
sensors

Review

Overview of Time Synchronization for IoT
Deployments: Clock Discipline Algorithms
and Protocols

Hüseyin Yiğitler * , Behnam Badihi and Riku Jäntti

Department of Communications and Networking, Aalto University, 02150 Espoo, Finland;
behnam.badihi@aalto.fi (B.B.); riku.jantti@aalto.fi (R.J.)
* Correspondence: huseyin.yigitler@aalto.fi

Received: 31 August 2020; Accepted: 10 October 2020; Published: 20 October 2020
����������
�������

Abstract: Internet of Things (IoT) is expected to change the everyday life of its users by enabling data
exchanges among pervasive things through the Internet. Such a broad aim, however, puts prohibitive
constraints on applications demanding time-synchronized operation for the chronological ordering
of information or synchronous execution of some tasks, since in general the networks are formed
by entities of widely varying resources. On one hand, the existing contemporary solutions for time
synchronization, such as Network Time Protocol, do not easily tailor to resource-constrained devices,
and on the other, the available solutions for constrained systems do not extend well to heterogeneous
deployments. In this article, the time synchronization problems for IoT deployments for applications
requiring a coherent notion of time are studied. Detailed derivations of the clock model and various
clock relation models are provided. The clock synchronization methods are also presented for
different models, and their expected performance are derived and illustrated. A survey of time
synchronization protocols is provided to aid the IoT practitioners to select appropriate components
for a deployment. The clock discipline algorithms are presented in a tutorial format, while the time
synchronization methods are summarized as a survey. Therefore, this paper is a holistic overview of
the available time synchronization methods for IoT deployments.

Keywords: internet of things; capillary networks; wireless sensor networks; clock synchronization;
clock discipline algorithms; time synchronization protocols

1. Introduction

Recent advances in embedded intelligence, connectivity, and interaction technologies have
allowed integrating pervasive objects from our daily life into communication networks to interact with
each other over the Internet for enabling novel applications and services. This emerging communication
and computing paradigm is often referred to as Internet of Things (IoT), and it utilizes the Internet as
both communication and virtualization platform to link the physical world to the information (virtual)
world [1]. The broad interconnection possibilities supported by the IoT brings forth interoperability
problems between different objects with heterogeneous capabilities [2]. In a typical IoT deployment,
three different networks are taking part as shown in Figure 1. A node of a wide area network (WAN),
e.g., user entity of a cellular network, is connected to a node of a local area network (LAN) over a
network interface controller (NIC), and this node is connected to a personnel area network (PAN)
of a low-power and short-range wireless communication technology (Such an extension of a WAN
network toward local and personal area networks by using a WAN node as a backhaul connection
entity is also known as a capillary network [3]). Some of these objects may possess a large amount of
computational and communication resources, some may be energy constraint wireless sensor nodes,

Sensors 2020, 20, 5928; doi:10.3390/s20205928 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7794-2763
http://dx.doi.org/10.3390/s20205928
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/20/5928?type=check_update&version=2

Sensors 2020, 20, 5928 2 of 59

and some may be passive simple devices such as RFID tags. Although these components can be, in
principle, interconnected using contemporary Internet technologies, not all objects can accommodate
the resources required by these solutions. One approach is to use translation entities between these
devices and an interrogator to connect to the Internet, e.g., a gateway [4]. However, this approach
introduces processing and translation overhead, which alters the yield of applications requiring tight
interaction with the physical world. In this article, such applications are considered and wireless
sensor network entities are evaluated as objects interacting with the physical world.

Sensor /
ActuatorCPU 1
Sensor /
ActuatorCPU 1

NIC 2 CPU 2NIC 2 CPU 2
Sensor /
Actuator

Short
Range
Radio

CPU
Sensor /
Actuator

Short
Range
Radio

CPU

Sensor /
ActuatorCPU
Sensor /
ActuatorCPUNIC 1

Sensor /
Actuator

Short
Range
Radio

CPU
Sensor /
Actuator

Short
Range
Radio

CPU

Sensor /
Actuator

Short
Range
Radio

CPU
Sensor /
Actuator

Short
Range
Radio

CPU

Short
Range
Radio

NIC 1 CPU 3
Short
Range
Radio

NIC 1 CPU 3

NIC 1CPU 1

Figure 1. An Internet of Things deployment utilizing a (Wireless) Sensor Network to interact with
the physical world. A Wide Area Network (WAN) node on the left is connected to the Internet over
a Network Interface Controller (NIC), and connected to the Local Area Network (LAN) at the center
using another NIC. One of the LAN nodes is connected to the Personal Area Network (PAN) on the
right, which realizes the Sensor Network. Each processor in the system has its own notion of time due
to different clock implementations. The network entities acting as gateways are explicitly shown.

Wireless sensor networks (WSNs) [5] are one of the enabling technologies of IoT. They transmit
acquired digital data from the physical world to the Internet or conversely receive data from the
Internet that describe actions to make some changes to the surroundings in order to reach a common
goal without human intervention [6]. This is achieved by seamlessly conveying the information content
by performing various translations between the involved communication and processing entities.
In this regard, applications requiring chronological information ordering or synchronous execution
for data fusion, or low-power networking and time-division transmission scheduling [7,8], require a
coherent notion of time, which must be shared among all the objects taking part in both processing and
communication.

The notion of the time of a clock is different than the universal time due to several factors as
discussed by Allan [9]. The impact of these errors is mitigated by:

(i) transmitting a time report of a reference clock using a messaging protocol;
(ii) mitigating non-determinism in message delivery and time measurements using a Clock

Discipline Algorithm (CDA), and;
(iii) adjusting the clocks.

For a typical IoT deployment, there are three different networks that have different notions of
time as shown in Figure 1. For WANs and LANs, the time synchronization problem has well-known
solutions such as the Network Time Protocol (NTP) [10,11] (or its tailored version the Simple Network
Time Protocol [12]), and Precision Time Protocol (PTP) [13]. For example, the WAN node (and also the
LAN nodes) may synchronize to the Internet time, e.g., using the NTP. However, the computation and
energy requirements of these solutions cannot be fulfilled by objects with constrained computational
and energy resources, and such objects call for simpler methods. The existing time synchronization

Sensors 2020, 20, 5928 3 of 59

solutions for WSNs are designed for constrained devices (e.g., the PAN network in Figure 1), but their
performance is tailored for a specific application scenario. For the deployment in Figure 1, the global
notion of time in WAN and LAN nodes must still be disseminated to the PAN nodes through the radio
attached to CPU3, and there are no readily available solutions to fulfill accuracy requirement of all
application scenarios. Therefore, IoT practitioners are required to select a suitable time synchronization
solution considering the application scenario and the capabilities of the network entities to achieve the
required level of performance.

In this work, we present a comprehensive survey of time synchronization methods for IoT
deployments in the following organization. In Section 2, some motivating example applications
requiring a coherent notion of time are given, and available survey works are presented.
Thereafter, the individual components of time synchronization are discussed starting from clock
models in Section 3. The solutions of the clock synchronization problem, known as CDA, are presented
in Section 4. In Section 5, several aspects of time synchronization messaging are elaborated on, and two
example empirical time data are used in Section 6 to demonstrate the impact of time error sources.
Finally, conclusions are drawn in Section 7.

2. Background

In this section, we first introduce a general IoT platform, and then summarize several applications
that require a coherent notion of time. Thereafter, we review available time synchronization survey works.

2.1. IoT Platform

IoT is on the verge of changing the traditional concept of connectivity for everyone to connectivity
for everything anytime and anywhere [14]. It is a radically large and highly dynamic distributed
system with a massive number of entities producing and consuming information [15] to form a
common operational picture (COP) for different (novel) applications and services [6] as shown in Figure 2.
The objects in IoT are by no means limited to the entities that are directly connected to the Internet.
On the contrary, any uniquely identifiable physical entity, which may be connected to the Internet over
a gateway (interrogator) [16], is allowed. Therefore, IoT realizes ubiquitous computing and networking
by making the benefits of the technology inseparable part of the daily living environment [17], which is
expected to unprecedentedly alter the behavior of its users [18].

❆♣♣❧✐❝❛t✐♦♥s
✫

❙�r✈✐❝�s
■✁✂❡✄✁❡✂❈❖P

☎✆✝s✐❝❛❧

❲♦r❧❞
✭●✞✮

Figure 2. Internet of Things concept using the Internet as a link between (physical) objects, and novel
application and services using a common operational picture (COP).

The information content of the data generated by an IoT network is used by applications and
services through the COP. Semantically, the COP does not discriminate between real objects and virtual
(information) objects, and it is natural to virtualize all the information sources and sinks as shown in
Figure 3. These entities are called virtual objects, and they may proxy physical things or they may be
linked to a software component. In either case, they represent a unit of information in the COP. Such an
information-based abstraction, in return, requires a consensus in ordering the data with respect to a
specific argument, e.g., time or frequency. For most of the physical information sources, the acquired
data is naturally ordered in time so that the information content assigned to different virtual objects
must be ordered with respect to their chronology. In particular, this is important in the following
aspects [19]:

(i) Querying the universal time at which a specific event happened and observed by an object.

Sensors 2020, 20, 5928 4 of 59

(ii) Measuring the time difference between two events that are observed by different objects.
(iii) Relatively ordering the events that are observed by different objects.

Figure 3. An Internet of Things platform with physical objects deployed at the edge. Some objects
are connected to the Internet using machine-type communication (MTC) technologies whereas some
are connected over a gateway. In either case, they are represented as virtual objects in the common
operation picture, which is used by application and services.

Therefore, all the physical information sources must have a common notion of time to fuse all the
virtual objects into the COP.

2.2. Motivation

In order to build virtual objects using implicit measurements of some phenomenon, the output of
different sensors is usually fused. The acquired data from different sources are combined and correlated
to obtain additional insight, which is usually not evident in the original data [20]. The cross-correlation
of data from different sources must be calculated using the acquired samples, which requires a shared
notion of time. Therefore, implicit information sources might rely on a common notion of time among
the physical objects.

The distributed nature of WSNs allows acquiring samples from a spatio-temporal field, e.g., for
structural health monitoring [21]. These applications require collecting synchronous samples from all
the sensors to estimate the spatial parameters of interest [22]. Therefore, the synchronous execution of
certain periodic tasks, e.g., sampling, requires a coherent notion of time within the network.

Some local deployments of WSNs require a guarantee to complete a task within a certain time limit,
e.g., for industrial automation [23], recently referred to as industrial wireless sensor networks [24].
Low-jitter applications require estimation and compensation of various time uncertainty sources,
including the ones originating from oscillators and the communication entities. For these use cases,
the time-synchronized operation must be provided by the underlying networking technology, as it is
for WirelessHART or ISA100.11a standards [25]. Both of these protocols form their network using the
Time Synchronized Mesh Protocol [26], which can only be realized with tightly synchronized nodes.
These systems have recently led to the development of Time Synchronized Channel Hopping (TSCH)
networks [27], which are built upon the IEEE 802.15.4e standard [28], and have IPv6 support based
on several IETF standards [29]. For these networks, the time synchronization also enables various

Sensors 2020, 20, 5928 5 of 59

techniques to improve reliability in terms of packet delivery ratio. Furthermore, the nodes are allowed
to turn-off their power-hungry components when they are not needed, which significantly decreases
power consumption. Thus, time-critical, reliable, and low-power networking solutions require tight
time-synchronization.

The advances in Mobile Adhoc Networks (MANET)s have enabled Vehicular Adhoc Networks
(VANET)s [30], which aim at realizing Intelligent Transportation Systems by supporting both
safety-related applications to reduce the probability of traffic accidents, and non-safety applications to
improve passenger comfort and accommodate commercial platforms. These networks are characterized
by their intermittent connectivity and high network node speed, and the success of just mentioned
applications depends on the accuracy of the notion of time of each vehicle [31]. In general, VANETs
can acquire precise global time from satellite-based navigation systems [32], but this may fail when
the vehicles are out of the satellite system coverage. In these cases, a global notion of time can be
disseminated in the network using the time synchronization methods for the IEEE 802.11 [33] since
the network operation is mainly based on the IEEE 802.11p [34]. Therefore, a successful realization of
intelligent transportation systems depends on the accurate notion of time within VANETs.

The management and distribution of an electricity grid using communication and pervasive
computing technologies have recently gained momentum to support distributed renewable energy
sources, which is often referred to as Smart Grid [35]. A wide-area monitoring system, fault detection,
protection functions, substation monitoring, and fault recording all require a network-wide shared
notion of time [36]. Therefore, Smart Grid IoT deployments depend on an accurate and coherent notion
of time within their network.

With the advent of the IoT in the industrial domain, which is also known as industrial IoT
(IIoT), the deployments supporting time-aware and precise timestamped operations have gained
much interest. These distributed systems are implemented using low-cost devices with the ability
to sense and monitor the physical phenomenon, and they have been deployed in the food chain
industry, industrial automation and agriculture. Most notably, these applications require low-latency
communication, precise data processing, and trusted services [37], which can only be achieved
by network-wide, accurate, and robust time-synchronization. In the remaining part of the article,
we elaborate on several aspects of time synchronization that can be used also in IIoT applications.

2.3. Related Works

The time synchronization in WSNs is one of the widely studied problems, and several survey
works exist. A summary of the available surveys is given in Table 1. The surveys [19,38–40] aim at
aiding practitioners to select or develop time synchronization protocols, and their scope is mainly
restricted to messaging schemes. In particular, a comprehensive survey by Sundararaman et al. [19]
aims at showing the link between time synchronization for WSNs, and distributed systems and wired
networks. Similarly, the works [41,42] provide classification methodologies for the available protocols.
The time synchronization problem in the signal processing perspective is studied in the survey by
Wu et al. [7], where the main scope is on exponentially distributed delivery delays. Network-wide
synchronicity and coupled-clock’s based synchronization solutions are studied in the surveys by
Simeone et al. [43], and Bojic and Nymoen [44]. The book by Serpedin and Chaudhari [45] is a
complete reference for estimation methods, and time synchronization protocols presented until 2009. It
can be concluded from the summary provided in the table that the scope of the available survey works
are constraint to certain topics of the general time synchronization problem. However, IoT networks
require one to take into account the transition of the notion of time among different networks,
which require designing different methodologies for different applications. Therefore, there is a need
for an overview survey, which is not restricted to a particular problem but presents each component
and associated solution in a bottom-up approach. In this effort, we outline individual components
taking part in the synchronization, starting from oscillators, and discuss the advantages and limitations
of available methods in the IoT deployment perspective.

Sensors 2020, 20, 5928 6 of 59

Table 1. Surveys on time synchronization in WSN.

Ref. Year Content

[38] 2004 An early survey on time synchronization methods in sensor networks. The work defines the
problem, analyzes its requirements, and surveys available protocol till 2004.

[19] 2005
A comprehensive survey on synchronization protocols in wireless sensor networks. The survey
includes synchronization methods for wired networks, and provides a detailed description of
published methods till 2005. This work motivated several other articles appeared later.

[41] 2007 The earliest work that provides a set of features to classify different synchronization methods.

[43] 2008 A survey on early distributed synchronization methods for wireless networks. The work
especially summarizes the coupled-clocks based network-wide synchronization approaches.

[39] 2010
A short survey of the most popular methods till 2010. The work aims at showing that by the
time of writing, no synchronization method can provide security, scalability, topology
independence, fast convergence and energy efficiency simultaneously.

[7] 2011

A condensed survey of WSN time synchronization in signal processing perspective.
Starting from clock relation models, several clock parameter estimators are outlined. The work
especially summarizes the signal processing methods for exponentially distributed delays,
and related estimation methods.

[42] 2015
A classification model of time synchronization methods for WSNs. The structural, technical
and global objective features of available methods are identified, and a short list of protocols
are compared using the identified features.

[44] 2015
A survey of synchronization methods for machine-to-machine type communication system.
A classification taxonomy for WSN synchronization is used for motivating that biologically
inspired synchronicity is the most suitable option.

[40] 2019 A condensed summary of time synchronization methods for wireless sensor networks
realizing an IoT deployment.

In this work, we provide both a tutorial-like summary of the clock models and CDAs, and a
comprehensive survey of the time synchronization protocols. Different than the other available
surveys, the provided clock relation models are derived step by step, and various CDAs are derived
for different models. The derived clock relation model is more general than the available models,
and it shows that the time reports of software clocks are correlated in time. This correlation not
only degrades the performance of well-known estimators but also bounds the synchronization
period. The derived model is used for developing a computationally light-weight recursive clock
discipline algorithm, which is consistent and efficient. The time synchronization protocol survey
aims at providing an overview of different time synchronization components including timestamping,
messaging schemes, multi-hop approaches, and several networking practical issues and their available
solutions. A discussion on the presented components is given to clarify the advantages of the
methods. Therefore, this work aims at aiding practitioners to select appropriate clock synchronization
components in the complete IoT deployment illustrated in Figure 1.

The time synchronization is one of the widely studied problems in computer networks. In this
work, we focus primarily on the time synchronization for low-cost and low-power networks, and give
a summary of synchronization methods for LAN and WAN networks. Detailed surveys on different
time synchronous networks are tabulated in Table 2, and the reader is referred to these articles.
However, this work may still provide valuable insights on the clock models, clock discipline algorithms,
and underlying protocol primitives that affect the synchronization accuracy.

Sensors 2020, 20, 5928 7 of 59

Table 2. Surveys on time synchronous networking.

Scope Ref. Year Content

Packet switched
networks [36] 2016 A survey on standardized protocols and technologies for synchronizing

devices over packet-switched networks.

Wireless LAN [46] 2017 A survey on synchronization methods for the IEEE 802.11 (WLAN)
networks in infrastructure mode.

Vehicular ad-hoc
networks [31] 2018 A survey on available methods for, and a requirement analysis of vehicular

ad-hoc networks.

Cellular low
latency networks [47] 2018 A survey on technologies enabling low-latency communications in radio

access networks, core network, and caching.

Ultra-low latency
networks [48] 2019

A survey on ultra-low latency networks of IEEE time-sensitive networking
and IETF deterministic networking standards, along with ultra-low latency
research studies of cellular networks.

3. Clock Models

In this section, we elaborate on the clock relation models. We first introduce the parameters
defining a software clock and then derive a model that relates the reports of one clock in terms of the
reports of another. Finally, we summarize the widely used clock relation models.

3.1. Software Clocks

A clock measures the time elapsed since an epoch. Although ideal clocks report C`(t) = t at the
universal time instant t, practical clocks can only report their time at discrete instances since they are
usually implemented as a counter driven by an oscillator [45] as shown in Figure 4. The most important
impact of such an implementation on the time reports of the clock is their deviation from the actual
time due to the imperfections of the driving oscillator. This variation is modeled as a second-order
polynomial with coefficients frequency drift ω, frequency offset γ, time-offset θ, and random variations
ε [9]. Consequently, the time deviation of a continuous clock, say C`(t), at instant t, is given by

C`(t)− t = θ` + γ`t + ω`t2 + ε`(t), (1)

where subscripts identify the clock under consideration.

Edge-
triggered
counter

Software
counter

Figure 4. An implementation of a clock.

The time deviation due to oscillator imperfections can be observed in the frequency spectrum
of a practical oscillator’s output, which is spread around localized tones rather than being non-zero
only at discrete frequencies. This phenomenon can be modeled using an ordinary differential equation
with a periodic solution, which has a phase deviation (a.k.a. time jitter) due to random perturbations.
For uncorrelated perturbation sources, the phase deviation is a Wiener process as previously shown by
Demir [49]. This result is used in previous work [50] to show that ε`(t) can be taken as a zero-mean
Gaussian with variance σ2

` (t) and with auto-correlation function R`(t1, t2) given as

Sensors 2020, 20, 5928 8 of 59

σ2
` (t) = (1 + γ`)

2c`t, (2a)

R`(t1, t2) = c` min{t1, t2}, (2b)

where c` is the oscillator variance constant.
The model in Equation (1) implies also that the time error at the kth transition of the edge-triggered

counter is

e`[k] = t− kT` = t− T̄`

1 + γ`
k, (3)

where T̄` is the nominal period of the oscillator, and T` , T̄`/(1 + γ`) is the instantaneous period.
Due to the nature of the underlying uncertainty sources discussed above, ε`(t) is a zero mean Gaussian
process [50]. Respectively, the time error e`[k] is also a zero-mean Gaussian process with approximate
second-order statistics given as

E{e2
` [k]} ≈ (1 + γ`)

2c`tk, (4a)

E{e`[k1]e`[k2]} ≈ c` min{tk1 , tk2}, (4b)

where tk denotes the universal time when the kth sample is acquired, and E{·} denotes the
statistical expectation.

3.2. Clock Relation Model

The time deviation model in Equation (1) can be used for relating the reports of two clocks,
say the reference clock C1(t) and the other clock C2(t), since the universal time t is common. If there
is a message delivery delay d(t) measured in the universal time associated with the transfer of the
reference clock report C1(t) as visualized in Figure 5, then the time report of C2(t) when the report of
C1(t) is received is given by

C2(t) = α12C1(t) + θ12 + ε12(t) + (1 + γ2)d12(t),

α12 ,
1 + γ2

1 + γ1
, θ12 , θ2 − α12θ1, ε12 , ε2 − α12ε1,

(5)

where α12 is the clock skew between C1(t) and C2(t), and the frequency drift terms ω1 and ω2 are
ignored, following the common practice in the literature. Equation (5) is known as the clock relation
model [45], and some of its parameters are visualized in Figure 5. In the following, the clock relation
models are gradually developed.

t
t0 t t1

C2(t0)

C2(t)

C2(t1)

C1(t0)
C1(t)

C1(t1)

d12(t)

✂12

Figure 5. The relation between the reports of two clocks C1(t) and C2(t).

Sensors 2020, 20, 5928 9 of 59

3.2.1. Clocks on the Same Processor

Suppose that we are aiming to compare the time reports of clocks C1(t) and C2(t) that are
implemented on the same processor, that is d12(t) = 0, and both are initialized to zero a t = 0.
The relation between the count values of the counters associated with these clocks can be written as

m = α12
T̄1

T̄2
k + e[m],

e[m] ,
1
T2

(e1[k]− e2[m]) ,
(6)

where m is the count value of the counter of the clock C2(t) and k is the count value of the counter of
the clock C1(t). The error term e[k] is also Gaussian since e1[k] and e2[m] are independent and Gaussian.
The second order statistics of e[k] can be derived using the statistical independence of e1[k] and e2[m],
which yields

E{e2[m]} ≈ 1
T̄2

2
(α2

12c1 + c2)tm, (7a)

E{e[m1]e[m2]} ≈
1

T2
2
(α2

12c1 + c2)min{tm1 , tm2}. (7b)

The error term e[m] is zero mean if and only if the clock periods are an integer multiple of one
another, and they are phase locked so that at a universal time instant t both of the edge counters have
just incremented. This also implies that the zero mean Gaussian assumption is valid if and only if the
residual time error associated with the counter increments is negligible.

