13090
https://doi.org/10.3758/s13428-018-01193-y
https://www.r-roject.org/
https://doi.org/10.1002/hipo.22111
https://doi.org/10.1002/hipo.22111
https://doi.org/10.3758/s13428-013-0322-5
https://doi.org/10.3758/s13428-013-0322-5
https://doi.org/10.1037/xlm0000597
https://docs.unity3d.com/Manual/UnityManual.html
https://docs.unity3d.com/Manual/UnityManual.html
https://doi.org/10.2466/pms.1978.47.2.599
https://doi.org/10.1037/a0035261
https://doi.org/10.1037/a0035261
https://doi.org/10.3758/s13428-019-01264-8
https://doi.org/10.3758/s13428-019-01264-8

	Landmarks: A solution for spatial navigation and memory experiments in virtual reality
	Abstract
	Landmarks
	Software development philosophy
	Framework
	Characters
	Timeline
	Environment
	Data

	User interaction
	The Landmarks Unity project
	The Landmarks Unity package
	Materials
	Text files
	Scripts
	Prefabs
	Scenes
	Proprietary

	Resources for using Landmarks
	The Landmarks Wiki
	Video tutorials

	Other solutions
	Virtual SILCton
	The navigational test suite: Intersections
	Experiments in Virtual Environments (EVE) framework
	The Unity Experiment Framework (UXF)
	Experiment-programming libraries (EPLs)
	Advantages to using Landmarks

	Discussion
	Promoting collaboration and open science
	Future developments
	LandmarkR: An analysis package for R
	Navigate by Starr LITE: A stand-alone application for experimental design
	Long-term support for Landmarks

	Is Landmarks right for my research?
	Concluding remarks

	References