For the discrete time relation model given in Equation (6), the nominal clock periods T̄1 and T̄2 are
known constants of the oscillators, and the clock offset is zero since the clocks are implemented on the
same processor. Hence, the synchronization problem is to estimate the clock skew α12. Let us suppose
that N time reports of both of the clocks are acquired to estimate α12. For notational convenience,
let us define the following vectors and matrices,

k̄ = [k1 k2 − k1 · · · kN − kN−1]
>,

m̄ = [m1 m2 −m1 · · · mN −mN−1]
>,

ē =
[
e[1] e[2]− e[1] · · · e[N]− e[N − 1]

]>,

k = Uk̄, m = Um̄, e = Uē,

where > denotes the matrix transpose and U is a lower triangular matrix defined as

U =


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 .

Progressive clock relation model: Using the definitions given above, the instantaneous count values
are related to each other with

m = α12
T̄1

T̄2
k + e. (8)

Sensors 2020, 20, 5928 10 of 59

Since the time reports of clocks are monotonically increasing, this model is referred to as a progressive
time relation model, and it naturally follows from the definition of the involved quantities. For this
model, the covariance matrix of the noise term e is composed of components Q = [qij] given as

[qij] =
1

T2
2
(α2

12c1 + c2)min{ti, tj}. (9)

Therefore, the progressive time relation model in Equation (8) has a correlated noise term.
Incremental clock relation model: Since the lower triangular matrix U is invertible for all non-zero N,

it follows from the definition of m, k and e that

m̄ = α12
T̄1

T̄2
k̄ + ē. (10)

This time relation model operates on the incremental time reports of the clocks, and it is referred to
as the incremental clock relation model. For this model, the covariance matrix of the error term ē is a
diagonal matrix with components Q̄ = [q̄ij] given as

[q̄ij] =


1

T2
2
(α2

12c1 + c2)(ti − ti−1) i = j,

0 i 6= j.
(11)

This diagonal matrix indicates that the incremental model in Equation (10) has independent noise
samples, enabling optimal performance for well-known estimators.

Time offset: In case the counters are reset to zero at t = 0, the clocks are related to each other
through a single parameter α12. In order to relax this assumption, let us now suppose that the initial
count values of the counters are k0 and m0. Then, the progressive model in Equation (8) can be
written as

m = α12
T̄1

T̄2
k +

(
m0 − α12

T̄1

T̄2
k0

)
1 + e, (12)

where 1 is all one vector. On the other hand, for the incremental model in Equation (10), the new
time-offset term only appears in the first time report pair (m1, k1), that is once the time-offset
is compensated for, the only parameter that needs to be estimated and compensated for is α12.
Therefore, the time incremental model eliminates the need for jointly estimating the time-offset and
the clock skew, at the cost of implementing two estimators for each parameter.

3.2.2. Clocks on Different Processors

If the clock being synchronized is implemented on a different processor, there is a non-zero
time report delivery delay d12(t). This delay depends on several message delivery implementation-
dependent factors, but all can be decomposed as

d12(t) = D12 + δ12(t), (13)

where D12 is deterministic and constant delays, and δ12(t) is the random message delay at t. Thus,
a general clock relation model can be reached by including the messaging delay characteristics into
Equation (5) as

C2(t) = α12C1(t) + θ12 + D12︸ ︷︷ ︸
time-offset

+ ε12(t) + δ12(t)︸ ︷︷ ︸
random variation

. (14)

The time relation model in Equation (14) implies that the time-offset θ12 and the deterministic
delay D12 are not distinguishable and both contribute to the time-offset. Similarly, the observed

Sensors 2020, 20, 5928 11 of 59

random variations in the time reports of a clock compared to the reports of another follows the joint
probability distribution of ε12(t) and δ12(t). In other words, a general clock relation model is given by

C2(t) = α12C1(t) + τ12 + ε12(t), (15a)

τ12 , θ12 + D12, ε12(t) , ε12(t) + δ12(t), (15b)

where the time-offset τ12 and the random delay term ε12(t) have the same impact as θ12 and ε12(t) in
Equation (5). Therefore, the software clock relation models in Equation (6) have the same structure
even when the message delivery delay is included in the formulation.

3.2.3. Numerical Example

The time difference between clocks C1(t) and C2(t) grows with the reference time in accordance
with the clock relation model in Equation (14). In order to demonstrate the significance of the involved
quantities, two time series are created using the parameters in Table 3. The variation of the time reports
of a local clock C2(tk) with respect to the reports of a reference clock C1(tk) is shown in Figure 6. For the
visualized data, the reference clock reports are assumed to be transmitted every second through the
message delivery scheme with Gaussian delay of parameters given also in the table. The depicted
result shows that the variation of the difference between the time reports C2(tk)− C1(tk) with C1(tk)

grows linearly as Equation (8) implies. Furthermore, the variance of the time difference grows as time
progresses. On the other hand, the variation of the time report increments of the node C2(tk)−C2(tk−1)

stays small and the variance does not increase as the incremental model in Equation (10) implies.
Therefore, these two models have different properties, and the clock relation model estimators for each
of the models have different characteristics as it is elaborated on in the next section.

Table 3. Time record simulation parameters.

Symbol Value Appearance Description

θ1 1 Equation (1) Time-offset of C1 in seconds
γ1 10× 10−6 Equation (1) Frequency offset of C1
ω1 1× 10−12 Equation (1) Frequency drift of C1
c1 1× 10−8 Equation (2a,b) Oscillator constant of C1
θ2 2 Equation (1) Time offset of C2 in seconds
γ2 −20× 10−6 Equation (1) Frequency offset of C2
ω2 −1× 10−10 Equation (1) Frequency drift of C2
c2 1× 10−10 Equation (2a,b) Oscillator constant of C2

D12 1× 10−3 Equation (5) Deterministic and constant message delivery delay in seconds
E{δ2

12} 1× 10−10 Equation (5) Variance of stochastic message delivery delay in seconds square

3.3. Available Clock Relation Models

Let us denote the clock relation model as

y = R(x), (16)

where we have defined the function argument x as the reference clock reading C1(t), and y as the local
clock reading C2(t). The general clock relation model in Equation (6) is composed of several parameters:
oscillator-induced noise ε12(t) and message-delivery uncertainty δ12(t), the initial time-offset θ12 and
deterministic message-delivery delay D12, and the clock skew parameter α12. The relative importance
of these parameters changes with the time record acquisition procedures, and different approximations
are possible depending on the required level of accuracy. In the following, we give a summary of the
clock relation models used in the time-synchronization literature.

Sensors 2020, 20, 5928 12 of 59

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
D

iff
er

en
ce

[s
]

C2(tk)− C1(tk)

C2(tk)− C2(tk−1)

Figure 6. The time difference in seconds between the simulated local clock C2(tk) and the reference
time reports C1(tk) delivered through a Gaussian message delivery delay which are associated with
the universal time tk.

3.3.1. Offset-Only Model

The time relation model for this case is in the form

R1(x) = x + τ12, (17)

where τ12 is the time-offset, and the clock skew is assumed to be unity and constant, α12 ≡ 1. The offset
only modelR1(x) is an under-fitted time relation model, which has a large bias although the residual
variance is small Section 3.2 in [51].

Although, this model is not used for time-synchronization purposes under Gaussian random
variations, it is used for exponential distributed random variations by Jeske [52], by Lee et al. [53],
and by Rhee et al. [54].

3.3.2. Progressive Linear Model Only with Delivery Delay

In the pioneering work by Elson et al. [55], the impact of the oscillator-induced random time
deviation is ignored, and the time relation model is simplified to

R2(x) = α12x + τ12 + δ12(x). (18)

The simplified model in Equation (18) is by far the most widely used model in the literature
(see e.g., [7,45] for a comprehensive overview). In particular, this model is used by Maróti et al. [56],
and other works (e.g., [57–59]) by assuming that the random delay δ12(x) is Gaussian and its samples
in different messages are uncorrelated. The works [7,60] use the same model with an exponentially
distributed message delivery delay.

3.3.3. Incremental Linear Model Only with Delivery Delays

The progressive model in Equation (18) can be used in incremental form, which reads as

R3(x) = α12(xk+1 − xk) + δ12(tk+1)− δ12(tk), (19)

where δ12(tk+1) is the delivery delay term associated with xk+1, and δ12(tk) is associated with xk,
when an explicit estimate of the clock skew α12 is desired. This model is first used by Hamilton et al. [61],

Sensors 2020, 20, 5928 13 of 59

and later by Yang et al. [62,63] in order to include the dynamics of the clock skew into the
synchronization problem formulation. Since this model does not contain the time offset term, it requires
a two-step clock discipline algorithm.

3.3.4. High Order Models Only with Delivery Delay

The time relation model in Equation (19) can be extended by including the temporal variation of
the clock skew in order to account for the ignored frequency drift parameter ω0 in Equation (1).
This term represents slow time variations due to the supply voltage changes, the temperature
fluctuations, and the aging of the oscillator [9]. One approach to take into account the frequency
drift is to consider a dynamical model for the clock skew α12,

d
dx

α12 = ω12 + δα12(x), (20)

where δα12(x) is the random variation of the clock skew, and the clock relation model is as in
Equation (19). This model is first proposed by Hamilton et al. [61], and it is later used by Yang et al. [62,63].

Models with an order higher than two have also been investigated by researchers. In the work by
Kim et al. [64], the authors have studied higher order autoregressive models for clock skew, where they
have also validated the model order with well-known model selection methods. The same line of
reasoning has motived Masood et al. [65] to study alternative models with both open-loop and feedback
terms. Such high order extensions cannot be easily linked to the well known physical clock parameters.
In this regard, models exceeding the second order cannot be easily described using the terminology
presented above.

3.3.5. Incremental Linear Model with Delivery Delay and Oscillator-Induced Correlation

The simplified model in Equation (18) does not take into account the correlated oscillator-induced
noise. This problem does not exist for the incremental linear model, which can be written as

R4(xk, xk+1) = α12(xk+1 − xk) + ε12(tk+1)− ε12(tk), (21)

where ε12(tk+1) is the noise term associated with xk+1, and ε12(tk) is associated with xk. The difference
of these two terms is uncorrelated between different increments, but the variance of the measurements
increases with the elapsed time between the reports.

The incremental linear model in Equation (21) can be generalized to cover a-periodic time report
message delivery, which is a common problem when the time reports are exchanged over a lossy
medium. For this purpose, one approach is to define the time relation model in Equation (21) as

1 = α12
xk+1 − xk
yk+1 − yk

+
ε12(tk+1)− ε12(tk)

yk+1 − yk
, (22)

where R4(xk, xk+1) = yk+1 − yk, and xk and yk are as defined above. In this case, the covariance
function of ε12(tk+1)− ε12(tk) is as given in Equation (11).

The correlations in the time increments are not generally considered in the literature with the
exception of the work [50]. Such a simplification limits the performance of well-known model
estimators. As we demonstrate in the next section, taking into account the time report correlations is
important, and allows development of an efficient and consistent clock skew estimation algorithm.
However, this model does not depend on the clock offset, and requires a two-step clock discipline
algorithm development.

3.3.6. Summary

Available clock relation models presented in this section are summarized in Table 4. Every model
has some advantages and disadvantages, and each are useful under certain application requirements.

Sensors 2020, 20, 5928 14 of 59

When the application does not require tight synchronization, the offset-only model can be used.
However, for other cases, a progressive first order model is usually preferred. If the application permits
a higher amount of computational resources, but limited amount of communications, higher order
models can be used. Although not widely used, the incremental model with delivery delay and
oscillator-induced correlations can be used as a direct replacement of progressive time relation model.
As we elaborate on in the next section, such a replacement enables development of an efficient and
consistent model estimators.

Table 4. Summary of clock relation models.

Model References Advantages Disadvantages

Offset-only model [52–54]
A single parameter model taking
into account only the clock offset
term. This is the simplest model.

It has a large modeling error bias,
and cannot be used for high accuracy
and low-power time synchronization
purposes.

Progressive linear
model only with

delivery delay
[7,55–60]

A first order time relation model
that can be used for maintaining
energy efficient time synchronous
operation. This model is the most
widely accepted model in the
literature.

It does not take into account the time
variation of the clock-skew
parameter and oscillator-induced
time correlations, which upper
bounds the synchronization period
so that frequent time report
exchange is required.

Incremental linear
model only with

delivery delay
[61,62]

A linear model of clock skew, which
enables a dynamical model for clock
skew.

It does not depend on clock offset,
and does not take into account the
oscillator-induced correlations. A
two step clock discipline algorithm is
required.

Higher order
progressive models
only with delivery

delay

[61,62,64,65]

A higher order (with respect to time
argument) model which takes into
account the dynamics of the clock
skew. Enables low-power time
synchronization by prolonging
synchronization periods.

The number of parameters are
increased, which increases the
required amount of computational
resources. For the models with
degree higher than two, physical
clock terminology cannot be used.

Incremental linear
model with delivery

delay and
oscillator-induced

correlation

[50]

An oscillator-induced time
correlation compensated model,
which enables high accuracy time
synchronization.

It does not depend on clock offset.
A two step clock discipline
algorithm is required.

4. Clock Discipline Algorithms

In this section, we consider the scenario where the time reports of a clock, say C2(t), are required
to synchronize to the time reports of a reference clock, say C1(t), where t denotes the global time,
as depicted in Figure 5. The time reports of the reference clock are conveyed to one another
(The message dissemination may also be one way as discussed later.) using a connectionless protocol
known as the time synchronization protocol. The model parameter estimation and using the estimated
model to calculate the reference clock time from a local time report is referred to as clock-discipline
algorithms (CDAs). The CDAs are developed based on the time relation models, and as the accuracy of
the underlying model increases, the performance of the associated CDA increases. In the following,
the CDA are developed for continuous time clock relation models. It is possible to convert the
discretized time reports of the clocks to continuous time readings by assuming that the associated
counter increments once in one period, and by ignoring residual time error within one period.

Sensors 2020, 20, 5928 15 of 59

4.1. Background

A CDA is to estimate the parameters of the clock relation model in order to adjust time reports
of a clock or to transform its time report to the time scale of a reference clock [7]. In this regard,
the algorithm needs to estimate the clock relation parameters, i.e., the model, and then use it to predict
the time reports of C1(t) for the given reading of C2(t). Let us consider the abstract clock relation
model in Equation (16). For this model, the CDA first must find a best estimate R̂(x) of the modelR(x)
in some sense. Then, it must use the inverse of the estimated model R̂(x) to calculate its argument,
that is

x̂ = R̂−1(y), (23)

as listed in Algorithm 1 for a time relation model with both clock skew and time-offset parameters.

Algorithm 1 Calculate synchronized time

1: Input: local clock report y = C2(t)

Global Variables: α̂12 and τ̂12

Output: Corrected time report x̂ = Ĉ1(t)
2: return Ĉ1(t)←

(
C2(t)− τ̂12

)/
α̂12;

4.1.1. Evaluation Metric

In the following, different clock relation model approximations and their associated CDAs are
presented. Each scheme is evaluated using time difference metric, which is defined as

Time Difference = e , C1(t)− R̂−1(C2(t)), (24)

where R̂−1(·) is the most recent model estimate. For the linear time relation model in Equation (15a),
the expectation of the time difference is given by

E{e} =
(

1− α12

E{α̂12}

)
C1(t)− E

{
τ12 − τ̂12

α̂12

}
, (25)

for t ≥ tk, and where the latest time-offset estimate is calculated at time tk. Therefore, when the clock
skew estimator is unbiased so that E{α̂12} = α12, the time difference e is defined by the time-offset
estimation bias, and in the following the bias is used as the evaluation metric.

4.1.2. Evaluation Data

The performances of CDAs for different clock relation models are evaluated using simulated
data for comparative fairness. As discussed by Phan et al. [66], different data collection strategies
yield different results, which may favor some models. The fairness in CDA comparison strategies
is important, and a reliable result can only be achieved by using the same data for the purpose [67].
Also, the assumed model complexity of order 2 polynomial is in accordance with the reported best
fit complexity (see, for example, [67]). Consequently, we use the simulated time series given in
Section 3.2.3 to compare the outcome of each model.

4.2. Offset-Only Estimation

Offset-only model is given in Equation (17), and the corrected time for this case is given by

R̂−1
1 (y) = y− τ̂12, (26)

Sensors 2020, 20, 5928 16 of 59

where τ̂12 is an estimate of the parameter τ12. This model has only one parameter τ12, of which the
estimate at a time instant tk is

τ̂12(tk) = C2(tk)− C1(tk). (27)

Suppose that the offset is estimated at tk. At a time instant t ≥ tk, the bias of the model estimation is

bτ(t) , E{τ̂12(tk)− τ12} = (α12 − 1)C1(t), (28)

and it is growing as the time reports of C1(t) progresses. The impact of the bias is a growing
estimation error, which can be kept limited by a frequent estimation of the time-offset. Let us
denote the time difference between successive offset estimations by ∆ seconds (The time difference
between two successive offset estimates ∆ is also referred to as synchronization period, which is the
time difference between two consecutive synchronization messages.). The variation of the offset
compensated time reports of the clock C2(t) at t seconds after the kth offset estimation, which is
C1(k∆ + t)− C2(k∆ + t)− τ̂12(tk), is shown in Figure 7 for different synchronization periods ∆. As the
synchronization period increases the time error increases, and its bias is visible also in the smallest ∆
value. Therefore, in case a high granularity and low-power synchronization is desired, an offset-only
estimator for time synchronization is not suitable.

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

0

2

4

6

8

10

Ti
m

e
D

iff
er

en
ce

[µ
s]

×103

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

Figure 7. The time difference in microseconds between the time reports of a local clock and a reference
clock when the time-offset is estimated at different periods ∆.

Suppose that there are N synchronization messages for estimating the time-offset. If the
system permits measuring and storing two-way message exchanges (for example, using the
messaging protocols in Section 5.2.1), the impact of clock skew can be kept lower than a threshold.
Although optimal estimates under Gaussian random variations is the average of N measurements,
when the delays are exponentially distributed, the maximum-likelihood estimate of the clock offset
under symmetric delays has been proven by Jeske [52] to be the difference of the minimum time
measurements. This result was later improved by Lee et al. [53] by employing bootstrap bias correction,
and by Rhee et al. [54] using a Particle Filter. These methods cannot be easily generalized to other
messaging schemes, and therefore receive no further elaboration.

4.3. Joint Batch Estimation of Offset and Skew

The clock relation model given in Equation (14) is a linear model of its parameters {α12, τ12},
which can be estimated using the well known linear regression methods (see, e.g., [51]). If a table
of time records [55] are used as a batch of measurements, the CDA is a batch least squares estimator.
The performance of this estimator depends on the accuracy of the statistical model of the random

Sensors 2020, 20, 5928 17 of 59

delay terms ε12(t) and δ12(t). If the random message delivery delay δ12(t) is a zero-mean process with
a finite variance and oscillator induced noise ε12(t) is ignored, then the estimates of the parameters are
given by

α̂12 =

N
∑

n=1

(
xn − 1

N ∑N
k=1 xk

) (
yn − 1

N ∑N
k=1 yk

)
N
∑

n=1

(
xn − 1

N ∑N
k=1 xk

)2
, (29a)

τ̂12 =
1
N

N

∑
n=1

yn − α̂12
1
N

N

∑
n=1

xn, (29b)

where n denotes the ordered index of the time values in the regression table (of N entries), xn is the
time reports of the reference clock C1(t), and yn are the time reports of the local clock C2(t).

The batch least squares based CDA is used by Maróti et al. [56], and other works e.g., [57–59]
by assuming that the random delay δ12(t) is Gaussian and its samples in different messages are
uncorrelated. Under these assumptions, the least squares estimator is unbiased, efficient and
consistent Section 3.B in [68], which are the required properties from an estimator to attribute it
as a “good estimator”. On the other hand, if the random delay δ12(t) has a distribution other than
Gaussian, but with a known density, the maximum likelihood estimate is usually sought. For example,
the works [7,60] study exponentially distributed message delivery delay, and the model parameters
are estimated using the maximum likelihood estimator.

A recursive least square estimator can also be used to estimate the model parameters as has
been derived in [50]. However, this estimator uses all the past measurements, and when the skew
changes in accordance with the ignored frequency drift term, its estimates quickly deviate from the
true values. This problem is also observed in the batch least squares estimator since the frequency
drift breaks the integrity of the regression table as elaborated by Mahmood and Jäntti [69]. When the
time spacing between the entries of the regression table increases, the first order time relation model
assumption fails. Solutions to this problem are to decrease the table size and/or to decrease the time
spacing between the entries. However, these solutions are not always desirable or applicable due to
the energy constraints or due to the required level of the time synchronization accuracy. In multi-hop
networks, frequent estimation of the clock skew may also degrade the performance as elaborated on
by Phan et al. [66]. This problem can be avoided by changing the time duration between the clock
skew estimate updates.

The time relation model in Equation (18) ignores the time uncertainty induced by the oscillator
imperfections, including time correlations and frequency drift. As we have elaborated on in the
previous section, these error sources increase as the time progresses, and degrade the performance of
the least square estimator. The variation of the time difference between the compensated time reports
of a local clock and a reference clock is shown in Figure 8 for different synchronization periods ∆.
Compared to the result in Figure 7, the average time error is decreased at the cost of estimating the
clock skew parameter. This time, the estimation bias is much smaller and can be controlled by selecting
∆ and the regression tables size N according to the required level of accuracy. However, as the time
spacing between table entries ∆ increases, it can be observed from the figure that the estimation bias
increases. This bias is due to two factors: the neglected frequency drift term and the time report
correlations due to oscillator-induced error sources.

Sensors 2020, 20, 5928 18 of 59

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

−25

0

25

50

75

100

125

150

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

Figure 8. The time difference in microseconds between the time reports of a local clock and a
reference clock when only the time relation parameters of the progressive time model with the message
delivery delay are estimated at different periods ∆ using linear regression with a regression table of
N = 8 entries.

4.4. Adaptive Clock Skew Estimation

The performance of the batch least square estimator can be improved by including the impact of
the ignored frequency drift term in Equation (1). The effect of the frequency drift ω0 can be investigated
by examining the bias of the estimates. Let us denote the relational frequency drift (The relational
frequency drift is the parameter of the second order term of the clock relation model. This parameter
can be derived by solving the equation Equation (1) for t, and then finding the relation of two clocks.)
by ω12. Then, the bias in the time-offset estimate is given by

bτ =
1
N

N

∑
n=1

(
ω12x2

n + (α12 − α̂12)xn
)
. (30)

The importance of the second order parameter ω12 is more significant when the clock offset and
clock skew estimation period ∆ is high so that the time offset estimation bias grows to a significant
value. Therefore, if ∆ is significantly high, the synchronization accuracy can be improved by estimating
the frequency drift term ω12.

One approach to take into account the frequency drift is to consider a dynamical model for the
clock skew α12 as proposed by Hamilton et al. [61]. In the work, the authors assume a first-order
autoregressive model for the clock skew,

α12(tk+1) = ρα12(tk) + ηα(tk), (31)

where ρ is the model parameter which is less than and close to one, and ηα is the process noise.
The skew dynamics are also studied by Yang et al. in [62,63]. After studying widely used clock skew
models, the authors conclude that the skew either follows the differential equation in Equation (20),
the discretized version of which reads as

α12(tk+1) = α12(tk) + ω12(tk+1 − tk) + η̃α(tk), (32)

where η̃α is the process noise, or the constant model with ω12 ≡ 0,

α12(tk+1) = α12(tk) + η̄α(tk). (33)

Sensors 2020, 20, 5928 19 of 59

For the selected skew dynamics, the measurement model in Equation (19) is used for estimating
the skew. In [61], the Kalman Filter (Here we do not give a summary of the Kalman filter, which can be
found in standard text books on statistical signal processing (see, e.g., [70]).) is used to estimate the
clock skew. In [62,63] several Kalman filters run simultaneously for the same purpose.

The incremental model in Equation (19) is only a function of the clock skew parameter α12 so that
it can only be used for estimating α12. However, it is still required to estimate the time-offset parameter
τ12 in order to calculate the corrected local time. One approach is to estimate it using Equation (27),
and then to use these estimates to correct the output of the clock C2(t) by

R̂−1
3 (y) = (y− τ̂12)

/
α̂12. (34)

The model complexity is one of the parameters that can be tested upon to reach an optimal
estimation performance. In order to reach an optimal synchronization accuracy, Kim et al. [64] have
studied higher order autoregressive models for clock skew, where they have also validated the model
order with well-known model selection methods. Once such a model is determined, a Bayesian
optimal filter, a Kalman filter, is used for estimating the clock relation model parameters. The same
line of reasoning has motived Masood et al. [65] to study alternative models with both open-loop and
feedback terms. After validating a highly complicated model with the model selection procedure,
they have used the steady-state Kalman Filter.

An alternative to the Bayesian estimation is the control theoretical approach, where the
synchronization problem is cast as a closed loop control problem. The first work to study a control
theoretical clock disciple algorithm is by Ren et al. [71]. Motivated by the fact that the NTP uses a
phase-locked loop (PLL) type clock discipline algorithm, the authors proposed a PI controller followed by
a software oscillator. This approach is further improved by Chen et al. [72] by removing the software
oscillator in the loop, and introducing a strategy for selecting the gains of the controller. The method
introduced by Yıldırım et al. [73] uses a PI controller with adaptive gains. This approach has certain
advantages compared to the batch least square based clock synchronization. Another control theoretical
solution based on low-frequency oscillators is FLOPSYNC-QACS by Terraneo et al. [74]. The authors
present a control scheme that can be used when the quantization errors dominate the other time errors.
Therefore, low-frequency clocks can be used for low-power time management, but they require one to
take into account the required level of time resolution and quantization error into account.

In the work by Liu et al. [75], it is shown that synchronization based on a PI controller is equivalent
to Kalman Filtering. Since the Kalman Filter can be written as a maximum likelihood estimate of the
state with respect to the innovation, these methods are the same, in spirit, to the recursive estimator
described in the next subsection.

4.5. Clock Skew Estimation Using Incremental Linear Model with Delivery Delay and
Oscillator-Induced Correlation

In this subsection, an incremental linear model with delivery delay and oscillator-induced
correlation introduced in Section 3.3.5 is used for developing batch, recursive, and numerically stable
and recursive clock skew estimators.

4.5.1. Batch Estimation

Linear model estimators based on linear regression have an optimal performance when the noise
process is Gaussian and the measurements are uncorrelated. However, in Section 3.2, it is shown
that the oscillator-induced noise is correlated, limiting the performance of the least squares estimator
based on the progressive time model. This problem does not exist for the incremental linear model in
Equation (21).

Sensors 2020, 20, 5928 20 of 59

Let us suppose that the regression table of the time reports is composed of N time records.
Then, the least squares estimate of the clock skew α12 for the incremental time relation model in
Equation (21), and a simple estimate of the time-offset is given by

α̂12 =

N−1
∑

n=1
(xn+1 − xn)(yn+1 − yn)

N−1
∑

n=1
(xn+1 − xn)2

, (35a)

τ̂12 = y1 − α̂12x1, (35b)

where xn is the time reports of the reference clock C1(t), and yn are the corresponding time reports
of the local clock C2(t). The variation of the time difference between the compensated time reports
of the local clock and the reference clock when the local time is corrected with the estimates of the
model parameters in Equation (35a,b) is shown in Figure 9a for different synchronization periods ∆.
Compared to the result in Figure 8, the synchronization accuracy is improved, and the computational
requirements are relaxed. Also, the time error bias is decreased.

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

−25

0

25

50

75

100

125

150

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

(a)

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

0

100

200

300

400

500

600

700

800

900

1000

1100
Ti

m
e

D
iff

er
en

ce
[µ

s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

(b)

Figure 9. The time difference in microseconds between the local clock time reports and the reference
clock reports when the time relation parameters of the incremental time model are estimated at different
periods ∆ using different estimators. In (a), the least squares estimator using a regression table of N = 8
entries, and in (b), the recursive maximum likelihood estimator in Equation (38).

In case the time report entries of the table are not equally spaced, the model in Equation (22)
should be used. For this model, the N measurement maximum likelihood estimate (MLE) of the clock
skew is

α̂12 =

N−1
∑

n=1
xn+1 − xn

S(N)
, (36)

where we have defined the sum term as

S(N) ,
N−1

∑
n=1

(xn+1 − xn)2

yn+1 − yn
. (37)

Sensors 2020, 20, 5928 21 of 59

4.5.2. Recursive Estimation

The clock skew estimate in Equation (36) assumes a table of time reports of N entries. If it is
desired to recursively update the estimate when (N + 1)th time records are available, it is shown in [50]
that the estimate is updated with

α̂+12 = α̂12 +
xN+1 − xN

S(N)

(
1− α̂12

xN+1 − xN
yN+1 − yN

)
, (38)

where α̂+12 is the updated estimate. This recursive estimator requires accumulating only one sum
S(N), while estimation itself requires only a few floating point operations. Therefore, memory and
computational requirements of this estimator are very low.

The performance of the recursive estimator is defined by the ignored frequency drift term, and the
performance degrades drastically as the number of estimates increases. This degradation is due to the
induced bias, and it causes an increasing estimation error variance as shown in Figure 9b. A solution
to this problem is to give more weights to recent measurements, and exponentially dampen the old
ones. The weighted version of the recursive estimate in Equation (38) is given by

Φ(N) ,
N−1

∑
n=1

λN−1−n (xn+1 − xn)2

yn+1 − yn
(39a)

Φ(N + 1) = λΦ(N) +
(xN+1 − xN)

2

yN+1 − yN
, (39b)

α̂+12 = α̂12 +
xN+1 − xN
Φ(N + 1)

(
1− α̂12

xN+1 − xN
yN+1 − yN

)
, (39c)

where 0 < λ ≤ 1 is the selected weight. The variation of the time difference between the corrected
local clock and the actual reference clock values in microseconds is shown in Figure 10. The depicted
result clearly shows that the weighted recursive clock skew estimator outperforms all other estimators,
while preserving the computational advantages of the recursive estimator.

0 5 10 15 20 25 30 35
C1(tk) [s] ×103

−25

0

25

50

75

100

125

150

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

Figure 10. The time difference in microseconds between the time reports of a local clock and a
reference clock when the time relation parameters of the progressive time model only with the message
delivery delay are estimated at different periods ∆ using exponentially weighted recursive estimator in
Equation (39a–c) with weight λ = 0.4.

For the clock skew estimators based on the incremental model, the clock offset can be estimated
using Equation (35b). Consequently, the weighted clock skew estimator in Equation (39a–c) along

Sensors 2020, 20, 5928 22 of 59

with Equation (35b) constitutes the best CDA algorithm when the time reports are conveyed using
one-way message dissemination. Therefore, whenever possible it should be used as the preferred CDA.
Although not available, its adaptive (Bayesian) version can be derived to cover the environments that
have highly dynamic temperature variations.

4.5.3. Numerically Stable Recursive Estimation

A perfect clock has a time offset of θ0 = 0 s, a frequency offset of γ0 = 0, and frequency drift of
ω0 = 0. The non-zero values of some or all of these parameters are compensated by the means of a
CDA. In this regard, the quality of a clock is defined by the statistical properties of these parameters.
For example, the frequency offset of an acceptable quality clock must stay within a close neighborhood
of 0. Correspondingly, the parameters of the clock relation model in Equation (5) should have stable
values; the clock skew parameter α12 must stay within a close neighborhood of 1. One very important
implication of this observation is on the numerical stability of the CDA algorithms. The round-off
errors (see e.g., [76]) in the numerical representation of the time records and the clock skew estimate
change the estimation error performance.

In order to demonstrate the impact of the round-off error, the batch estimator of the incremental
time relation model in Equation (35a,b) and its recursive version in Equation (39a–c) are implemented
using 32-bit and 64-bit floating point numbers, and the time difference between the estimated time
record and the actual time in microseconds is shown in Figure 11. As it can be observed from Figure 11a,
the round-off errors drastically degrade the performance of both recursive and batch estimators.

5 10 15 20 25 30 35
C1(tk) [s] ×103

−4000

−3000

−2000

−1000

0

1000

2000

3000

Ti
m

e
D

iff
er

en
ce

[µ
s]

Batch, 32 bit
Recursive, 32 bit
Batch, 64 bit
Recursive, 64 bit

(a)

5 10 15 20 25 30 35
C1(tk) [s] ×103

−25

0

25

50

75

100

125

150

Ti
m

e
D

iff
er

en
ce

[µ
s]

Recursive, 64 bit
Modified Recursive, 32 bit

(b)

Figure 11. The variation of the time difference in microseconds between the time reports of a local
clock and a reference clock with 32-bit and 64-bit floating point numerical precision representation of
the quantities when the time relation parameters of the incremental time model are estimated every
∆ = 300 s. In (a), the performance of batch linear regression with a regression table of N = 8 entries,
and recursive weighted maximum likelihood estimator with weight λ = 0.4. In (b), numerically
stabilized estimator and 64-bit implementation of the recursive estimator.

The impact of the numerical imprecision of the clock skew estimate can be mitigated by performing
the numerical calculations using larger numbers. For example, one option is to define a scaled clock
skew parameter β as

β12 , K(α12 − 1), (40)

where K � 1 is a scalar yielding a large numerical representation. The value of K is selected based on
the expected variation of clock skew between synchronization periods. If the environment is stable,
the clock skew α stays in a close neighborhood of 1, and K is selected large if the CDA is required to

Sensors 2020, 20, 5928 23 of 59

react to small changes. In a more unstable environment, a smaller K value may be used. For example,
K = 1 · 106 can be used to cover most of the cases encountered in practice. Then, the recursive estimate
given in Equation (39a–c) can be written as

β̂+
12 = β̂12λ

Φ(N)

Φ(N + 1)

+ K
xN+1 − xN
Φ(N + 1)

(
1− xN+1 − xN

yN+1 − yN

)
.

(41)

On the other hand, the numerical error when calculating the time-offset estimate in Equation (35b)
yields a growing estimation error variance as can be observed in Figure 11a. This is due to the
multiplication of a floating point number with a higher reading of the local clock report, which causes
an accumulation of the error toward the exponent of the floating point number. This can be prevented
by properly defining the exponents of both of the numbers and performing the multiplication using
the scaled representations.

The numerical problems discussed above can be mitigated so that the performance of the CDA
can be kept comparable to the performance of the high precision implementations. The performance
of the modified recursive algorithm using the clock skew estimator in Equation (41) and the truncated
numbers for floating point multiplication in Equation (35b) is shown in Figure 11. The performance
of the numerically improved estimator and the high precision implementation are very close to
one another.

4.6. Results and Discussion

In this subsection, the results of numerical examples presented throughout the section are given,
and their implications are discussed.

4.6.1. Numerical Results

The key statistics of the results presented in Figures 7–10 are shown in Table 5. These statistics are
selected to show accuracy (first moment—mean value), and precision (second central moment—standard
deviation), and skewness (scaled third central moment) of the estimation error(skewness is a measure
of symmetry of the error around its mean implying that the synchronizing clock’s rate is not always
higher or lower than the reference clock’s rate.). These statistics clearly show the superior performance
of the weighted recursive MLE estimator using the incremental model in Equation (39a–c) compared
to the others. This algorithm achieves the given performance while decreasing the computation and
memory requirements compared to the requirements of the widely used batch linear regression for the
progressive model.

Table 5. Statistics of CDA results.

CDA ∆

Seconds
Mean

Microseconds
Standard Deviation

Microseconds
Skewness

Offset-only
Figure 7

10 151.32 97.28 0.037

60 991.99 586.87 0.039

300 5025.82 2935.20 0.040

Batch
least

squares
Figure 8

10 0.097 3.06 −0.015

60 3.92 7.18 0.120

300 94.85 29.52 −0.079

Sensors 2020, 20, 5928 24 of 59

Table 5. Cont.

CDA ∆

Seconds
Mean

Microseconds
Standard Deviation

Microseconds
Skewness

Batch
least

squares
Figure 9a

10 0.02 2.37 0.056

60 1.36 5.09 0.254

300 33.58 23.73 0.402

Recursive
MLE

Figure 9b

10 15.59 13.72 0.882

60 93.58 75.99 0.884

300 271.79 241.65 0.979

Weighted
recursive

MLE
Figure 10

10 0.001 2.62 0.062

60 0.53 5.50 0.155

300 13.40 15.35 1.073

4.6.2. Discussion

The CDA algorithms presented in this section are widely used in the literature, and their properties
are summarized in Table 6. All algorithms update their estimates once the readings of both the
reference clock C1(t) and the corresponding local clock C2(t) are available. The operation of the
clock parameter estimator depends on the estimation method and the assumed model. For the batch
estimators, the clock parameters can be estimated together using a table of time records as summarized
in Algorithm 2. The recursive algorithms can be implemented using Algorithm 3 with some variations
for the selected CDA. The skew estimator first updates its estimate, and then use it for calculating the
time-offset as given in Algorithm 3 (step 4).

Algorithm 2 Batch clock parameter estimator

1: Time record table: {{xk, yk} = {C1(tk), C2(tk)} : k = 1, · · · , N}

Input: {xN+1, yN+1} = {C1(tN+1), C2(tN+1)}

Output: τ̂12, α̂12

2: Update the table entries {append the new and drop the oldest entry}

3: (for incremental model) Calculate the time difference between the table entries

4: Calculate the clock-skew using the table entries

5: Calculate the time-offset τ̂12 ← 1
N

N
∑

k=1
{C1(tk)− α̂12C2(tk)}

6: return α̂12 and τ̂12

Sensors 2020, 20, 5928 25 of 59

Table 6. Available clock discipline algorithms.

Estimator Model Advantages Disadvantages

Offset-only estimation
[52–54] (17) A single parameter estimator, which assumes α12 = 1. It is used for

adjusting the time using two-way message exchanges.
It has a large modeling error bias, and cannot be used for high accuracy
synchronization purposes for low-power networks.

Batch least squares
estimator

[7,55–60]
(18)

A simple table-based linear regression estimator. It estimates both
skew and offset parameter, and has an acceptable performance.
High-precision numerical values are needed to achieve the reported
performance.

Its model does not take into account the time variation of clock-skew
parameter and oscillator-induced time correlations, which upper bounds
the synchronization period. It requires re-calculation of the estimates
using all the time values in the table whenever a new time report is
available. It treats the clock-skew as an unknown constant.

Adaptive skew estimator
(Bayesian)

[61–63]
(19)

A linear state estimator for clock skew, which takes into account the
frequency drift. Multiple skew dynamical models can be used
simultaneously to account for different practical situations. It
assumes dynamics of clock-skew given in Equations (31), (32) or (33)

It does not depend on clock offset, and does not take into account the
oscillator-induced correlations into account. Several computational steps
of Kalman Filter are required to update its skew estimate. The
underlying model requires non-obvious modifications to reach
numerically stable estimates.

Adaptive skew estimator
(Closed-loop)

[71–74]
(19)

Implicit clock skew estimate using PI controller, which resembles PLL
loop. Well-known control theoretical tools can be used for adjusting
its gains. In its bare form it is equivalent to constant gain Kalman
Filter. Adaptive version can be used to adjust its gains on-the-fly.
Although not reported, it is expected to be numerically stable.

It does not depend on clock offset, and does not take into account the
oscillator-induced correlations into account. A two-step clock discipline
algorithm is required.

Recursive clock skew
estimator

[50]
(22) A computationally efficient (recursive) MLE of the skew. It takes into

account oscillator-induced correlations.

It does not depend on clock offset so that two-step clock discipline
algorithm is required. It cannot follow the changes in the clock-skew due
to frequency drift since it uses all the past time values.

Weighted recursive clock
skew estimator

[This work]
(22)

A computationally efficient (recursive) MLE of the skew. It takes into
account oscillator-induced correlations. It supports numerically
stable implementation given in Equation (41). It can follow the
dynamical variations in the clock skew by limiting number of
measurements affecting the estimates.

It does not depend on clock offset so that two step clock discipline
algorithm is required. It requires adjusting the forgetting factor λ for
each deployment. This parameter can be selected to include 2–3 reports,
since it converges to the correct skew very fast. Numerically stable
version requires a constant gain parameter K. This gain can be selected to
move significant bits of clock-skew. In practice, K = 1 · 106 can be used.

Sensors 2020, 20, 5928 26 of 59

Algorithm 3 Recursive clock parameter estimator

1: Previous time records: {xN , yN} = {C1(tN), C2(tN)}

Previous sum parameter: Φ

Input: {xN+1, yN+1} = {C1(tN+1), C2(tN+1)}

Output: τ̂12, α̂12

Parameters: λ

2: Update the sum parameter Φ← λΦ + (xN+1−xN)2

yN+1−yN

3: Update the clock skew α̂12 ← α̂12 +
xN+1−xN

Φ

(
1− α̂12

xN+1−xN
yN+1−yN

)
4: Calculate the time-offset τ̂12 ← yN+1 − α̂12xN+1

5: Save the time records {xN , yN} ← {xN+1, yN+1}
6: return α̂12 and τ̂12

Compared to the other CDAs given in Table 6, weighted recursive skew estimator provides
significant advantages at the cost of adjusting a single weight parameter λ. In order to aid the
reader, a comparison table of the derived clock parameter estimators is given in Table 7, where the
computational complexity is given in big-O notation O(·). The recursive estimators are appealing
for their lower computational and memory requirements. An algorithm that is a-periodic can handle
occasional packet drops, which is common in wireless networks. The results given in Tables 5 and 7,
and the comparison of the methods in Table 6 imply that the numerically stable estimator achieves a
higher accuracy time synchronization while using a lower amount of computational resources and
providing solutions for numerical problems. Therefore, it is superior to the other estimators presented
in this section.

Table 7. Comparison of clock discipline algorithms.

Name Model Type Skew
Estimate

Offset
Estimate Bias Complexity Sampling

Offset-only Progressive Batch α̂12 = 1 (27) (28) O(1)

Batch least squares Progressive Batch (29a) (29b) (30) O(N) Periodic

Batch least squares Incremental Batch (35a) (35b) (30) O(N) Periodic

Recursive maximum
likelihood Incremental Recursive (38) (35b) (30) O(1) A-periodic

Weighted recursive
maximum
likelihood

Incremental Recursive (39a–c) (35b) (30) O(1) A-periodic

Numerically-stable
recursive maximum

likelihood
Incremental Recursive (41) (35b) (30) O(1) A-periodic

The time synchronization period is also a function of the nominal oscillator frequency as
the oscillator-induced random variations’ variance increase linearly with it (cf. Equation (11)).
This observation implies that it is possible to to support longer synchronization periods by using
low frequency oscillator driven clocks. In addition, the power consumption of the clock components
increases linearly with frequency, which enables low-power clock implementations. This fact motivated

Sensors 2020, 20, 5928 27 of 59

Schmid et al. [77] to propose a Virtual High-resolution Time (VHT), which simultaneously support
high-resolution and low-power clock implementation. This clock is driven by two oscillators, one being
low-frequency (e.g., 32 kHZ), and other high-frequency (e.g., 8 MHz). These two oscillators are driving
two counters that are phase synchronized, that is, increments of the high frequency clock are aligned
with the increments of the low-frequency clock. In this case, it is possible to enable high frequency clock
only when it is needed, which cuts the power consumption into a fraction. This approach requires a
special hardware, and does not generalize well to software only solutions.

The CDAs are inseparable component to reach a time synchronous operation of the radio
frequency communication, which depends on a frequency reference at the specified band within
a certain stability range. This frequency is typically generated using crystal oscillators, which provide
required stability at the cost of acceptable power consumption. However, crystals are off-chip
components that cannot be integrated into silicon, which in turn increases the size and cost of the radios.
If a crystal-free radio to be developed, it would not only decrease the size and cost, but also decrease
the energy consumption, and increase the system responsiveness. As such, crystal-free radios can be
manufactured in very small form-factors, even may lead to mote-on-chip solutions. Available on-chip
resonators, however, comes at the cost of low-quality in terms of time and temperature stability.
Recently, researchers have started to investigate crystal free radio platforms, which maintain frequency
stable operation using the network-provided time reference. In the work by Khan et al. [78], the authors
investigate the network referenced frequency locked-loop, where a reference node emits periodic
beacons. In a work by Suciu et al. [79], two calibration schemes are proposed to enable crystal-free IEEE
802.15.4e [80] complaint radio development. In the work, the beacon transmissions of the network
are used as the reference for calibrating radio oscillators. The work by Chang et al. [81] demonstrates
a crystal-free radio implementation of time-synchronized channel-hopping networks. For network
assisted and crystal-free radio development control theoretical approaches summarized above are the
key enablers, as investigated, in part, in [78]. Based on the fact that these closed-loop systems have
the same impact as recursive Bayesian estimators as proved in [75], the recursive skew estimator in
Equation (41) can be used for improving time keeping ability of crystal-free radios.

5. Time Synchronization Messaging

In this section, the message delivery error sources are discussed before different messaging
schemes are introduced. Thereafter, various multi-hop synchronization methods are presented,
and several practical problems of time synchronization messaging are discussed. A summary of
the available methods is given after presenting the time synchronization for LAN and WAN networks.

5.1. Background

The clocks within a network are synchronized after exchanging the most recent reports over
a (lossy) communication channel, using a simple connection-less messaging also known as time
synchronization protocol. Under ideal conditions, the current time report of the system clock is recorded
and instantaneously conveyed to the destination. However, in practice, there are certain computations
taking place in recoding the time reports and forming a communication frame in the source side, then,
a finite duration for messaging propagation over the medium, and finally, processing of the received
packet and recording the local time report in the destination side. As shown in Figure 12, all these three
error sources contribute to the message delivery delay d12(t). The impact of the stochastic messaging
errors on the time error is shown in Figure 13. As can be deduced from the figure, a high accuracy
time synchronization can only be achieved by limiting the messaging time variability.

Sensors 2020, 20, 5928 28 of 59

C2(t)

C1(t)

d12(t)

T
ra

n
sm

it
te

r

D
e
la

y
s

P
ro

p
a
g

a
ti

o
n

D
e
la

y
s

R
e
c
e
iv

e
r

D
e
la

y
s

Figure 12. Three groups of messaging time error sources: transmitter side delays, propagation delays,
and receiver side delays.

0 1 2 3 4 5 6
C1(tk) [s] ×103

−100

−80

−60

−40

−20

0

20

40

60

80

100

Ti
m

e
D

iff
er

en
ce

[µ
s]

σδ12 = 20.0 [µs]

σδ12 = 10.0 [µs]

σδ12 = 1.0 [µs]

Figure 13. The variation of time difference in microseconds between the time reports of a local clock
and a reference clock with standard deviation of zero-mean Gaussian stochastic messaging delay,
denoted as σδ12 . The time relation parameters of the incremental time model are estimated every
∆ = 10 s using recursive weighted maximum likelihood estimator with weight λ = 0.4.

The impact of messaging delays on the synchronization error can be investigated by considering
the time relation model in Equation (14). If the total delivery delay d12(t) has the assumed form of
constant and stochastic delays, the performance of the studied CDA is expected to be close to the
instantiated performances in Section 4. In other words, a precise identification (and mitigation) of
messaging error sources is crucial for achieving a high synchronization accuracy. Considering the
definitive nature of the error sources, in the sequel, we first review the identified sources in the
literature. Then, their impact on the timestamping place within the software stack is discussed.

The WSN is composed of low-cost, low-power and short-range wireless nodes, which have limited
energy and computational resources. This construction, in turn, causes these networks to experience
occasional node failures, and also limitations in protocols that can run on the nodes. In this sense,
the time synchronization messaging schemes must be evaluated with respect to their ability to operate
under occasional node failures, and their computation requirements. Furthermore, since these nodes
have limited range, the information is conveyed over multiple hops. Although supporting multi-hop
messaging is important in its own right, it causes certain practical problems including defining
reference clock source, deciding upon synchronization period and tackling with the security issues.
In the following, we provide a comprehensive overview of the available solutions on each of these,

Sensors 2020, 20, 5928 29 of 59

and evaluate the presented approaches with respect to their energy and computation requirements,
and their dependence on static topology.

5.1.1. Messaging Error Sources

In general, the message delivery is composed of both deterministic and stochastic errors, and the
second can be kept lower than a certain limit. The messaging protocols are mainly designed to lessen
the negative impact of the message delivery error, which depends on a number of sources.

Chronologically, the most general error sources have been identified by Elson et al. [55] which
consists of four error components:

(i) send time,
(ii) access time,
(iii) propagation time, and
(iv) receive time.

Send time is the time required to assemble a message in the application layer and send it to the
Medium Access Control (MAC) layer. This delay results from the kernel processing, application induced
delays, and variable delays due to the operating system scheduler. The access time is the variable delay
compelled by the MAC protocols due to their propagation medium access policies. The propagation
time is the time required for a message to travel from the transmitter to the receiver and it is generally
negligible compared to the other delays. Finally, the receive time is the time required to process the
received message and send it to the application layer. It is to be noted that the access time is included
in the transmitter side delays in Figure 12.

The list above has been extended by Ganeriwal et al. [82] by adding transmission and reception
times. The transmission time indicates the time required for transmitting the message bit by bit in the
physical layer. The reception time refers to the time needed for receiving a message in the physical
layer and passing it to the MAC layer. The transmission time is a frame length dependent delay, and it
follows the access time in the transmitter side. The reception time is the first delay of the frame during
the reception. These two delays are equal to each other, and have deterministic nature.

The delays right before transmission and after the reception of a message have been studied by
Maróti et al. [56]. They have extended the transmitter side delays with encoding time, which indicates
the time required for encoding the current message, before the transmission time, which covers the
processing delay associated with transforming the bit information to the electromagnetic waveform
right after raising the transmitter side interrupt. The receiver side delays are extended to cover decoding
time, which refers to the time needed for transforming the electromagnetic waveform into the bit
information and decoding the message in the receiver side. The byte alignment time, which stands
for the time incurs in the receiver side due to different byte alignment of the transmitter and the
receiver. The interrupt handling time of the receiver side is the delay that radio chip waits for the
processor to finish the current instruction or the current critical section before switching to the interrupt
handling subroutine.

In the work by Ferrari et al. [57], the transmitter side delays have been further divided by including
the software delay and calibration time. The software delay is the time required for processing unit to
prompt a message transmission by accessing certain registers. This time is affected by the interface
between the radio and the processing unit. The calibration time is the time required to lock to the
operating frequency of the voltage controlled oscillator (VCO) before starting the transmission.

The overall error sources are tabulated in Table 8, where the transmission message formation
and transmission frame preparation times are included. In the table, the induced timing error type is
also specified under each error source. As can be seen, the identified error sources above are closely
coupled with the hardware and the software architecture of the nodes, but most of the error sources
can be kept constant, for example, by keeping the time synchronization frame length constant.

Sensors 2020, 20, 5928 30 of 59

Table 8. Messaging error sources.
Tr

an
sm

it
te

r
D

el
ay

s

message
processing

frame
preparation

software
delay

encoding
time

calibration
time

access
time

transmission
time

deterministic deterministic random deterministic random random deterministic

Pr
op

ag
at

io
n

D
el

ay
s propagation time

deterministic

R
ec

ei
ve

r
D

el
ay

s reception time decoding time byte alignment time interrupt handling time

deterministic deterministic deterministic random

The software delays in transmission (software delay) and reception (interrupt handling time) side
are random, and their variability depends on overall system design. In particular, the variability of
the delays induced by these components depends on the processor load. The calibration time usually
has a guaranteed delay under normal operating conditions, and has a low variability. The access time
depends on the transmission medium, and its characteristics depend on MAC layer implementation.
The joint effect of these random sources can be described using queuing theoretical models such
as M/M/1 queue which assumes exponentially distributed delivery delay (see e.g., [7,60] and
references therein). The M/M/1 queue assumes a single server with exponentially distributed service
times and Poisson distributed arrivals. In practice, the software delay, interrupt handling time, and
access time are all independent queues, and their joint impact may require more complex statistical
models. Another approach is to invoke the central limit theorem by assuming a large number of
independent uncertainty sources as it has been done by Elson et al. [55]. The same line of reasoning
has motivated other researchers to assume Gaussian distributed random delays, see e.g., the works by
Hamilton et al. [61], and Leng and Wu [83].

5.1.2. Timestamping

Ideally, the time stamps must be stored when the emission of the message starts at the transmitter,
and when the reception of the same message is detected by the receiver. This way the random error
source affecting the time records are totally eliminated (cf. Table 8). However, in practice, the frames
are formed well before the actual transmission starts, and buffered for efficiently handling the MAC
layer rules for accessing the propagation medium. In this case, it is not possible to avoid random
access time. In the same line of thinking, as the timestamps are taken further away from the physical
layer, the more time errors are accumulated on the time information. Therefore, the messaging error
sources can be mitigated by storing the timestamps of both transmitter and receiver sides as close as
possible to the physical layer of the node.

This problem is considered by Maróti et al., and they have proposed MAC layer timestamping [56].
Later, this approach elaborated further by Cox et al. [84] and Aoun et al. [85]. Considering a general
radio receiver, a start of frame is detected after decoding preamble and a certain start of frame indicator.
When a receiver decodes this indicator, it can be safely assumed that the radio has received a frame
regardless of its integrity or information content. For example, for IEEE 802.15.4-2006 compliant radios
the start of a frame is delimited with a specific byte referred to as Start of Frame Delimiter (SFD)
byte [86]. After decoding this byte, the receiver can store its local time, and if the transmitter is not
using buffered design, it can append its own local timestamp to the end of the frame as shown in

Sensors 2020, 20, 5928 31 of 59

Figure 14. Considering the messaging error sources, for a system utilizing the MAC layer timestamps,
only interrupt handling time cannot be avoided unless the hardware supports other means to store
the receiver side timestamp. One example is presented by Asgarian and Najafi [87] for connectionless
Bluetooth LE beacons.

Preamble SFD MAC frame including timestamp FCS
Tx

Rx Preamble SFD

insert timestamp
capture reference timestamp

capture local timestamp

Local timestamp

insert timestamp

PHY frame

Figure 14. MAC layer timestamping with a IEEE 802.15.4-2006 compliant transmitter and receiver pair

It is to be noted that the error sources in Table 8 can be controlled by moving software components
to hardware implementations. In this case, the software delay in the transmitter side, and interrupt
handling time in the receiver side would have deterministic characteristics. The only delay source that
cannot be changed is the access time. However, such a solution is not always feasible. For example,
some of the IoT devices have very limited resources, and the hardware manufacturers prefer to
limit the software access to certain hardware features associated with the communication timings.
Similarly, some wireless communication technologies are mostly implemented in the hardware, and it is
not possible to control when to capture the timestamp. Therefore, the achievable time synchronization
accuracy depends on the underlying hardware and the wireless communication technology as the
timestamping method is dictated by them.

5.2. Messaging Schemes

The information acquired on the messaging error sources depend greatly on the messaging
schema utilized by the system. In the literature, there are four well-known signaling schemes: two-way
message exchanges, one-way message exchanges, receiver-only synchronization, and receiver-receiver
synchronization [7].

5.2.1. Two-Way Message Exchanges

This messaging scheme is the most widely used mechanism for exchanging the time reports of
two adjacent nodes, which are referred to as sender and receiver nodes. In this scheme, a sender node
requests the most recent time report of one of its neighbors. The receiver node responds with its most
recent time report along with the reception time of the request. The sender node calculates the clock
relation model parameters using all four time information shown in Figure 15. Since there are two
time reports for each node (T1 and T4 for sender, and T2 and T3 for receiver), this scheme can achieve
very high synchronization accuracy. Furthermore, suppose that d = d12 = d21, then we have

θ =
(T2 − T1)− (T4 − T3)

2
,

d =
(T2 − T1) + (T4 − T3)

2
,

when the time uncertainties are ignored. Therefore, this message exchange method can be used for
estimating time offset and messaging delay, which are needed to reach very high accuracy clock

Sensors 2020, 20, 5928 32 of 59

synchronization. In Section 4, our focus was on one-way message dissemination. The interested reader
is invited to investigate [7] for different CDAs of two-way messaging. These methods do not take into
account the correlation in the time records. Since all the measurements are limited to one round-trip
duration, its impact is negligible.

Sender

Receiver

Request

Response

(a)

t
θ

Sender

Receiver

(b)

Figure 15. Two-way messaging scheme, where a node initiates a synchronization message exchanges by
sending a synchronization request to another node while also storing its time report locally. The receiver
responds back to the sender with its time report. In (a), a typical operation of the scheme, and in (b),
the timeline of message exchanges.

The contemporary time synchronization solutions are built upon two-way message exchanges [10–13],
and they require pairwise communication of the nodes. This, however, implies that each node must
support both reception and transmission of the clock information, which may not be suitable for some of
the IoT deployments. For example, if a Bluetooth sensor is periodically broadcasting some information
as an advertisement, the listening devices may not initiate a bidirectional communication. Furthermore,
for each synchronization, two message exchanges are required, whose energy requirement is twice as
the one-way message dissemination scheme. Therefore, despite the fact that this scheme can achieve
high synchronization accuracy, it has certain drawbacks that should be taken into account.

5.2.2. One-Way Message Dissemination

The energy constraints of the low-power networks lead to one-way message dissemination
scheme, where a root node broadcasts synchronization messages, and all of its neighbors receive it
as shown in Figure 16. In this scheme, the receiver nodes synchronize to the root node using only
one-way messages so that the power requirements of the time synchronization method is reduced
by half.

Broadcast message

Root node

Receiver nodes

(a)

t

�

Root

Receiver

(b)

Figure 16. One-way messaging scheme, where a root node emits a synchronization message, and all of
its neighbors receive. Each receiver synchronizes to the time of the root node. In (a), a typical operation
of the scheme, and in (b), timeline of message exchanges.

Sensors 2020, 20, 5928 33 of 59

The achieved energy saving comes at the cost of increased messaging uncertainty on the
transmitter side. In two way message exchanges, the time error sources are constraint to the one
messaging duration i.e., T4−T1 in Figure 15b. However, for one-way message dissemination, the time error
is accumulative and must be mitigated by some other means in order to achieve higher synchronization
accuracy. For example, the time stamping can be moved to as close as possible to the radio interface in
the software stack, e.g., to the MAC layer.

5.2.3. Receiver-only Synchronization

The high accuracy synchronization that can be achieved by two-way messaging and reduced
power requirements of one-way message dissemination schemes can be combined by considering the
broadcast nature of the wireless communication. One option is to allow all the nodes in a common
neighborhood of two nodes that are exchanging time messages to overhear the ongoing communication
as visualized in Figure 17. In this case, the receivers can utilize the acquired time information to achieve
a high accuracy clock synchronization, while maintaining power requirements on the order of one-way
message dissemination schemes [88].

Sync 2
Sync 1
Sync 2
Sync 1

Root node

Slave node

Root node

Slave node

(a)

t
θ

Sender

Receiver

Receiver

(b)

Figure 17. Receiver-only messaging scheme, where a pair of nodes exchanges synchronization message,
and all of their common neighbors overhear this communication. Each receiver synchronizes to the
time of these nodes. In (a), a typical operation of the scheme, and in (b), timeline of message exchanges.

5.2.4. Receiver-receiver Synchronization

The broadcast nature of the wireless sensor network can be exploited to eliminate the transmitter
side errors using receiver-receiver scheme shown in Figure 18. In this scheme, a root node first
broadcasts the reference time, which is received by its neighbors. The neighbors store their local
timestamps at beginning of the reception. Then, the receivers exchange the time information they
have stored with each other. The transmitter side delays are eliminated since both neighbors receive
the transmitted frame at the same time. Although there might be a time difference due to different
propagation delays, it is negligible for short-range networks. This elimination yields better performance
as the transmitter side random delays constitute the main body of the random messaging delays [55].

5.2.5. Discussion

The four types of messaging schemes have different implications on time synchronization accuracy,
power consumption and network topology. In this regard, the one-way message dissemination
requires the smallest number of transmissions in the network, and does not dictate a topology at
the cost of controllable degradation (through appropriate timestamping method) in synchronization
accuracy. The two-way message exchanges provide the highest amount of information on the clock
parameters, whereas it requires two message exchanges for each synchronization period, which implies
higher energy and computational requirements, and pair-wise operation. However, it can be used
in cases where the lower layers of the communication protocol cannot be modified, as has been
demonstrated by Son et al. [89] over constraint application layer protocol CoAP [90] to achieve an

Sensors 2020, 20, 5928 34 of 59

acceptable synchronization accuracy. The receiver-receiver synchronization scheme can achieve a
higher accuracy than the one-way message dissemination scheme at the cost of using higher amount
of energy and computational resources. Since this scheme depends on the existence of a transmitter
node, its node failure resilience is higher than two-way message exchanges but lower than one-way
message dissemination. The good properties of two-way message exchanges and one-way message
dissemination are combined in receiver-only synchronization. This scheme has low resilience against
node failures, but has low-power requirements and yields high synchronization accuracy.

Root node

Receiver nodes

Broadcast message

Receiver

(a)

t

Root

Receiver3

Reciever2

(b)

Figure 18. Receiver-receiver messaging scheme, where a root node emits a synchronization message,
and all of its neighbors receive. Then, the receiver nodes exchange their local time along with the received
reference time. In (a), a typical operation of the scheme, and in (b), timeline of message exchanges.

The properties of these four message exchange schemes imply that if one has a freedom to
choose the messaging scheme, they can make the decision based on the required synchronization
accuracy for a given energy and computational resources budget. For most of the IoT deployments,
however, a system designer is obligated to choose from off-the-shelf components to integrate with the
system. In this regard, another criteria that must be considered is the required level of modifications
to the standard compliant-systems. For such deployments, receiver-receiver synchronization is an
attractive option as it eliminates the transmitter side delays without requiring special timestamping.
The receiver-only synchronization can be used if some nodes can support more resources compared to
others. The two-way message exchanges are the preferred scheme when the deployment can support
two-way messaging. Therefore, an IoT practitioner has to select the messaging scheme considering
several practicalities, including also the multi-hop synchronization support.

5.3. Multi-hop Synchronization Schemes

The messaging schemes introduced in the previous subsection can be used by the nodes within
the communication range of a reference (root) node. Some of the nodes in practical WSN deployments,
however, are placed further away from the root node so that they can be reached out by conveying the
information over several hops. With respect to the time synchronization, the reference time information
of the root node is contaminated by the hopping process. The overall impact of this process depends on
the hopping and adopted messaging schemes. Therefore, the multi-hop time synchronization schemes
are definitive for the achievable time synchronization performance.

In general, the network-wide time synchronization is closely coupled with network routing.
For example, in Routing Integrated Time Synchronization (RITS) protocol [91], the synchronization
messages are piggy-backed onto the routing broadcasts. Although this method has certain benefits in
decreasing the synchronization messaging overhead, it does so by limiting the performance. In the
remaining part of this subsection, we do not consider an integrated approach.

Multi-hop synchronization schemes aim at providing a network-wide coherent notion of time.
In the literature, the available multi-hop schemes can be divided into two classes: centralized methods,
where a root node is (dynamically) elected to provide reference time, and distributed methods,
where the nodes reach a consensus of common time. In the following, we first summarize two centralized

Sensors 2020, 20, 5928 35 of 59

schemes: cluster-based receiver-receiver and spanning-tree based schemes. Then, a diffusion based
scheme, which uses spatial averaging, is presented. Afterwards, distributed and local gradient-based
scheme is summarized. Finally, an overview of consensus-based schemes is given.

5.3.1. Cluster-Based Synchronization

The receiver-receiver messaging scheme introduced in the previous section enables a very simple
multi-hop scheme [55]. Consider the messaging scheme in Figure 18a, and now suppose that there is
another root node outside of the communication range of the first root node as visualized in Figure 19a.
All the neighbors of the first root node, say nodes 1 and 4, can translate the time information of one to
the time information of the other. Similarly, the neighbors of the second root node, say nodes 4 and
7, can translate to each other’s time information. Now, if node 1 relays certain information with its
local timestamp to the node 7, the node 4 can translate the timestamp first to its local time, and then to
the time of node 7. This multi-hop scheme allows very simple network-wide time synchronization by
forming clusters of synchronized nodes around gateway nodes as illustrated in Figure 19b.

Root node Receiver nodes

4

1

7

(a)

Clusters

Gateway
nodes

(b)

Figure 19. Multi-hop synchronization using receiver-receiver messaging scheme. In (a), two-hop
messaging among nodes 1 and 7, which receive broadcasts from different root nodes. And in (b),
a more general synchronization scenario of three clusters.

The main disadvantage of this scheme is due to its dependence on the receiver-receiver messaging
scheme. This scheme requires a large number of data exchanges between all the neighboring nodes,
which causes increased power consumption, and poor scalability. In the work by Jain and Sharma,
these requirements are restrained by controlling the transmission power [92], which in turn dictates
the size of each cluster. On the other hand, this multi-hop scheme has a strong dependence on the
availability of the gateway nodes, making it sensitive to single node failures.

The scalability and failure sensitivity problems of this method are addressed in the work by
Palchaudhuri et al. [93]. In the modified method, all the nodes broadcast reference time information
after receiving from the neighbors. This way, the time synchronization is flooded to the entire network
by forming a spanning tree. The authors discuss that the overhead associated with flooding of the
receiver-receiver messaging scheme can be overcome by broadcasting the reference time when a
receiver requests it.

The main advantage of receiver-receiver messaging based multi-hop synchronization lies in
its ability to achieve high synchronization accuracy even when the hardware platform cannot be
modified to mitigate the messaging error sources [94]. Although the receiver-receiver messaging
scheme eliminates the transmitter side errors at the cost of increased communication overhead,
Coefficient Exchange Synchronization Protocol (CESP) [94] offers an optimized solution that can be
used in different IoT deployments. A similar approach is presented in the work by Sridhar et al. [95],
where low-power Bluetooth LE beacons are used to transmit time information to high-end receivers.

Sensors 2020, 20, 5928 36 of 59

In the proposed scheme, the high-end receiver is used for translating the time information of each
receiver’s time information.

The general IoT deployments shown in Figure 1 makes it difficult to implement the
receiver-receiver scheme since all the nodes must exchange the time information they have acquired
during the latest synchronization round. A mixed, and optimal, approach has been proposed by
Kim et al. [96], where they integrate the time data exchanges between high-end transmitter node and
low-power nodes with the sensor data exchanges. Although the high-end transmitter makes use of
two-way messaging to estimate the clock offset and messaging delays, the receiver uses one-way
message exchanges to estimate the skew. This hybrid strategy is optimal in the cases two-directional
communication is possible. The design assumption of having resourceful gateways well suits to IoT
deployments and this approach is expected to be of practical use.

5.3.2. Spanning-Tree Based Synchronization

The complexity associated with the cluster-based receiver-receiver multi-hop synchronization has
led researches to investigate alternative schemes with less overhead. In the work by van Greunen and
Rabaey [97], a hierarchical tree of the nodes is formed in order to achieve time synchronous network
operation. In this method, a root node, which may be re-elected every time the synchronization
protocol runs, initiates the synchronization procedure by synchronizing to its neighbors within the
communication range. The nodes synchronized to the root node, then, synchronizes to their children
nodes, which could not receive the root node’s synchronization messages. The process continues until
all the nodes are synchronized to the root node

The process described above floods the reference time information of the root node throughout
the network by forming a spanning-tree of the hierarchical relations of the nodes. The root node is at
level 0 of the tree, and its children are at level 1 as depicted in Figure 20. The flooding provides an
easy way to achieve a synchronized network, regardless of the messaging scheme utilized to exchange
the time information. The Tiny-Sync and Mini-Sync [98], the Lightweight Time Synchronization
(LTS) [97], and the Timing-sync Protocol for Sensor Networks (TPSN) [82] use two-way message
exchanges; the Spanning Tree-based Energy-efficient Time Synchronization (STETS) [99], its improved
version R-Sync [37] and self-recovering version Self-Recoverable Time Synchronization (SRTS) [100]
use receiver-only scheme; and the Flooding Time Synchronization Protocol (FTSP) [56], which is the
de-facto synchronization protocol in WSN literature, uses one-way message dissemination.

Root
Level 0

Level 1

Level 2

. . .

Level N

Figure 20. Spanning-tree based multi-hop synchronization forming a hierarchical tree of the nodes
starting from the root node.

The flooding of synchronization messages within the spanning-tree requires certain practical
adjustments in order to prevent traffic congestion and frequent packet losses in the network.
These adjustments include also delaying the transmission of the reference time from lower levels to
the higher ones, which increases the flooding duration. Due to the differences in the estimated clock
skew of the nodes in a branch, as the level increases the estimated skew error increases, and the time
error increases linearly with the number of hops [58].

Sensors 2020, 20, 5928 37 of 59

The increase in the time error with the network diameter problem can be overcome by using faster
flooding approaches. One option is to allow packet collision by exploiting the power capture effect [101].
Another is to exploit constructive interference that can be obtained by precisely programming the
forwarding instance of the same packet [57]. Although these methods allow mitigation of the
increase in the timing error, the rapid flooding provided by PulseSync [58] offers a significant
improvement in multi-hop time synchronization accuracy by compensating for the accumulated
time error. An alternative solution has been introduced by Wang et al. [102], where the nodes adjust
their clock values before updating their clock parameter estimates.

The solution provided by the PulseSync protocol is limited in the sense that some practical
networking problems still may degrade its performance [59]. First, the neighbor contention may
slow down the flooding speed. Second, a precise network schedule is required to prevent packet
collisions and neighbor contention. And lastly, reliable rapid flooding is problematic in wireless
communications due to frequent packet losses. These issues can be efficiently handled by synchronizing
the clock speed of each node in the network along with their time. The solution provided by Yıldırım
and Kantarcı in [59] combines the benefits of distributed gradient algorithms and flooding based
synchronization methods.

The spanning-tree based synchronization has several problems due to the distributed nature of the
WSN deployments. In particular, location dependence of temperature and supply voltage level (This
may be due to poor connectivity as nodes with poor connectivity may try several re-transmissions,
which depletes their battery faster than the battery of the other peers in the network.) yield different
clock rates in distant regions of the network. Thus, integrating time information flooding and routing
in such deployments should be discouraged as discussed by Schmid et al. [103]. The network-wide
clock speed agreement [59] also provide robustness against inhomogeneous temperature and supply
level distributions within the network.

The control theoretical clock synchronization proposed by Chen et al. [72], and FloodPISync
protocol proposed by Yıldırım et al. [73] are spanning-tree based multi-hop scheme. These methods
provide improved performance due to their lower RMS time error compared to the least-square
based CDA.

The nodes in an IoT deployment are likely to have heterogeneous capabilities in terms of
computational and communication resources. Some nodes may have enough resources to utilize
synchronization schemes for LAN networks (e.g., NTP, SNTP or PTP), while some others may have just
enough resources to overhear the synchronization messages among the high-end nodes. This approach
not only enables time synchronous operation among heterogeneous nodes, but also provide significant
power saving. One way to implement this idea is to use the receiver-only messaging scheme, where the
high-end nodes perform two-way time information exchanges, while the low-end nodes overhear
these packets. The Group-wise Pair selection Algorithm (GMA) is a multi-hop scheme presented
by Noh et al. [104] and STETS [99] enable such deployments, but suffer from isolated nodes and
sensitivity to group leaders problems. A solution to the first problem is provided in R-Sync [37], and a
solution to the second is provided in SRTS [100]. An interesting approach would be to implement
a synchronization scheme, where low-end nodes can overhear PTP [13] messages among high-end
nodes. Although this idea has not been demonstrated in the literature, it has a potential to provide a
high-accuracy synchronization with minimal development time and energy demands.

Some industrial IoT deployments are naturally distributed in different topologies. For example,
in underground mining, there is a network of base stations in tree topology, and sensor nodes are
connected to a single base station in start topology [105]. In this case, different synchronization
strategies can be employed for a given synchronization requirement and energy budget of an
application. Although a simple offset-only CDA is used in [105], the problem can be solved using different
approaches. One option is to use PTP for base stations, and utilize receiver-only synchronization
among the sensor nodes.

Sensors 2020, 20, 5928 38 of 59

5.3.3. Synchronous Diffusion

The centralized nature of the multi-hop schemes presented above can be relaxed by performing
spatial averaging of the received time information from the neighbors using the Time Diffusion
Protocol (TDP), first introduced by Su and Akyildiz [106]. In this approach, dynamically elected
master nodes broadcast time information to their neighbors. The elected neighbors, which are called
diffusion leaders, acknowledge the received messages. The received acknowledgment messages
are used for determining next diffusion time by calculating the time difference between message
transmission and acknowledge reception. All the diffusion leader nodes also broadcast their diffuse
time information to their children. The elected diffusion leader nodes repeat the procedure until all
the nodes are synchronized. This method is self-configuring, takes into account energy constraints of
typical WSN deployments, and resilient to node failure, adverse communication channel, and to the
node mobility [106].

The election of the master nodes and diffusing the time information throughout the network limit
the applicability of TDP. An asynchronous distributed diffusion method is introduced in a work by
Li and Rus [107]. The method synchronizes to the average time of all the clocks in the network.

5.3.4. Distributed Synchronization

In the work by Solis et al. [108], it is shown that the sum of relative time offset between nodes
in a closed loop should sum to zero. This observation leads to an algorithm with a very simple
interpretation: each node updates it local time by averaging all of its neighbors’ time-offset estimates.
The averaging is also referred to as spatial smoothing, and it is limited to the one-hop neighborhood
of a node. This method is very similar, in spirit, to the distributed diffusion based method of
Li and Rus [107]. Similarly, Yıldırım et al. [73] have proposed AvgPISync protocol, which calculates
the control rules using averaging. Spatial averaging does not rely on prior topological knowledge,
or existence of certain neighbors, that is, it is resilient to node failures and topology changes.
Therefore, distributed algorithms make use of collective information to reach to a common notion of
time, as we summarize next.

Gradient clock synchronization: The global time synchronization is to reach a common notion
of time within the network. A straightforward solution to this problem is to extend the pair-wise
synchronization methods to synchronize the associated nodes of each hop. It can be easily seen that
such an extension implies a centralized structure, where the root node is at the center. All other nodes
are residing on a branch of the tree. However, this hierarchical node relationships disregard the locality
of the clock skew [109], which can be exploited to reach to the spatial gradient property of the clock
synchronization algorithms [110].

As discussed previously, the frequency drift is a local phenomenon, and so is the clock skew.
When one considers the pair-wise synchronization, this information implies that as the number of
hopes from the root node increases, the achievable synchronization accuracy decreases due to gradient
of the clock skew. This implies that if it is left unattended, the clock skew increases with the network
diameter. The synchronization algorithms allowing such a behavior are said to have the gradient
property, which has been first introduced by Fan and Lynch [110]. They have shown that the clock skew
of the algorithms satisfying the gradient property is bounded from below. The tightness of this bound
can be discussed with respect to an upper bound as has been done by Locher and Wattenhofer [111].

The theoretical results for gradient clock synchronization [110,111] have been used by Sommer
and Wattenhofer [109] to develop a practical time synchronization algorithm for WSN. In this approach,
a logical clock is defined which updates its time output at a specific rate. All the nodes in the network
strive to agree upon the current logical time. The nodes periodically broadcast messages of logical
clock value and clock rate, and they use all the messages they have received from all their neighbors
to update current logical clock rate and offset. A more elaborated version of the same approach is
presented in a work by Pinho et al. [112]. The gradient clock synchronization is localized in nature,
and it is resilient to node failures or topological variations since it is a distributed method.

Sensors 2020, 20, 5928 39 of 59

Consensus-based synchronization: The gradient synchronization methods are local in spirit.
A natural question is whether a network-wide, convergent and distributed synchronization algorithm
can be developed. The answer to this question is not only positive [113], but also it can be shown
that all the nodes in a network converge to the same clock if certain conditions are met [114].
In these network-wide solutions, the nodes agree upon both clock rate and time of logical clocks.
This agreement is referred to as consensus in distributed systems [115].

The Average TimeSync (ATS) consensus-based solution presented in [113,114] converges to a
clock rate and a clock offset using a weighted average from all the nodes in the network. This solution
has a higher communication demands than the gradient clock synchronization. An approach that
updates its clock parameters using the information received from its single-hop neighbors has been
proposed by Maggs et al. [116]. Reaching to the consensus of the average clock might be slow if the
network is distributed in a large area. One solution is to synchronize to the fastest clock or to the
maximum value clock as has been done by He et al. [117]. Based on this work, it is later shown that a
maximum-value-based-consensus algorithm can converge with probability one and exponentially fast
under bounded timing noise [118]. The performance of maximum-value and average-value -based
consensus schemes are compared using extensive empirical data in [119]. Based on the findings,
the authors have proposed a maximum-minimum time synchronization protocol, which is a special
case of more general min-max consensus algorithms [120]. In these schemes, the clock rate adjustment
is independent for each node, which may cause frequent clock rate adjustment or even divergence.
This problem is addressed in the work by Sun et al. [121], where the clock rate is adjusted less frequently
than the clock offset. The convergence of this approach is proven in [122]. The topological conditions of
convergence of consensus-based algorithms under bounded communication delays is investigated by
Tian et al. [123], and based on the divergence conditions, the least-squares based time synchronization
is proposed [124]. An algorithm which takes into account the measurement noise is proposed by
Stanković et al. [125], and convergent algorithms for both clock skew and time offset are presented.

The main problem of the consensus-based methods is their increased memory requirements as
each node must acquire and store time information of their neighbors. This requirement creates
significant problems in dense deployments as the computational, memory and communication
requirements usually exceed the capabilities of low-end platforms. Another problem, known as
time partitioning occurs when the clock rates are not synchronized [126]. This problem arises when the
intermediate nodes have slower clocks compared to the ones at the edges. In this case, the nodes closer
to the one edge synchronize to the one clock, whereas the nodes closer to the other edges synchronize
to another. This problem can be avoided by synchronizing also the clock rates.

Network-wide synchronicity: The network-wide clock synchronization methods aim at providing
a coherent notion of time among the sensor nodes. However, some application scenarios require a
network-wide synchronism in performing certain tasks/actions rather than a coherent notion of time.
Such tasks may involve synchronously sampling a spatio-temporal field, for example, for structural
health monitoring [22]. The importance of network-wide synchronicity for machine-to-machine type
communication networks is discussed by Bojic and Nymoen [44].

Synchronicity is a reoccurring theme in nature; for example, the flashing times of fireflies living
in certain parts of southeast Asia are synchronized. The behavior of these biological systems can be
modeled as pulse-coupled oscillators, which has a known mathematical formulation [127]. Due to the
similarity of the periodic actions performed by the swarms with the WSNs, the aforementioned results
have inspired Werner-Allen et al. [128] to introduce Reachback Firefly Algorithm (RFA), which provides
a network-wide synchronicity for wireless sensor networks.

Another option to achieve network-wide synchronicity is to use black-bursts, which provide
means to allocate the medium for transmission of special packets [129]. The black-bursts may be used
for aligning transmissions in the network, and thus enable achieving network-wide synchronicity [130].

Sensors 2020, 20, 5928 40 of 59

5.3.5. Discussion

The cluster-based synchronization has the same advantages as the receiver-receiver messaging
scheme and provides an option to reach a high synchronization accuracy with minimal modifications
in off-the-shelf components. Spanning-tree presents itself as a natural choice for one-way message
dissemination, although other messaging types can also use it. It can reach high synchronization
accuracy if the hop-by-hop error accumulation is mitigated by, for example, using MAC layer
timestamping. Synchronous diffusion provides a way to distribute the time information of a root node
throughout the network by diffusing the time. It uses the spatial averaging and has similarities with
the distributed algorithms. The distributed algorithms aim at providing network-wide synchronization
while being resilient to node failures and topology variations.

The four multi-hop synchronization schemes summarized above have certain advantages
compared to one another. Although for an IoT deployment, there is an almost always a root node
(possibly connected to the wide-area or local-area network), the spanning-tree based multi-hop scheme
along with one-way-message-dissemination-based messaging presents itself as a natural choice.
However, hybrid approaches, e.g., spanning-tree and consensus, are recently emerging, and they
provide robustness against the practical problems arising due to the distributed nature of the IoT
deployments. Therefore, if it is possible to select a multi-hop scheme, one should make the decision
based on the possibility of implementing a certain messaging scheme, the network size and the
method’s scalability, and its robustness against the node failures and topology variations.

5.4. Practical Problems

The messaging schemes that have been presented up to this point make certain assumptions
about several practicalities associated with time synchronization. In particular, they assume a certain
synchronization period, a certain way of selecting the reference clock source, and a way of defending
against malicious attacks. Here, we overview available solutions to these three problems.

5.4.1. Synchronization Period

All messaging schemes aim at providing a high accuracy synchronization with minimal network
activity in order to consume as less energy as possible. We have shown in Section 4 that the time
error increases as the synchronization period increases. On the other hand, it can be easily concluded
that the amount of energy consumed by the time synchronization task is defined by the period of
the synchronization messages. In other words, low-power and high granularity synchronization
are an oxymoron as discussed by Schmid et al. [131]. Therefore, the trade-off between low-power
and high-accuracy synchronization can be adjusted by dynamically changing the synchronization
period [36].

Most of the available methods have a static synchronization period, and the designer must choose
the trade-off point between high accuracy and low power operations in the design time. The operating
point is decided by making certain assumptions about parameters defining the clock relation model
in Equation (5). In particular, the frequency drift is the quadratic term in the estimation error bias
in Equation (30), it causes the frequency error impact on the clock synchronization [103]. Its affect
on the time error in Equation (24) can be compensated by frequent estimation of the clock skew.
Thus, an adaptive algorithm can adjust the synchronization message transmission period according
to the time error: the transmission rate is decreased when the time error is smaller than a threshold,
and it is increased when the error increases above the threshold [36].

The Rate Adaptive Synchronization (RATS) alters the synchronization period as a function of
the time error [132]. A similar approach is used in dynamic FTSP (D-FTSP) where the transmission
interval of the broadcast messages are altered based on the variation of the clock skew estimates [133].
For time-synchronized channel-hopping networks based on IEEE 802.15.4e, the overall network

Sensors 2020, 20, 5928 41 of 59

performance in terms of reliability, delay and power consumption can be improved by adaptively
changing the synchronization period [134,135].

The clock-skew changes with environmental parameters such as temperature and supply voltage
variations. In Temperature Compensated Time Synchronization (TCTS), the frequency drift is estimated
as a function of temperature, and the synchronization period is altered as a function of frequency
drift estimate [136]. In a work by Yang et al. [63], an aided multi-model Kalman filter is used for
estimating the clock-skew when the environmental conditions are stable, and when they are changing.
The work aims at creating a calibration table of clock-skew versus temperature, and updates the
table online when a new temperature or skew value is detected. The same line of reasoning has
led Elsts et al. [137] to study the impact of temperature for relaxing re-synchronization period of
time-synchronized channel-hopping networks. They achieve significant energy saving by calibrating
the clock-skew variation with temperature. The impact of supply voltage on clock-skew is investigated
by Jin et al. [138] for creating a calibration table to relate clock-skew with supply voltage value.
However, the practical importance of supply voltage variation is limited since the voltage can be
regulated with basic electronic components, and its impact can be easily kept under a certain value.
Therefore, if the nodes are equipped with a temperature sensor, the clock-skew variation can be
calibrated, which yields significant power savings by prolonging the synchronization period.

5.4.2. Reference Clock Source

Thus far, we have implicitly assumed that the network entities aim at synchronizing to a global
clock source provided by a node or an entity in the network. This approach provides means to
synchronize to a network-wide time, which may or may not be in a universal time base, using time
synchronization messages. However, it is possible to take an alternative approach, and equip the
nodes with a specialized hardware to let them acquire universally valid reference timestamps on the
same processing unit.

An obvious choice for outdoor deployments is to use a GPS signal, which provides very accurate
time base information. For example, ZebraNet nodes are equipped with a GPS receiver [139],
which limits the lifetime of the battery-powered nodes due to significant power consumption.
A similar approach is to use a specialized hardware to receive pervasive time signals as has been
done by Chen et al. [140]. The main issue with such solutions is the sensitivity of their receivers to the
environmental conditions, which limits their utility in a broader class of use cases and applications.
This limitation can be overcome by utilizing available ambient periodic signals to generate a stable
reference time base. For example, the pilot tones generated by the FM radio stations provide a stable
reference signal [141]. Since the most widespread periodic source is the main power line, it can be
used as a de-facto source as has been studied by Rowe et al. for the purpose [142]. A similar approach
is to use the intensity variation of the fluorescent light with the AC power source [143].

The specialized hardware can be built with very energy efficient components so that very
low-power time synchronization can be achieved. However, special hardware requirement is usually
avoided due to increased development, production and deployment costs. In this regard, a hybrid
approach is to equip some of the nodes, say root or master nodes, with specialized hardware to
generate high accuracy reference time is very attractive. This way, a high accuracy and stable clock
synchronization can be achieved while keeping the costs low. For example, Gupchup et al. have
proposed Phoenix [144], and Dai and Han have introduced TSync [145] as hybrid solutions.

An alternative is to use periodic transmissions of the other wireless communication technologies
operating in the same frequency band. A method proposed by Hao et al. exploits periodic beacons of
the Wi-Fi access points to generate stable time reference for IEEE 802.15.4 nodes operating in the same
band [146]. This approach does not require any specialized hardware, but only software that acquires
received signal strength measurements and a signal processing method to calculate the period of the
beacons. Therefore, this is a promising method in urban areas.

Sensors 2020, 20, 5928 42 of 59

The low-power sensor nodes can be deployed in numbers to acquire redundant measurements
of the same physical phenomenon. Such a redundancy also provides a basis to observe the same
events over different data streams. This option is investigated by Bennett et al. [147], and inertial
data streams of different sensors affected by the same human actions are used for identifying the
instance a specific event has happened. The authors show that these correlated time series can be
used for identifying alignment points of time, and based on these time instances time offset and clock
skew can be compensated. Later, the method is improved by including several filtering mechanisms
to increase its robustness [148]. The same line of reasoning has recently motivated Shaabana and
Zheng [149] to introduce a machine-learning-based identification of alignment points using a support
vector classifier. Although these methods are very attractive for synchronizing offline data acquired in
a small environment, and may provide improvements in signal processing techniques that require
time alignment, their application is very limited in larger scale deployments.

5.4.3. Security

Any wireless communication is over insecure wireless propagation medium. For these types
of networks, in general, it is easy to: (i) attack the system by pretending to be another node in the
network, and sabotage the performance by eavesdropping, frame replay, and spoofing; (ii) insert false
data into the system; (iii) make requests with a rate larger than the system can handle, and fall into the
denial-of-service state. Although these problems have known solutions for contemporary wireless
systems, for low-power and short-range technologies security solutions are limited due to their energy,
computation, and memory constraint [150]. In this regard, a time synchronization messaging scheme
is prone to [151]: (i) manipulation of the time information by packet interception; (ii) eavesdropping
the time synchronization messages to store and replay them in order to degrade the notion of time in
the network; (iii) spoofing the reference clock source by pretending to be the root node.

The security issues in the time synchronization messaging protocols can be addressed by
well-known methods such as authentication and encryption [152], and refusal to forward suspicious
timing messages identified by traffic monitoring [153,154].

Authentication and encryption: In order to ensure secure and trusted network operation, the nodes
must be authenticated and all the information must be encrypted. In this case, the unauthenticated
nodes cannot join the network, and insecure data will be discarded by the genuine nodes of the network.

The methods suggested in [150,151] can be used for authentication. The messages can be
end-to-end or hop-by-hop encrypted. In the former, only sender and receiver can decrypt the message,
whereas, for the latter, the data can be encrypted by intermediate nodes as well. The end-to-end
approach is less exposed to malicious nodes [151].

Removal of suspicious packets by traffic monitoring: Once the network is deployed and initialized,
the nodes synchronize their times. As it is elaborated in Section 3, the time reports of one clock do
not quickly deviate. Thus, if a node receives a reference time report that is very different from its
synchronized time, the received time information can be treated as a suspicious message. The same
line of reasoning can be extended to a network wide monitoring, as it has been done in [154,155].
In this case, the network statistics are collected and analyzed in order to detect a deviation that might
reveal the presence of an adversary in the network.

Secure time synchronization protocols: The security issues presented thus far, and the provided two
mechanisms have led researchers to design secure versions of the well-known protocols. The security
toolbox introduced by Ganeriwal et al. [156] aims at detecting malicious attacks for two-way message
exchanges and stopping time synchronization in case of an attack. They consider, in particular,
the pulse-delay attacks. The security issues in flooding time synchronization has been studied by
Huang et al. [157], and they have introduced different methods to identify five different attacks that
may hinder time synchronization operation. The methods presented by Sun et al. [158] aim at using
redundant time information to detect and mitigate the adverse effects of malicious nodes, which are,
for example, conducting wormhole attacks [159]. In order to prevent a node to forge multiple identities

Sensors 2020, 20, 5928 43 of 59

by launching Sybil attacks [160], it is still necessary to have unique pair-wise keys to authenticate
neighbor nodes. The security in consensus based schemes are also studied. A security filter for the
average consensus method is presented in [161], and similar filters for maximum consensus approaches
are studied in [162]. It should be noted that for consensus based methods, these filters act the same
way as using redundant data in [158]. In summary, a secure and resilient time synchronization method
requires one to utilize some redundancy in the time distribution topology to detect attacks and provide
a certain level of encryption in pair-wise time data exchanges.

5.5. Time Synchronization in LAN and WAN

Most of the methods referenced up to this point are for PAN, and several properties of both
Wireless LAN (WLAN) and WAN in Figure 1 are left out of the discussion. In this subsection,
we briefly review the available methods for these networks.

In case all the nodes in an IoT deployment are connected to the Internet, in principle, it is possible
to synchronize to the Internet time using NTP [11]. For mobile devices, the tailored version of NTP,
referred to as SNTP [12] is mostly preferred. However, for wireless connections, varying channel
conditions greatly degrade their performance as reported by Mani et al. [163]. Based on the findings,
an improved version of SNTP, MNTP, that takes into account the wireless channel conditions is
presented in [163]. A time synchronization scheme that is an alternative to SNTP and MNTP for
high-end nodes is presented in [164]. Although these schemes can be used when Internet-based time
synchronization can meet the accuracy requirements, alternative implementations discussed below
are preferable.

The time synchronization for WLAN can be built upon the synchronization method known as
Time Synchronization Function (TSF), defined in the IEEE 802.11 PHY specification [33], and there
is a number of published works that aim at extending the possibilities enabled by this function [46].
The TSF requires all nodes to synchronize to the fastest clock in their neighborhood. It does not require
rate synchronization but only offset compensation. In its bare form, TSF does not scale well so that
a number of alternative schemes have been proposed in the literature. A method that estimates the
clock rate is presented by Pande et al. [165], and it is shown that the clock rate estimation improves the
TSF scalability.

Another widely used option for LAN is to consider time synchronization methods primarily
developed for wired networks, i.e., NTP and IEEE 1588 (a.k.a. PTP). It has been shown that the
implementation of NTP on WLAN yields much worse synchronization accuracy compared to wired
networks [166], although the performance can be improved by moving the time-stamping closer to
the hardware [167,168]. The PTP is designed for wired networks [169], and it can achieve very high
accuracy. It is shown by Cooklev et al. [170] that there are certain signals in PHY layer that allow the
IEEE 1588 implementations over WLAN. It is shown in the work by Kannisto et al. [171] that when
timestamping is done in the hardware, nanosecond accuracy, required by the IEEE 1588 standard,
can be achieved. In summary, a high accuracy synchronization can be achieved only if the time error
sources can be compensated for. This line of reasoning has led some researchers to study WLAN based
PTP implementations in industrial settings. The works by Lam et al. [172] and Shreshta et al. [173]
aim at improving the clock precision of the IEEE 1588 to meet the stringent requirements of industrial
applications. Cena et al. [174], on the other hand, take an alternative approach by proposing a reference
broadcast-based scheme for IEEE 802.11 networks in infrastructure mode. This scheme can achieve
high accuracy time synchronization by using software-only modifications, which is very attractive for
applications implemented using commodity devices.

For WAN cellular networks, the user entities are mostly mobile, which require a time synchronous
operation within the network. That is needed to maintain a certain quality of service when the
user is being transferred among neighboring cells, or to keep the interference level of neighboring
cells to each other under a certain value [175]. The time synchronization of the base stations is
traditionally maintained using the accurate time information provided by the GPS receivers [176,177].

Sensors 2020, 20, 5928 44 of 59

However, due to spatial limitations imposed by such an approach, using the IEEE 1588 for the purpose
is an attractive option [177] after solving several practical problems [176]. This type of synchronization
is also referred to as backhaul synchronization, which is different than fronthaul synchronization.
The latter can be considered as time-sensitive networking [178] between the core network and the
radio equipment. Similar synchronization issues are also common in small cell deployments [179].
Due to the similarities of these systems with time-sensitive networking over bridged-networks [180],
recently the same standardization body has released a new standard on time-sensitive networking for
fronthaul [181]. It is to be noted that these solutions are all based on IEEE 1588, and are optimized for
the specific application. Therefore, WAN time synchronization is based on either GPS (for backhaul) or
IEEE 1588.

The synchronization of WAN nodes in a cellular system is maintained by the frame alignment
between a base station and network entities using the timing advance mechanism of the MAC
layer [182]. This functionality is limited, and for 5G and beyond networks supporting ultra-reliable and
low-latency communications (URLLC) [183] feature require tightly synchronized operation of networks
entities in different cells. In particular, industrial and smart grid applications require an over-the-air
time synchronization as has recently been elaborated on by Mahmood et al. [184]. The work concludes
that URLLC networks can support time synchronized operation by enabling IEEE 1588 based signaling
between the nodes and the base stations.

The Low-Power Wide Area (LPWA) networks enable low-power and long-range data connectivity
at the expense of low data rate and higher latency [185]. They aim at providing data connectivity for
IoT applications that are delay tolerant, do not need high data rates, and typically require low-power
consumption (for extended operation time using finite energy source), and low cost. There are a number
of 3GPP standards that are LPWA solutions (https://www.3gpp.org/news-events/1805-iot_r14),
which can benefit from the time synchronization functions of the cellular networks. On the other
hand, the LPWA standards operating on ISM bands, specifically, LoRaWAN (https://lora-alliance.org/
resource-hub/what-lorawanr) and Sigfox (https://www.sigfox.com/en/what-sigfox/technology),
have gained a lot of attention in both academia and industry. Considering the more open nature
of the standard, LoRaWAN is more attractive compared to Sigfox. The limitations of LoRaWAN is
investigated by Adelantado et al. [186], and it is concluded that a new channel hoping mechanisms and
TDMA type channel access may overcome reliability and latency constraints, which in turn, may open
up new use cases and improve flexibility. These two limitations have not gained much of interest until
recent work by Ramirez et al. [187]. In the work, a CDA for two-way message exchanges is presented,
and it is experimentally demonstrated that low-power nodes can maintain time synchronous operation.
A time-synchronized channel hopping MAC layer implementation on top of LoRa PHY is presented
by Haubro et al. [188], in which the authors have not reported a time synchronization mechanism in
the effort, and relied on synchronous operation provided by the MAC. The work by Singh et al. [189]
demonstrates that a coherent notion of time can be disseminated in a LoRa network, which in turn
enables secure channel hopping and tighter guard times for preserving energy. The alluded works
demonstrate the benefits of time synchronization in LoRa networks by showing that the technology
can be used in some use cases that is not possible in bare LoRa implementation. However, the full
potential of time-synchronized LoRa deployments is yet to be explored.

5.6. Summary

In this section, several time synchronization protocols for WSNs are summarized, and their
properties are described. In particular, after defining the general error sources and timestamping
methods, different messaging and multi-hop schemes are presented. Thereafter, the reference clock
source, synchronization period and security related solutions are summarized. It should be noted that
the methods presented in this section are comprehensive, but by no means complete. It is merely a
snapshot of the available solutions that may be used by the IoT developers.

https://www.3gpp.org/news-events/1805-iot_r14
https://lora-alliance.org/resource-hub/what-lorawanr
https://lora-alliance.org/resource-hub/what-lorawanr
https://www.sigfox.com/en/what-sigfox/technology

Sensors 2020, 20, 5928 45 of 59

A condensed summary of the methods covered in this section is given in Table 9. It can
be seen from the table that most of the synchronization methods assume a spanning-tree based
multi-hop method with one-way message dissemination. Among these methods, FCSA is an important
advancement to FTSP due to its improved multi-hop performance. Also, due to the widespread
acceptance of IEEE 1588 as a de-facto method for wired networks, if it is possible it should be used
in LAN and WAN. It is to be noted that for most of the applications, it is not required to disseminate
the time coherence starting from the WAN components, as LAN networks can easily acquire a global
notion of time either from the GPS or from the WAN time services.

Sensors 2020, 20, 5928 46 of 59

Table 9. A summary of time synchronization protocols.

Synchronization
Protocol Ref. Messaging

Scheme
Multi-Hop

Scheme Description

Network Time Protocol
(NTP) [10,11] two-way spanning-tree NTP is the de-fact time synchronization protocol for large networks such as the Internet.

The achievable performance is lower than demands of certain applications.

IEEE 1588:
Precision Time Protocol

(PTP)
[13] two-way spanning-tree

A high precision time synchronization standard for measurement equipments.
Nowadays, it is used in all wired networks applications demanding high precision time
synchronization.

Time-synchronization Protocol for Sensor Network
(TPSN) [82] two-way spanning-tree TPSN is one of the early multi-hop time synchronization protocols for WSN. It doesn’t

compensate for the clock skew.

Reference Broadcast Protocol
(RBS) [55] receiver-receiver cluster-based

RBS achieves high synchronization accuracy by eliminating transmitter side errors. It
enables implementations with minimal modifications in the lower-level software
components.

Flooding Time Synchronization Protocol
(FTSP) [56] one-way spanning-tree FTSP is widely accepted as the de-facto synchronization protocol for WSN. It achieves

high synchronization accuracy using MAC layer timestamping.

Flooding with Clock Speed Agreement
(FCSA) [59] one-way spanning-tree FCSA is a slow-flooding based multi-hop solution that extends FTSP. It forces the network

to reach clock-speed agreement by combining flooding with a distributed component.

Robust Synchronization
(R-Sync) [37] receiver-only spanning-tree R-Sync provides low-power and robust time synchronization protocol for industrial

applications.

Time Diffusion Protocol
(TDP) [106] two-way synchronous

diffusion
TDP aims at providing a protocol resilient to node failures and topology changes while
taking into account the energy constraints. It is the predecessor of distributed algorithms.

Distributed Time Synchronization Protocol
(DTSP) [108] one-way distributed DTSP is the earliest distributed time synchronization method. It uses spatial averaging to

converge to a common notion of time.

Gradient Time Synchronization Protocol
(GTSP) [109] one-way distributed GTSP is a time synchronization protocol making use of the gradient property. It performs

local spatial averaging to reach to a common notion of time.

Average Time Synchronization
(ATS) [114] one-way distributed ATS is the first consensus-based time synchronization method for WSN. It tries to reach to

the time consensus by converging to a common offset and clock-rate values.

Reachback Firefly Algorithm
(RFA) [128] one-way distributed

RFA provides a mechanism for network-wide synchronicity, which does not provide a
coherent notion of time, but only an option for synchronously executing of a certain task.
It is inspired by synchronicity in biological systems.

Sensors 2020, 20, 5928 47 of 59

6. Examples

In this section, two examples of the time data acquired by two different systems are presented.

6.1. A Low-Power and Short-Range Network Synchronization

In order to exemplify a practical time data acquired using IEEE 802.15.4-2006 compliant networks,
we have deployed three nodes with hardware and software components described in detail in [190].
One of the nodes acts as a transmitter only, and timestamps the outgoing frames just before starting
transmission. Two receivers receive that frame, and both of them store the local time using a hardware
feature that enables acquiring the local time when the SFD of the frame is detected. One of the receivers
transmit the received frame after pausing for 10 milliseconds. The other receiver captures also that
frame in the same manner. The timer hardware has a granularity of 1/32 microseconds, and is used as
a time source by all the nodes.

The time synchronization results obtained by using the data acquired by the system described
above are given in Figure 21. In the figure, the time reports of the transmitter node are denoted by
C1(tk), the first receiver node by C2(tk), and the second receiver node by C3(tk). There are three series
for each pair, and the exponentially weighted recursive estimator derived in Section 4 is used for
compensating for the time variations, and the obtained time differences are visualized in Figure 21b–d.
These results show that the algorithm converges in a few iterations. However, for the time data
between C2(tk) and C3(tk), the convergence takes more iterations. This is due to the variation of the
clock skew as can be observed from the figures.

The results depicted in Figure 21 show different aspects of the clock synchronization problem
including the importance of hardware support for timestamping. It also validates the assumptions
made in the developments in Section 4. When the relative clock skew is constant, the recursive
algorithm achieves very high synchronization accuracy. However, the frequency drift is unavoidable,
and it degrades the performance of the algorithm. One option that can be explored is to use recursive
Bayesian filtering, e.g., Kalman filter, to estimate both clock skew and frequency drift jointly. This way,
the time-relation model can be better estimated, and the estimation bias can be kept very low.

Sensors 2020, 20, 5928 48 of 59

0 1 2 3 4 5
C1(tk) [s] ×103

−0.02

0.00

0.02

0.04

0.06

0.08
Ti

m
e

D
iff

er
en

ce
[s

]
C2(tk)− C1(tk)

C3(tk)− C1(tk)

C3(tk)− C2(tk)

(a)

0 1 2 3 4 5
C1(tk) [s] ×103

−10

0

10

20

30

40

50

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

(b)

0 1 2 3 4 5
C1(tk) [s] ×103

−20

−10

0

10

20

30

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

(c)

0 1 2 3 4 5
C2(tk) [s] ×103

−50

−40

−30

−20

−10

0

10

Ti
m

e
D

iff
er

en
ce

[µ
s]

∆ = 300 [s]
∆ = 60 [s]
∆ = 10 [s]

(d)

Figure 21. The results for the time data acquired using three IEEE 802.15.4-2006 compliant radios.
In (a), the variation of time difference with the transmitter node’s time. In (b–d), the time difference
in microseconds between the local clock time reports and the reference clock reports when the time
relation parameters of the incremental time model are estimated at different periods ∆ using an
exponentially weighted recursive estimator in Equation (39a–c) with weight λ = 0.4. The time
differences between C2(tk) and C1(tk), C3(tk) and C1(tk), and C3(tk) and C2(tk) after compensation
are shown in respective order.

6.2. A Bluetooth-LE Star Network

One typical IoT deployment scenario is to interconnect low-power gadgets to the Internet using
a more powerful gateway. In this example, a Bluetooth LE device is programmed to broadcast its
local time report over the advertisements, while a Raspberry Pi device acquires these advertisements
along with its local time. For implementation, only the embedded software of the node is modified
to send the local time, where the timestamps are not acquired in the PHY layer or in the hardware.
The gateway implementation is kept only in the application layer, and no kernel level or device driver
related modifications are made.

The acquired data and time synchronization result are shown in Figure 22. As can be observed,
using application layer timestamping induces a large number of uncertainty in the time data, and the

Sensors 2020, 20, 5928 49 of 59

performance of the CDA is greatly degraded. A better approach would be to use two-way message
exchanges and move the timestamping closer to the hardware. However, it should also be noted
that some of the IoT applications may require a loose synchronization so that the result depicted in
Figure 22b is acceptable. For these cases, the time synchronization problem can be readily solved
without any low-level software modifications.

0 5 10 15 20 25 30
C1(tk) [s] ×103

0.0

0.2

0.4

0.6

0.8

Ti
m

e
D

iff
er

en
ce

[s
]

C2(tk)− C1(tk)

(a)

0 5 10 15 20 25 30
C1(tk) [s] ×103

−75

−60

−45

−30

−15

0

15

30

45

60

75

Ti
m

e
D

iff
er

en
ce

[m
s]

∆ = 300 [s]

(b)

Figure 22. The results for the time data acquired using a Bluetooth low-energy transmitter and a
Raspberry Pi gateway. In (a), the variation of time difference with the transmitter’s time C1(tk). In (b),
the time difference in milliseconds between the local clock time reports and the reference clock reports
when the time relation parameters of the incremental time model are estimated every ∆ = 300 s using
exponentially weighted recursive estimator in Equation (39a–c) with weight λ = 0.1.

7. Conclusions

In this article, the time synchronization problem among heterogeneous entities of Internet
of Things (IoT) deployments is considered. The time synchronization is very important for IoT
applications requiring chronological information ordering or synchronous execution, and also for
low-power networking and transmission scheduling. It is discussed that the existing contemporary
solutions such as Network Time Protocol, and available methods for wireless sensor networks can
be applied only for a specific application scenario. The time synchronization problem is derived
starting from the properties of the driving oscillator. The relation between time reports of two clocks
is also derived, and various simplifying assumptions are presented. A number of clock discipline
algorithms are introduced, and their performances are compared based on their synchronization
accuracy, and computational and memory requirements. An efficient and consistent clock discipline
algorithm is developed, and its performance is evaluated using both simulation and empirical data.
A comprehensive survey of the time synchronization messaging protocols, and associated practical
problems and their solutions are presented. The synchronization methods for local-area and wide-area
networks are summarized. From the summary, it can be concluded that the precision time protocol can
be used in various components of these networks, and it is expected to be an integral part of emerging
communication technologies.

The most important conclusion of the presented time synchronization components is that there is
no single solution that can solve all the problems, but several components can be combined to reach an
optimal method for a deployment. The presented time synchronization methods are comprehensive,
and there are several options for each component. Yet, there are several open research problems.
The time synchronization requirements for emerging network-calibrated clocks for crystal-free radios
and ultra-low power ambient back-scattering communication devices need to be defined. Although the
security issues of the personal area networks of resource constraint devices are active research

Sensors 2020, 20, 5928 50 of 59

subjects, secure communication over loosely synchronized networks of emerging ultra-low-power
entities requires more attention from the community. The presented components assume that the IoT
deployments have almost independent wide-area, local-area, and personal-area networks, nevertheless,
seamless integration of the time synchronization functions of these networks is an open problem.
In particular, extending the precision time protocol for local area networks toward the personal area
devices is an attractive option for heterogeneous IoT deployments. This and similar options enabling
software reuse in different IoT devices should be further investigated, and related bottlenecks should
be identified. The synchronization protocols and clock discipline algorithms for low-power and
wide-area networks, such as LoRa, are in their infancy and different extensions need to be explored.
The IoT researchers working on the just mentioned problems and the practitioners deploying IoT
networks can use the described concepts and base their solutions on the components presented in
this article.

Author Contributions: Conceptualization, H.Y. and R.J.; methodology, H.Y.; software, H.Y. and B.B.; validation,
H.Y., and B.B.; formal analysis, H.Y.; investigation, H.Y. and B.B.; resources, H.Y. and B.B.; data curation, H.Y.;
writing–original draft preparation, H.Y. and B.B.; writing–review and editing, H.Y., B.B. and R.J.; visualization,
H.Y.; supervision, R.J.; project administration, R.J.; funding acquisition, R.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded in part by Academy of Finland grant number 328215 (ULTRA).

Acknowledgments: The authors would like express their gratitude to Aalto University, Department of
Communications and Networking support team.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. CASAGRAS. Project Final Report: RFID and the Inclusive Model for the Internet of Things; Technical report
European Union Framework 7 Project 216803; European Commission: London, UK, 2009.

2. Moreno, M.F.; Cerqueira, R.; Colcher, S. Synchronization Abstractions and Separation of Concerns as
Key Aspects to the Interoperability in IoT. In Interoperability, Safety and Security in IoT; Springer: Cham,
Switzerland, 2016; pp. 26–32.

3. Sachs, J.; Beijar, N.; Elmdahl, P.; Melen, J.; Militano, F.; Salmela, P. Capillary networks–a smart way to get
things connected. Ericsson Rev. 2014, 8, 1–8.

4. Zhu, Q.; Wang, R.; Chen, Q.; Liu, Y.; Qin, W. IoT gateway: Bridging wireless sensor networks into internet
of things. In Proceedings of the 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing, Hong Kong, China, 11–13 December 2010; pp. 347–352.

5. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. Wireless sensor networks: A survey. Comput. Netw.
2002, 38, 393–422. [CrossRef]

6. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

7. Wu, Y.C.; Chaudhari, Q.; Serpedin, E. Clock synchronization of wireless sensor networks. IEEE Signal
Process. Mag. 2011, 28, 124–138. [CrossRef]

8. Savaglio, C.; Pace, P.; Aloi, G.; Liotta, A.; Fortino, G. Lightweight reinforcement learning for energy efficient
communications in wireless sensor networks. IEEE Access 2019, 7, 29355–29364. [CrossRef]

9. Allan, D.W. Time and frequency(time-domain) characterization, estimation, and prediction of precision
clocks and oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1987, 34, 647–654. [CrossRef] [PubMed]

10. Mills, D.L. Internet time synchronization: The network time protocol. IEEE Trans. Commun. 1991,
39, 1482–1493. [CrossRef]

11. Mills, D. RFC 1305; IETF. 1992. Available online: https://tools.ietf.org/html/rfc1305 (accessed on
16 October 2020).

12. Mills, D. RFC 4330; IETF. 2006. Available online: https://tools.ietf.org/html/rfc4330 (accessed on
16 October 2020).

13. IEEE Std 1588-2008. IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems (Revision of IEEE Std 1588-2002); IEEE: Piscataway, NJ, USA, 2008. [CrossRef]

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1109/MSP.2010.938757
http://dx.doi.org/10.1109/ACCESS.2019.2902371
http://dx.doi.org/10.1109/T-UFFC.1987.26997
http://www.ncbi.nlm.nih.gov/pubmed/18291897
http://dx.doi.org/10.1109/26.103043
https://tools.ietf.org/html/rfc1305
https://tools.ietf.org/html/rfc4330
http://dx.doi.org/10.1109/IEEESTD.2008.4579760

Sensors 2020, 20, 5928 51 of 59

14. Gavras, A.; Karila, A.; Fdida, S.; May, M.; Potts, M. Future Internet Research and Experimentation: The FIRE
Initiative. SIGCOMM Comput. Commun. Rev. 2007, 37, 89–92. [CrossRef]

15. Miorandi, D.; Sicari, S.; De Pellegrini, F.; Chlamtac, I. Internet of things: Vision, applications and research
challenges. Ad Hoc Netw. 2012, 10, 1497–1516. [CrossRef]

16. Buckley, J. From RFID to the Internet of things. In Pervasive Networked Systems Conference Organised by
DG Information Society and Media, Networks and Communication Technologies Directorate; CCAB: Brussels,
Belgium, 2006.

17. Lyytinen, K.; Yoo, Y. Ubiquitous computing. Commun. ACM 2002, 45, 63–96.
18. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.

[CrossRef]
19. Sundararaman, B.; Buy, U.; Kshemkalyani, A.D. Clock synchronization for wireless sensor networks:

A survey. Ad Hoc Netw. 2005, 3, 281–323. [CrossRef]
20. Wald, L. Some terms of reference in data fusion. IEEE Trans. Geosci. Remote. Sens. 1999, 37, 1190–1193.

[CrossRef]
21. Bocca, M.; Eriksson, L.M.; Mahmood, A.; Jäntti, R.; Kullaa, J. A synchronized wireless sensor network for

experimental modal analysis in structural health monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2011,
26, 483–499. [CrossRef]

22. Noel, A.B.; Abdaoui, A.; Elfouly, T.; Ahmed, M.H.; Badawy, A.; Shehata, M.S. Structural health monitoring
using wireless sensor networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2017, 19, 1403–1423.
[CrossRef]

23. Gungor, V.; Hancke, G. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical
Approaches. IEEE Trans. Ind. Electron. 2009, 56, 4258–4265. [CrossRef]

24. Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M. A Critical Analysis of Research Potential,
Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2018,
20, 39–95. [CrossRef]

25. Petersen, S.; Carlsen, S. WirelessHART versus ISA100. 11a: The format war hits the factory floor. IEEE Ind.
Electron. Mag. 2011, 5, 23–34. [CrossRef]

26. Pister, K.; Doherty, L. TSMP: Time synchronized mesh protocol. In Proceedings of the IASTED Distributed
Sensor Networks, Orlando, FL, USA, 16–18 November 2008; pp. 391–398.

27. Watteyne, T.; Weiss, J.; Doherty, L.; Simon, J. Industrial IEEE802. 15.4e networks: Performance and trade-offs.
In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12 June
2015; pp. 604–609.

28. IEEE Std 802.15.4-2015. IEEE Standard for Low-Rate Wireless Networks (Revision of IEEE Std 802.15.4-2011);
IEEE: Piscataway, NJ, USA, 2016. [CrossRef]

29. Vilajosana, X.; Watteyne, T.; Vučinić, M.; Chang, T.; Pister, K.S.J. 6TiSCH: Industrial Performance for IPv6
Internet-of-Things Networks. Proc. IEEE 2019, 107, 1153–1165. [CrossRef]

30. Eze, E.C.; Zhang, S.; Liu, E. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials
and way forward. In Proceedings of the 20th International Conference on Automation and Computing,
Cranfield, UK, 12–13 September 2014; pp. 176–181.

31. Hasan, K.F.; Wang, C.; Feng, Y.; Tian, Y.C. Time synchronization in vehicular ad-hoc networks: A survey on
theory and practice. Veh. Commun. 2018, 14, 39–51. [CrossRef]

32. Hasan, K.F.; Feng, Y.; Tian, Y. GNSS Time Synchronization in Vehicular Ad-Hoc Networks: Benefits and
Feasibility. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3915–3924. [CrossRef]

33. IEEE Std 802.11-2012. IEEE Standard for Information Technology–Telecommunications and Information Exchange
between Systems Local and Metropolitan Area Networks–Specific Requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications (Revision of IEEE Std 802.11-2007); IEEE: Piscataway, NJ,
USA, 2012. [CrossRef]

34. IEEE Std 802.11p-2010. Standard for Information Technology– Local and Metropolitan Area Networks—Specific
Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
Amendment 6: Wireless Access in Vehicular Environments (Amendment to IEEE Std 802.11-2007 as Amended by
IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std
802.11w-2009); IEEE: Piscataway, NJ, USA, 2010. [CrossRef]

http://dx.doi.org/10.1145/1273445.1273460
http://dx.doi.org/10.1016/j.adhoc.2012.02.016
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.adhoc.2005.01.002
http://dx.doi.org/10.1109/36.763269
http://dx.doi.org/10.1111/j.1467-8667.2011.00718.x
http://dx.doi.org/10.1109/COMST.2017.2691551
http://dx.doi.org/10.1109/TIE.2009.2015754
http://dx.doi.org/10.1109/COMST.2017.2759725
http://dx.doi.org/10.1109/MIE.2011.943023
http://dx.doi.org/10.1109/IEEESTD.2016.7460875
http://dx.doi.org/10.1109/JPROC.2019.2906404
http://dx.doi.org/10.1016/j.vehcom.2018.09.001
http://dx.doi.org/10.1109/TITS.2017.2789291
http://dx.doi.org/10.1109/IEEESTD.2012.6178212
http://dx.doi.org/10.1109/IEEESTD.2010.5514475

Sensors 2020, 20, 5928 52 of 59

35. Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. A Survey on Smart Grid Communication Infrastructures: Motivations,
Requirements and Challenges. IEEE Commun. Surv. Tutor. 2013, 15, 5–20. [CrossRef]

36. Lévesque, M.; Tipper, D. A survey of clock synchronization over packet-switched networks. IEEE Commun.
Surv. Tutor. 2016, 18, 2926–2947. [CrossRef]

37. Qiu, T.; Zhang, Y.; Qiao, D.; Zhang, X.; Wymore, M.L.; Sangaiah, A.K. A Robust Time Synchronization
Scheme for Industrial Internet of Things. IEEE Trans. Ind. Inform. 2017. [CrossRef]

38. Sivrikaya, F.; Yener, B. Time synchronization in sensor networks: A survey. IEEE Netw. 2004, 18, 45–50.
[CrossRef]

39. Ranganathan, P.; Nygard, K. Time synchronization in wireless sensor networks: A survey. Int. J. Ubicomp
2010, 1, 92–102. [CrossRef]

40. Dalwadi, N.; Padole, M. An Insight into Time Synchronization Algorithms in IoT. In Data, Engineering and
Applications; Springer: Singapore, 2019; pp. 285–296.

41. Faizulkhakov, Y.R. Time synchronization methods for wireless sensor networks: A survey.
Program. Comput. Softw. 2007, 33, 214–226. [CrossRef]

42. Swain, A.R.; Hansdah, R. A model for the classification and survey of clock synchronization protocols in
WSNs. Ad Hoc Netw. 2015, 27, 219–241. [CrossRef]

43. Simeone, O.; Spagnolini, U.; Bar-Ness, Y.; Strogatz, S.H. Distributed synchronization in wireless networks.
IEEE Signal Process. Mag. 2008, 25, 81–97. [CrossRef]

44. Bojic, I.; Nymoen, K. Survey on synchronization mechanisms in machine-to-machine systems. Eng. Appl.
Artif. Intell. 2015, 45, 361–375. [CrossRef]

45. Serpedin, E.; Chaudhari, Q.M. Synchronization in Wireless Sensor Networks: Parameter Estimation, Performance
Benchmarks, and Protocols; Cambridge University Press: New York, NY, USA, 2009.

46. Mahmood, A.; Exel, R.; Trsek, H.; Sauter, T. Clock Synchronization Over IEEE 802.11—A Survey of
Methodologies and Protocols. IEEE Trans. Ind. Inform. 2017, 13, 907–922. [CrossRef]

47. Parvez, I.; Rahmati, A.; Guvenc, I.; Sarwat, A.I.; Dai, H. A Survey on Low Latency Towards 5G: RAN,
Core Network and Caching Solutions. IEEE Commun. Surv. Tutor. 2018. [CrossRef]

48. Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-Low
Latency (ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G ULL Research.
IEEE Commun. Surv. Tutor. 2019, 21, 88–145. [CrossRef]

49. Demir, A.; Mehrotra, A.; Roychowdhury, J. Phase noise in oscillators: A unifying theory and numerical
methods for characterization. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 2000, 47, 655–674. [CrossRef]

50. Yiğitler, H.; Mahmood, A.; Virrankoski, R.; Jäntti, R. Recursive clock skew estimation for wireless sensor
networks using reference broadcasts. IET Wirel. Sens. Syst. 2012, 2, 338–350. [CrossRef]

51. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
52. Jeske, D.R. On Maximum-Likelihood Estimation of Clock Offset. IEEE Trans. Commun. 2005, 53, 53–54.

[CrossRef]
53. Lee, J.; Kim, J.; Serpedin, E. Clock Offset Estimation in Wireless Sensor Networks Using Bootstrap Bias

Correction. In Proceedings of the the 3rd International Conference on Wireless Algorithms, Systems, and
Applications, Dallas, TX, USA, 26–28 October 2008; Springer: Berlin/Heidelberg, Germany, 2008. [CrossRef]

54. Rhee, I.K.; Lee, J.; Kim, J.; Serpedin, E.; Wu, Y.C. Clock Synchronization in Wireless Sensor Networks:
An Overview. Sensors 2009, 9, 56–85. [CrossRef]

55. Elson, J.; Girod, L.; Estrin, D. Fine-grained network time synchronization using reference broadcasts.
ACM SIGOPS Oper. Syst. Rev. 2002, 36, 147–163. [CrossRef]

56. Maróti, M.; Kusy, B.; Simon, G.; Lédeczi, Á. The flooding time synchronization protocol. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5
November 2004; pp. 39–49.

57. Ferrari, F.; Zimmerling, M.; Thiele, L.; Saukh, O. Efficient network flooding and time synchronization with
Glossy. In Proceedings of the 10th International Conference on Information Processing in Sensor Networks
(IPSN), Chicago, IL, USA, 12–14 April 2011; pp. 73–84.

58. Lenzen, C.; Sommer, P.; Wattenhofer, R. PulseSync: An efficient and scalable clock synchronization protocol.
IEEE/ACM Trans. Netw. (TON) 2015, 23, 717–727. [CrossRef]

59. Yildirim, K.S.; Kantarci, A. Time synchronization based on slow-flooding in wireless sensor networks.
IEEE Trans. Parallel Distrib. Syst. 2014, 25, 244–253. [CrossRef]

http://dx.doi.org/10.1109/SURV.2012.021312.00034
http://dx.doi.org/10.1109/COMST.2016.2590438
http://dx.doi.org/10.1109/TII.2017.2738842
http://dx.doi.org/10.1109/MNET.2004.1316761
http://dx.doi.org/10.5121/iju.2010.1206
http://dx.doi.org/10.1134/S0361768807040044
http://dx.doi.org/10.1016/j.adhoc.2014.11.021
http://dx.doi.org/10.1109/MSP.2008.926661
http://dx.doi.org/10.1016/j.engappai.2015.07.007
http://dx.doi.org/10.1109/TII.2016.2629669
http://dx.doi.org/10.1109/COMST.2018.2841349
http://dx.doi.org/10.1109/COMST.2018.2869350
http://dx.doi.org/10.1109/81.847872
http://dx.doi.org/10.1049/iet-wss.2011.0137
http://dx.doi.org/10.1109/TCOMM.2004.840668
http://dx.doi.org/10.1007/978-3-540-88582-5_31
http://dx.doi.org/10.3390/s90100056
http://dx.doi.org/10.1145/844128.844143
http://dx.doi.org/10.1109/TNET.2014.2309805
http://dx.doi.org/10.1109/TPDS.2013.40

Sensors 2020, 20, 5928 53 of 59

60. Leng, M.; Wu, Y.C. Low-complexity maximum-likelihood estimator for clock synchronization of wireless
sensor nodes under exponential delays. IEEE Trans. Signal Process. 2011, 59, 4860–4870. [CrossRef]

61. Hamilton, B.R.; Ma, X.; Zhao, Q.; Xu, J. ACES: Adaptive clock estimation and synchronization using Kalman
filtering. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking,
San Francisco, CA, USA, 14–19 September 2008; pp. 152–162.

62. Yang, Z.; Pan, J.; Cai, L. Adaptive clock skew estimation with interactive multi-model Kalman filters
for sensor networks. In Proceedings of the IEEE International Conference on Communications (ICC),
Cape Town, South Africa, 23–27 May 2010; pp. 1–5.

63. Yang, Z.; Cai, L.; Liu, Y.; Pan, J. Environment-aware clock skew estimation and synchronization for wireless
sensor networks. In Proceedings of the 2012 IEEE INFOCOM, Orlando, FL, USA, 25–30 March, 2012;
pp. 1017–1025.

64. Kim, H.; Ma, X.; Hamilton, B.R. Tracking Low-Precision Clocks with Time-Varying Drifts Using Kalman
Filtering. IEEE/ACM Trans. Netw. 2012, 20, 257–270. [CrossRef]

65. Masood, W.; Schmidt, J.F.; Brandner, G.; Bettstetter, C. DISTY: Dynamic Stochastic Time Synchronization for
Wireless Sensor Networks. IEEE Trans. Ind. Inform. 2017, 13, 1421–1429. [CrossRef]

66. Phan, L.A.; Kim, T.; Kim, T.; Lee, J.; Ham, J.H. Performance Analysis of Time Synchronization Protocols in
Wireless Sensor Networks. Sensors 2019, 19, 3020. [CrossRef] [PubMed]

67. Cena, G.; Scanzio, S.; Valenzano, A. Reliable comparison of clock discipline algorithms for time
synchronization protocols. In Proceedings of the 2015 IEEE 20th Conference on Emerging Technologies &
Factory Automation (ETFA), Luxembourg, 8–11 September 2015. [CrossRef]

68. Sorenson, H.W. Parameter Estimation: Principles and Problems; Dekker, M., Ed.; M. Dekker: New York, NY,
USA, 1980; Volume 9.

69. Mahmood, A.; Jäntti, R. Time synchronization accuracy in real-time wireless sensor networks. In Proceedings
of the IEEE 9th Malaysia International Conference on Communications (MICC), Kuala Lumpur, Malaysia,
14–17 December 2009; pp. 652–657.

70. Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1993.
71. Ren, F.; Lin, C.; Liu, F. Self-correcting time synchronization using reference broadcast in wireless sensor

network. IEEE Wirel. Commun. 2008, 15, 79–85.
72. Chen, J.; Yu, Q.; Zhang, Y.; Chen, H.; Sun, Y. Feedback-Based Clock Synchronization in Wireless Sensor

Networks: A Control Theoretic Approach. IEEE Trans. Veh. Technol. 2010, 59, 2963–2973. [CrossRef]
73. Yıldırım, K.S.; Carli, R.; Schenato, L. Adaptive Proportional–Integral Clock Synchronization in Wireless

Sensor Networks. IEEE Trans. Control. Syst. Technol. 2018, 26, 610–623. [CrossRef]
74. Terraneo, F.; Papadopoulos, A.V.; Leva, A.; Prandini, M. FLOPSYNC-QACS: Quantization-aware clock

synchronization for wireless sensor networks. ACM SIGBED Rev. 2018, 14, 33–38. [CrossRef]
75. Liu, B.; Ren, F.; Shen, J.; Chen, H. Advanced self-correcting time synchronization in wireless sensor networks.

IEEE Commun. Lett. 2010, 14, 309–311. [CrossRef]
76. Goldberg, D. What every computer scientist should know about floating-point arithmetic. ACM Comput.

Surv. (CSUR) 1991, 23, 5–48. [CrossRef]
77. Schmid, T.; Dutta, P.; Srivastava, M.B. High-resolution, Low-power Time Synchronization an Oxymoron

No More. In Proceedings of the 9th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN ’10), Stockholm, Sweden, 12–16 April 2010; ACM: New York, NY, USA; pp. 151–161.
[CrossRef]

78. Khan, O.; Burnett, D.C.; Maksimovic, F.; Wheeler, B.; Mesri, S.; Sundararajan, A.; Zhou, B.L.; Niknejad,
A.M.; Pister, K.S.J. Time Keeping Ability of Crystal-Free Radios. IEEE Internet Things J. 2019, 6, 2390–2399.
[CrossRef]

79. Suciu, I.; Maksimovic, F.; Burnett, D.; Khan, O.; Wheeler, B.; Sundararajan, A.; Watteyne, T.; Vilajosana, X.;
Pister, K. Experimental Clock Calibration on a Crystal-Free Mote-on-a-Chip. In Proceedings of the IEEE
INFOCOM 2019—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Paris,
France, 29 April–2 May 2019; pp. 608–613.

80. IEEE Std 802.15.4e-2012. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless
Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer (Amendment to IEEE Std 802.15.4-2011);
IEEE: Piscataway, NJ, USA, 2012. [CrossRef]

http://dx.doi.org/10.1109/TSP.2011.2160857
http://dx.doi.org/10.1109/TNET.2011.2158656
http://dx.doi.org/10.1109/TII.2016.2618348
http://dx.doi.org/10.3390/s19133020
http://www.ncbi.nlm.nih.gov/pubmed/31323979
http://dx.doi.org/10.1109/etfa.2015.7301461
http://dx.doi.org/10.1109/TVT.2010.2049869
http://dx.doi.org/10.1109/TCST.2017.2692720
http://dx.doi.org/10.1145/3177803.3177809
http://dx.doi.org/10.1109/LCOMM.2010.04.092364
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1145/1791212.1791231
http://dx.doi.org/10.1109/JIOT.2018.2869143
http://dx.doi.org/10.1109/IEEESTD.2012.6185525

Sensors 2020, 20, 5928 54 of 59

81. Chang, T.; Watteyne, T.; Wheeler, B.; Maksimovic, F.; Khan, O.; Mesri, S.; Lee, L.; Suciu, I.; Burnett, D.;
Vilajosana, X.; et al. 6TiSCH on SCµM: Running a Synchronized Protocol Stack without Crystals. Sensors
2020, 20, 1912. [CrossRef] [PubMed]

82. Ganeriwal, S.; Kumar, R.; Srivastava, M.B. Timing-sync Protocol for Sensor Networks. In Proceedings of the
1st International Conference on Embedded Networked Sensor Systems (SenSys ’03), Los Angles, CA, USA,
5–7 November 2003; ACM: New York, NY, USA; pp. 138–149. [CrossRef]

83. Leng, M.; Wu, Y.C. On clock synchronization algorithms for wireless sensor networks under unknown delay.
IEEE Trans. Veh. Technol. 2010, 59, 182–190. [CrossRef]

84. Cox, D.; Jovanov, E.; Milenkovic, A. Time synchronization for ZigBee networks. In Proceedings of the
Thirty-Seventh Southeastern Symposium on System Theory (SSST’05), Tuskegee, AL, USA, 20–22 March
2005; pp. 135–138.

85. Aoun, M.; Schoofs, A.; van der Stok, P. Efficient time synchronization for wireless sensor networks in an
industrial setting. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems,
Raleigh, NC, USA, 5–7 November 2008; ACM: New York, NY, USA, 2008; pp. 419–420.

86. IEEE Std 802.15.4-2006. IEEE Standard for Information Technology– Local and Metropolitan Area Networks—
Specific Requirements—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications
for Low Rate Wireless Personal Area Networks (WPANs) (Revision of IEEE Std 802.15.4-2003); IEEE: Piscataway,
NJ, USA, 2006. [CrossRef]

87. Asgarian, F.; Najafi, K. Time synchronization in a network of bluetooth low energy beacons. In Proceedings
of the SIGCOMM Posters and Demos, Los Angeles, CA, USA, 21–25 August 2017; ACM: New York, NY,
USA, 2017; pp. 119–120.

88. Noh, K.; Serpedin, E.; Qaraqe, K. A New Approach for Time Synchronization in Wireless Sensor Networks:
Pairwise Broadcast Synchronization. IEEE Trans. Wirel. Commun. 2008, 7, 3318–3322. [CrossRef]

89. Son, S.C.; Kim, N.W.; Lee, B.T.; Cho, C.H.; Chong, J.W. A time synchronization technique for CoAP-based
home automation systems. IEEE Trans. Consum. Electron. 2016, 62, 10–16. [CrossRef]

90. Shelby, Z.; Hartke, K.; Bormann, C. RFC 7252; IETF. 2014. Available online: https://tools.ietf.org/html/
rfc7252 (accessed on 16 October 2020).

91. Sallai, J.; Kusỳ, B.; Lédeczi, Á.; Dutta, P. On the scalability of routing integrated time synchronization.
In European Workshop on Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2006; pp. 115–131.

92. Jain, S.; Sharma, Y. Optimal performance reference broadcast synchronization (OPRBS) for time
synchronization in wireless sensor networks. In Proceedings of the International Conference on Computer,
Communication and Electrical Technology (ICCCET), Tamilnadu, India, 18–19 March 2011; pp. 171–175.

93. Palchaudhuri, S.; Saha, A.K.; Johnsin, D.B. Adaptive clock synchronization in sensor networks.
In Proceedings of the Third International Symposium on Information Processing in Sensor Networks
(IPSN 2004), Berkeley, CA, USA, 26–27 April 2004; pp. 340–348. [CrossRef]

94. Gong, F.; Sichitiu, M.L. CESP: A low-power high-accuracy time synchronization protocol. IEEE Trans.
Veh. Technol. 2016, 65, 2387–2396. [CrossRef]

95. Sridhar, S.; Misra, P.; Gill, G.S.; Warrior, J. Cheepsync: A time synchronization service for resource constrained
bluetooth le advertisers. IEEE Commun. Mag. 2016, 54, 136–143. [CrossRef]

96. Kim, K.S.; Lee, S.; Lim, E.G. Energy-Efficient Time Synchronization Based on Asynchronous Source
Clock Frequency Recovery and Reverse Two-Way Message Exchanges in Wireless Sensor Networks.
IEEE Trans. Commun. 2017, 65, 347–359. [CrossRef]

97. Van Greunen, J.; Rabaey, J. Lightweight Time Synchronization for Sensor Networks. In Proceedings of the
2nd ACM International Conference on Wireless Sensor Networks and Applications (WSNA ’03), San Diego,
CA, USA, 14–19 September 2003; ACM: New York, NY, USA; pp. 11–19.

98. Sichitiu, M.L.; Veerarittiphan, C. Simple, accurate time synchronization for wireless sensor networks.
In Proceedings of the 2003 IEEE Wireless Communications and Networking (WCNC 2003), New Orleans,
LA, USA, 16–20 March 2003; Volume 2, pp. 1266–1273. [CrossRef]

99. Qiu, T.; Chi, L.; Guo, W.; Zhang, Y. STETS: A novel energy-efficient time synchronization scheme based on
embedded networking devices. Microprocess. Microsyst. 2015, 39, 1285–1295. [CrossRef]

100. Qiu, T.; Liu, X.; Han, M.; Li, M.; Zhang, Y. SRTS: A Self-Recoverable Time Synchronization for sensor
networks of healthcare IoT. Comput. Netw. 2017, 129, 481–492. Special Issue on 5G Wireless Networks for
IoT and Body Sensors. [CrossRef]

http://dx.doi.org/10.3390/s20071912
http://www.ncbi.nlm.nih.gov/pubmed/32235509
http://dx.doi.org/10.1145/958491.958508
http://dx.doi.org/10.1109/TVT.2009.2028147
http://dx.doi.org/10.1109/IEEESTD.2006.232110
http://dx.doi.org/10.1109/TWC.2008.070343
http://dx.doi.org/10.1109/TCE.2016.7448557
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
http://dx.doi.org/10.1109/IPSN.2004.239161
http://dx.doi.org/10.1109/TVT.2015.2417810
http://dx.doi.org/10.1109/MCOM.2016.7378439
http://dx.doi.org/10.1109/TCOMM.2016.2626281
http://dx.doi.org/10.1109/WCNC.2003.1200555
http://dx.doi.org/10.1016/j.micpro.2015.07.006
http://dx.doi.org/10.1016/j.comnet.2017.05.011

Sensors 2020, 20, 5928 55 of 59

101. Lu, J.; Whitehouse, K. Flash Flooding: Exploiting the Capture Effect for Rapid Flooding in Wireless
Sensor Networks. In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009;
pp. 2491–2499. [CrossRef]

102. Wang, H.; Shao, L.; Li, M.; Wang, P. Estimation of Frequency Offset for Time Synchronization with Immediate
Clock Adjustment in Multihop Wireless Sensor Networks. IEEE Internet Things J. 2017, 4, 2239–2246.
[CrossRef]

103. Schmid, T.; Charbiwala, Z.; Anagnostopoulou, Z.; Srivastava, M.B.; Dutta, P. A case against
routing-integrated time synchronization. In Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, Zurich, Switzerland, 3–5 November 2010; ACM: New York, NY, USA, 2010;
pp. 267–280.

104. Noh, K.L.; Wu, Y.C.; Qaraqe, K.; Suter, B.W. Extension of pairwise broadcast clock synchronization for
multicluster sensor networks. EURASIP J. Adv. Signal Process. 2007, 2008, 286168. [CrossRef]

105. Tan, A.; Peng, Y.; Su, X.; Tong, H.; Deng, Q. A Novel Synchronization Scheme Based on a Dynamic
Superframe for an Industrial Internet of Things in Underground Mining. Sensors 2019, 19, 504. [CrossRef]
[PubMed]

106. Su, W.; Akyildiz, I.F. Time-diffusion synchronization protocol for wireless sensor networks. IEEE/ACM
Trans. Netw. (TON) 2005, 13, 384–397. [CrossRef]

107. Li, Q.; Rus, D. Global clock synchronization in sensor networks. IEEE Trans. Comput. 2006, 55, 214–226.
108. Solis, R.; Borkar, V.; Kumar, P. A new distributed time synchronization protocol for multihop wireless

networks. In Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 13–15
December 2006; pp. 2734–2739.

109. Sommer, P.; Wattenhofer, R. Gradient clock synchronization in wireless sensor networks. In Proceedings of
the 2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA,
13–16 April 2009; pp. 37–48.

110. Fan, R.; Lynch, N. Gradient clock synchronization. Distrib. Comput. 2006, 18, 255–266. [CrossRef]
111. Locher, T.; Wattenhofer, R. Oblivious gradient clock synchronization. In International Symposium on

Distributed Computing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 520–533.
112. Pinho, A.C.; Figueiredo, D.R.; França, F.M. A robust gradient clock synchronization algorithm for wireless

sensor networks. In Proceedings of the Fourth International Conference on Communication Systems and
Networks (COMSNETS), Bangalore, India, 3–7 January 2012; pp. 1–10.

113. Schenato, L.; Gamba, G. A distributed consensus protocol for clock synchronization in wireless sensor
network. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA,
12–14 December 2007; pp. 2289–2294.

114. Schenato, L.; Fiorentin, F. Average TimeSync: A consensus-based protocol for time synchronization in
wireless sensor networks. IFAC Proc. Vol. 2009, 42, 30–35. [CrossRef]

115. Olfati-Saber, R.; Fax, J.A.; Murray, R.M. Consensus and Cooperation in Networked Multi-Agent Systems.
Proc. IEEE 2007, 95, 215–233. [CrossRef]

116. Maggs, M.K.; O’keefe, S.G.; Thiel, D.V. Consensus clock synchronization for wireless sensor networks.
IEEE Sens. J. 2012, 12, 2269–2277. [CrossRef]

117. He, J.; Cheng, P.; Shi, L.; Chen, J.; Sun, Y. Time Synchronization in WSNs: A Maximum-Value-Based Consensus
Approach. IEEE Trans. Autom. Control 2014, 59, 660–675. [CrossRef]

118. He, J.; Duan, X.; Cheng, P.; Shi, L.; Cai, L. Accurate clock synchronization in wireless sensor networks with
bounded noise. Automatica 2017, 81, 350–358. [CrossRef]

119. He, J.; Li, H.; Chen, J.; Cheng, P. Study of consensus-based time synchronization in wireless sensor networks.
ISA Trans. 2014, 53, 347–357. [CrossRef] [PubMed]

120. Shi, G.; Xia, W.; Johansson, K.H. Convergence of max–min consensus algorithms. Automatica 2015, 62, 11–17.
[CrossRef]

121. Sun, W.; Gholami, M.R.; Strom, E.G., ; Brannstrom, F. Distributed clock synchronization with application
of D2D communication without infrastructure. In Proceedings of the Globecom Workshops (GC Wkshps),
Atlanta, GA, USA, 9–13 December 2013; pp. 561–566.

122. Sun, W.; Ström, E.G.; Brännström, F.; Gholami, M.R. Random broadcast based distributed consensus clock
synchronization for mobile networks. IEEE Trans. Wirel. Commun. 2015, 14, 3378–3389. [CrossRef]

http://dx.doi.org/10.1109/INFCOM.2009.5062177
http://dx.doi.org/10.1109/JIOT.2017.2756824
http://dx.doi.org/10.1155/2008/286168
http://dx.doi.org/10.3390/s19030504
http://www.ncbi.nlm.nih.gov/pubmed/30691088
http://dx.doi.org/10.1109/TNET.2004.842228
http://dx.doi.org/10.1007/s00446-005-0135-6
http://dx.doi.org/10.3182/20090924-3-IT-4005.00006
http://dx.doi.org/10.1109/JPROC.2006.887293
http://dx.doi.org/10.1109/JSEN.2011.2182045
http://dx.doi.org/10.1109/TAC.2013.2286893
http://dx.doi.org/10.1016/j.automatica.2017.03.009
http://dx.doi.org/10.1016/j.isatra.2013.11.001
http://www.ncbi.nlm.nih.gov/pubmed/24287323
http://dx.doi.org/10.1016/j.automatica.2015.09.012
http://dx.doi.org/10.1109/TWC.2015.2404917

Sensors 2020, 20, 5928 56 of 59

123. Tian, Y.P.; Zong, S.; Cao, Q. Structural modeling and convergence analysis of consensus-based time
synchronization algorithms over networks: Non-topological conditions. Automatica 2016, 65, 64–75.
[CrossRef]

124. Tian, Y. Time Synchronization in WSNs With Random Bounded Communication Delays. IEEE Trans.
Autom. Control 2017, 62, 5445–5450. [CrossRef]

125. Stanković, M.S.; Stanković, S.S.; Johansson, K.H. Distributed time synchronization for networks with random
delays and measurement noise. Automatica 2018, 93, 126–137. [CrossRef]

126. So, J.; Vaidya, N. MTSF: A Timing Synchronization Protocol to Support Synchronous Operations in Multihop
Wireless Networks; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2004.

127. Mirollo, R.E.; Strogatz, S.H. Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math.
1990, 50, 1645–1662. [CrossRef]

128. Werner-Allen, G.; Tewari, G.; Patel, A.; Welsh, M.; Nagpal, R. Firefly-inspired sensor network synchronicity
with realistic radio effects. In Proceedings of the 3rd International Conference on Embedded Networked
Sensor Systems, San Diego, CA, USA, 2–4 November 2005; ACM: New York, NY, USA; pp. 142–153.

129. Sobrinho, J.L.; Krishnakumar, A.S. Quality-of-service in ad hoc carrier sense multiple access wireless
networks. IEEE J. Sel. Areas Commun. 1999, 17, 1353–1368. [CrossRef]

130. Gotzhein, R.; Kuhn, T. Black Burst Synchronization (BBS)—A protocol for deterministic tick and time
synchronization in wireless networks. Comput. Netw. 2011, 55, 3015–3031. [CrossRef]

131. Schmid, T.; Shea, R.; Charbiwala, Z.; Friedman, J.; Srivastava, M.B.; Cho, Y.H. On the interaction of clocks,
power, and synchronization in duty-cycled embedded sensor nodes. ACM Trans. Sens. Netw. (TOSN) 2010,
7, 24. [CrossRef]

132. Ganeriwal, S.; Tsigkogiannis, I.; Shim, H.; Tsiatsis, V.; Srivastava, M.B.; Ganesan, D. Estimating clock
uncertainty for efficient duty-cycling in sensor networks. IEEE/ACM Trans. Netw. (TON) 2009, 17, 843–856.
[CrossRef]

133. Shannon, J.; Melvin, H. A Dynamic Wireless Sensor Network Synchronisation Protocol; College of Engineering
and Informatics NUI Galway: Galway, Ireland, 2011.

134. Stanislowski, D.; Vilajosana, X.; Wang, Q.; Watteyne, T.; Pister, K.S.J. Adaptive Synchronization in
IEEE802.15.4e Networks. IEEE Trans. Ind. Inform. 2014, 10, 795–802. [CrossRef]

135. Chang, T.; Watteyne, T.; Pister, K.; Wang, Q. Adaptive synchronization in multi-hop TSCH networks.
Comput. Netw. 2015, 76, 165–176. [CrossRef]

136. Schmid, T.; Charbiwala, Z.; Shea, R.; Srivastava, M.B. Temperature Compensated Time Synchronization.
IEEE Embed. Syst. Lett. 2009, 1, 37–41. [CrossRef]

137. Elsts, A.; Fafoutis, X.; Duquennoy, S.; Oikonomou, G.; Piechocki, R.; Craddock, I. Temperature-resilient time
synchronization for the internet of things. IEEE Trans. Ind. Inform. 2017, 14, 2241–2250. [CrossRef]

138. Jin, M.; Fang, D.; Chen, X.; Yang, Z.; Liu, C.; Yin, X. Voltage-aware time synchronization for wireless sensor
networks. Int. J. Distrib. Sens. Netw. 2014, 10, 285265. [CrossRef]

139. Juang, P.; Oki, H.; Wang, Y.; Martonosi, M.; Peh, L.S.; Rubenstein, D. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with ZebraNet. ACM SIGARCH Comput. Archit. News 2002,
30, 96–107. [CrossRef]

140. Chen, Y.; Wang, Q.; Chang, M.; Terzis, A. Ultra-low power time synchronization using passive radio receivers.
In Proceedings of the 10th International Conference on Information Processing in Sensor Networks (IPSN),
Chicago, IL, USA, 12–14 April 2011; pp. 235–245.

141. Li, L.; Xing, G.; Sun, L.; Huangfu, W.; Zhou, R.; Zhu, H. Exploiting FM radio data system for adaptive
clock calibration in sensor networks. In Proceedings of the 9th International Conference on Mobile
Systems, Applications, and Services, Washington, DC, USA, 28 June–1 July 2011; ACM: New York, NY, USA;
pp. 169–182.

142. Rowe, A.; Gupta, V.; Rajkumar, R.R. Low-power clock synchronization using electromagnetic energy
radiating from ac power lines. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, Berkeley, CA, USA, 4–6 November 2009; ACM: New York, NY, USA; pp. 211–224.

143. Li, Z.; Chen, W.; Li, C.; Li, M.; Li, X.Y.; Liu, Y. Flight: Clock calibration using fluorescent lighting.
In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Istanbul,
Turkey, 22–26 August 2012; ACM: New York, NY, USA; pp. 329–340.

http://dx.doi.org/10.1016/j.automatica.2015.11.034
http://dx.doi.org/10.1109/TAC.2017.2697683
http://dx.doi.org/10.1016/j.automatica.2018.03.054
http://dx.doi.org/10.1137/0150098
http://dx.doi.org/10.1109/49.779919
http://dx.doi.org/10.1016/j.comnet.2011.05.014
http://dx.doi.org/10.1145/1807048.1807053
http://dx.doi.org/10.1109/TNET.2008.2001953
http://dx.doi.org/10.1109/TII.2013.2255062
http://dx.doi.org/10.1016/j.comnet.2014.11.003
http://dx.doi.org/10.1109/LES.2009.2028103
http://dx.doi.org/10.1109/TII.2017.2778746
http://dx.doi.org/10.1155/2014/285265
http://dx.doi.org/10.1145/635506.605408

Sensors 2020, 20, 5928 57 of 59

144. Gupchup, J.; Carlson, D.; Musăloiu-e, R.; Szalay, A.; Terzis, A. Phoenix: An epidemic approach to time
reconstruction. In European Conference on Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany,
2010; pp. 17–32.

145. Dai, H.; Han, R. TSync: A lightweight bidirectional time synchronization service for wireless sensor networks.
ACM SIGMOBILE Mob. Comput. Commun. Rev. 2004, 8, 125–139. [CrossRef]

146. Hao, T.; Zhou, R.; Xing, G.; Mutka, M.W.; Chen, J. WizSync: Exploiting Wi-Fi infrastructure for clock
synchronization in wireless sensor networks. IEEE Trans. Mob. Comput. 2014, 13, 1379–1392.

147. Bennett, T.R.; Gans, N.; Jafari, R. A data-driven synchronization technique for cyber-physical systems.
In Proceedings of the Second International Workshop on the Swarm at the Edge of the Cloud, Seattle, WA,
USA, 13–16 April 2015; ACM: New York, NY, USA; pp. 49–54.

148. Bennett, T.R.; Gans, N.; Jafari, R. Data-driven synchronization for Internet-of-Things systems. ACM Trans.
Embed. Comput. Syst. (TECS) 2017, 16, 1–24. [CrossRef]

149. Shaabana, A.; Zheng, R. CRONOS: A Post-hoc Data Driven Multi-Sensor Synchronization Approach.
ACM Trans. Sens. Netw. (TOSN) 2019, 15, 1–20. [CrossRef]

150. Wang, Y.; Attebury, G.; Ramamurthy, B. A survey of security issues in wireless sensor networks.
IEEE Commun. Surv. Tutor. 2006, 8, 2–23. [CrossRef]

151. Mizrahi, T. Time synchronization security using IPsec and MACsec. In Proceedings of the International IEEE
Symposium on Precision Clock Synchronization for Measurement Control and Communication (ISPCS),
Munich, Germany, 14–16 September 2011; pp. 38–43.

152. Akhlaq, M.; Sheltami, T.R. RTSP: An accurate and energy-efficient protocol for clock synchronization in
WSNs. IEEE Trans. Instrum. Meas. 2013, 62, 578–589. [CrossRef]

153. Giruka, V.C.; Singhal, M.; Royalty, J.; Varanasi, S. Security in wireless sensor networks. Wirel. Commun. Mob.
Comput. 2008, 8, 1–24. [CrossRef]

154. Lisova, E.; Uhlemann, E.; Åkerberg, J.; Björkman, M. Delay attack versus clock synchronization—A time
chase. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Toronto, ON,
Canada, 22–25 March 2017; pp. 1136–1141.

155. Lisova, E.; Gutiérrez, M.; Steiner, W.; Uhlemann, E.; Åkerberg, J.; Dobrin, R.; Björkman, M. Protecting clock
synchronization: Adversary detection through network monitoring. J. Electr. Comput. Eng. 2016, 2016.
[CrossRef]

156. Ganeriwal, S.; Čapkun, S.; Han, C.C.; Srivastava, M.B. Secure time synchronization service for sensor
networks. In Proceedings of the 4th ACM Workshop on Wireless Security, Cologne, Germany, 28 August–2
September 2005; ACM: New York, NY, USA; pp. 97–106.

157. Huang, D.; You, K.; Teng, W. Secured Flooding Time Synchronization Protocol. In Proceedings of the Eighth
IEEE International Conference on Mobile Ad-Hoc and Sensor Systems, Valencia, Spain, 17–22 October 2011;
pp. 620–625. [CrossRef]

158. Sun, K.; Ning, P.; Wang, C. Secure and resilient clock synchronization in wireless sensor networks. IEEE J.
Sel. Areas Commun. 2006, 24, 395–408. [CrossRef]

159. Hu, Y.C.; Perrig, A.; Johnson, D.B. Wormhole attacks in wireless networks. IEEE J. Sel. Areas Commun. 2006,
24, 370–380. [CrossRef]

160. Newsome, J.; Shi, E.; Song, D.; Perrig, A. The Sybil Attack in Sensor Networks: Analysis & Defenses.
In Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks (IPSN
’04), Berkeley, CA, USA, 26–27 April 2004; ACM: New York, NY, USA; pp. 259–268. [CrossRef]

161. He, J.; Cheng, P.; Shi, L.; Chen, J. SATS: Secure Average-Consensus-Based Time Synchronization in Wireless
Sensor Networks. IEEE Trans. Signal Process. 2013, 61, 6387–6400. [CrossRef]

162. He, J.; Chen, J.; Cheng, P.; Cao, X. Secure Time Synchronization in WirelessSensor Networks:
A Maximum-Consensus-Based Approach. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 1055–1065. [CrossRef]

163. Mani, S.K.; Durairajan, R.; Barford, P.; Sommers, J. MNTP: Enhancing time synchronization for mobile
devices. In Proceedings of the 2016 Internet Measurement Conference, Santa Monica, CA, USA, 14–16
November 2016; ACM: New York, NY, USA; pp. 335–348.

164. Mani, S.K.; Durairajan, R.; Barford, P.; Sommers, J. An architecture for IoT clock synchronization.
In Proceedings of the 8th International Conference on the Internet of Things, Santa Barbara, CA, USA,
15–18 October 2018; ACM: New York, NY, USA; pp. 1–8.

http://dx.doi.org/10.1145/980159.980173
http://dx.doi.org/10.1145/2983627
http://dx.doi.org/10.1145/3309703
http://dx.doi.org/10.1109/COMST.2006.315852
http://dx.doi.org/10.1109/TIM.2012.2232472
http://dx.doi.org/10.1002/wcm.422
http://dx.doi.org/10.1155/2016/6297476
http://dx.doi.org/10.1109/MASS.2011.64
http://dx.doi.org/10.1109/JSAC.2005.861396
http://dx.doi.org/10.1109/JSAC.2005.861394
http://dx.doi.org/10.1145/984622.984660
http://dx.doi.org/10.1109/TSP.2013.2286102
http://dx.doi.org/10.1109/TPDS.2013.150

Sensors 2020, 20, 5928 58 of 59

165. Pande, H.K.; Thapliyal, S.; Mangal, L.C. A new clock synchronization algorithm for multi-hop wireless ad
hoc networks. In Proceedings of the 2010 Sixth International conference on Wireless Communication and
Sensor Networks, Allahabad, India, 17–19 December 2010; pp. 1–5. [CrossRef]

166. Anand, D.M.; Sharma, D.; Li-Baboud, Y.; Moyne, J. EDA performance and clock synchronization
over a wireless network: Analysis, experimentation and application to semiconductor manufacturing.
In Proceedings of the 2009 International Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, Brescia, Italy, 12–16 October 2009; pp. 1–6. [CrossRef]

167. Mahmood, A.; Gaderer, G.; Loschmidt, P. Clock synchronization in wireless LANs without hardware
support. In Proceedings of the IEEE International Workshop on Factory Communication Systems, Nancy,
France, 18–21 May 2010; pp. 75–78. [CrossRef]

168. Butner, S.E.; Vahey, S. Nanosecond-scale event synchronization over local-area networks. In Proceedings of
the 27th Annual IEEE Conference on Local Computer Networks (LCN 2002), Tampa, FL, USA, 6–8 November
2002; pp. 261–269. [CrossRef]

169. Eidson, J.C.; Fischer, M.; White, J. IEEE-1588 Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems; Technical Report; Naval Research Lab: Washington, DC, USA, 2002.

170. Cooklev, T.; Eidson, J.C.; Pakdaman, A. An Implementation of IEEE 1588 Over IEEE 802.11b for
Synchronization of Wireless Local Area Network Nodes. IEEE Trans. Instrum. Meas. 2007, 56, 1632–1639.
[CrossRef]

171. Kannisto, J.; Vanhatupa, T.; Hannikainen, M.; Hamalainen, T.D. Software and hardware prototypes of the
IEEE 1588 precision time protocol on wireless LAN. In Proceedings of the 2005 14th IEEE Workshop on
Local Metropolitan Area Networks, Crete, Greece, 18 September 2005; pp. 1–6. [CrossRef]

172. Lam, D.K.; Yamaguchi, K.; Nagao, Y.; Kurosaki, M.; Ochi, H. An improved precision time protocol for
industrial WLAN communication systems. In Proceedings of the 2016 IEEE International Conference on
Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 824–829. [CrossRef]

173. Shrestha, D.; Pang, Z.; Dzung, D. Precise Clock Synchronization in High Performance Wireless
Communication for Time Sensitive Networking. IEEE Access 2018, 6, 8944–8953. [CrossRef]

174. Cena, G.; Scanzio, S.; Valenzano, A.; Zunino, C. Implementation and Evaluation of the Reference Broadcast
Infrastructure Synchronization Protocol. IEEE Trans. Ind. Inform. 2015, 11, 801–811. [CrossRef]

175. Tipmongkolsilp, O.; Zaghloul, S.; Jukan, A. The Evolution of Cellular Backhaul Technologies: Current Issues
and Future Trends. IEEE Commun. Surv. Tutor. 2011, 13, 97–113. [CrossRef]

176. Han, J.; Jeong, D. Practical considerations in the design and implementation of time synchronization systems
using IEEE 1588. IEEE Commun. Mag. 2009, 47, 164–170. [CrossRef]

177. Ouellette, M.; Ji, K.; Liu, S.; Li, H. Using IEEE 1588 and boundary clocks for clock synchronization in telecom
networks. IEEE Commun. Mag. 2011, 49, 164–171. [CrossRef]

178. Finn, N. Introduction to Time-Sensitive Networking. IEEE Commun. Stand. Mag. 2018, 2, 22–28. [CrossRef]
179. Bladsjö, D.; Hogan, M.; Ruffini, S. Synchronization aspects in LTE small cells. IEEE Commun. Mag. 2013,

51, 70–77. [CrossRef]
180. IEEE Std 802.1AS-2011. IEEE Standard for Local and Metropolitan Area Networks—Timing and Synchronization

for Time-Sensitive Applications in Bridged Local Area Network; IEEE: Piscataway, NJ, USA, 2011. [CrossRef]
181. IEEE Std 802.1CM-2018. IEEE Standard for Local and Metropolitan area Networks—Time-Sensitive Networking for

Fronthaul; IEEE: Piscataway, NJ, USA, 2018. [CrossRef]
182. ETSI TS 136 321 V15.3.0. Evolved Universal Terrestrial Radio Access (E-UTRA): Medium Access Control (MAC)

Protocol Specification (3GPP TS 36.321 Version 15.3.0 Release 15); ETSI: Sophia Antipolis, France, 2018.
183. Sachs, J.; Wikstrom, G.; Dudda, T.; Baldemair, R.; Kittichokechai, K. 5G Radio Network Design for

Ultra-Reliable Low-Latency Communication. IEEE Netw. 2018, 32, 24–31. [CrossRef]
184. Mahmood, A.; Ashraf, M.I.; Gidlund, M.; Torsner, J. Over-the-Air Time Synchronization for URLLC:

Requirements, Challenges and Possible Enablers. In Proceedings of the 15th International Symposium on
Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018; pp. 1–6. [CrossRef]

185. Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun.
Surv. Tutor. 2017, 19, 855–873. [CrossRef]

186. Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the
limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [CrossRef]

http://dx.doi.org/10.1109/WCSN.2010.5712309
http://dx.doi.org/10.1109/ISPCS.2009.5340200
http://dx.doi.org/10.1109/WFCS.2010.5548617
http://dx.doi.org/10.1109/LCN.2002.1181792
http://dx.doi.org/10.1109/TIM.2007.903640
http://dx.doi.org/10.1109/LANMAN.2005.1541513
http://dx.doi.org/10.1109/ICIT.2016.7474858
http://dx.doi.org/10.1109/ACCESS.2018.2805378
http://dx.doi.org/10.1109/TII.2015.2396003
http://dx.doi.org/10.1109/SURV.2011.040610.00039
http://dx.doi.org/10.1109/MCOM.2009.5307481
http://dx.doi.org/10.1109/MCOM.2011.5706325
http://dx.doi.org/10.1109/MCOMSTD.2018.1700076
http://dx.doi.org/10.1109/MCOM.2013.6588653
http://dx.doi.org/10.1109/IEEESTD.2011.5741898
http://dx.doi.org/10.1109/IEEESTD.2018.8376066
http://dx.doi.org/10.1109/MNET.2018.1700232
http://dx.doi.org/10.1109/ISWCS.2018.8491188
http://dx.doi.org/10.1109/COMST.2017.2652320
http://dx.doi.org/10.1109/MCOM.2017.1600613

Sensors 2020, 20, 5928 59 of 59

187. Ramirez, C.G.; Sergeyev, A.; Dyussenova, A.; Iannucci, B. LongShoT: Long-range synchronization of time.
In Proceedings of the 18th International Conference on Information Processing in Sensor Networks, Montreal,
QC, Canada, 16–18 April 2019; ACM: New York, NY, USA; pp. 289–300.

188. Haubro, M.; Orfanidis, C.; Oikonomou, G.; Fafoutis, X. TSCH-over-LoRA: long range and reliable IPv6
multi-hop networks for the internet of things. Internet Technol. Lett. 2020, 3, e165. [CrossRef]

189. Singh, R.K.; Berkvens, R.; Weyn, M. Synchronization and efficient channel hopping for power efficiency in
LoRa networks: A comprehensive study. Internet Things 2020, 11, 100233. [CrossRef]

190. Yiğitler, H.; Jäntti, R.; Virrankoski, R. pRoot: An Adaptable Wireless Sensor-Actuator Hardware Platform.
In Proceedings of the 12th IEEE International Conference on Embedded and Ubiquitous Computing (EUC),
Milano, Italy, 26–28 August 2014; pp. 281–286.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/itl2.165
http://dx.doi.org/10.1016/j.iot.2020.100233
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	IoT Platform
	Motivation
	Related Works

	Clock Models
	Software Clocks
	Clock Relation Model
	Clocks on the Same Processor
	Clocks on Different Processors
	Numerical Example

	Available Clock Relation Models
	Offset-Only Model
	Progressive Linear Model Only with Delivery Delay
	Incremental Linear Model Only with Delivery Delays
	High Order Models Only with Delivery Delay
	Incremental Linear Model with Delivery Delay and Oscillator-Induced Correlation
	Summary

	Clock Discipline Algorithms
	Background
	Evaluation Metric
	Evaluation Data

	Offset-Only Estimation
	Joint Batch Estimation of Offset and Skew
	Adaptive Clock Skew Estimation
	Clock Skew Estimation Using Incremental Linear Model with Delivery Delay and Oscillator-Induced Correlation
	Batch Estimation
	Recursive Estimation
	Numerically Stable Recursive Estimation

	Results and Discussion
	Numerical Results
	Discussion

	Time Synchronization Messaging
	Background
	Messaging Error Sources
	Timestamping

	Messaging Schemes
	Two-Way Message Exchanges
	One-Way Message Dissemination
	Receiver-only Synchronization
	Receiver-receiver Synchronization
	Discussion

	Multi-hop Synchronization Schemes
	Cluster-Based Synchronization
	Spanning-Tree Based Synchronization
	Synchronous Diffusion
	Distributed Synchronization
	Discussion

	Practical Problems
	Synchronization Period
	Reference Clock Source
	Security

	Time Synchronization in LAN and WAN
	Summary

	Examples
	A Low-Power and Short-Range Network Synchronization
	A Bluetooth-LE Star Network

	Conclusions
	References

