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Colorectal cancer is the third most common cancer in the world with increasing
incidence and mortality rates globally. Standard treatments for colorectal cancer
have always been surgery, chemotherapy and radiotherapy which may be used in
combination to treat patients. However, these treatments have many side effects due to
their non-specificity and cytotoxicity toward any cells including normal cells that are
growing and dividing. Furthermore, many patients succumb to relapse even after a
series of treatments. Thus, it is crucial to have more alternative and effective treatments
to treat CRC patients. Immunotherapy is one of the new alternatives in cancer treatment.
The strategy is to utilize patients’ own immune systems in combating the cancer cells.
Cancer immunotherapy overcomes the issue of specificity which is the major problem
in chemotherapy and radiotherapy. The normal cells with no cancer antigens are not
affected. The outcomes of some cancer immunotherapy have been astonishing in some
cases, but some which rely on the status of patients’ own immune systems are not.
Those patients who responded well to cancer immunotherapy have a better prognostic
and better quality of life.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer in the world with an incidence of
10.2% and a mortality rate of 9.2% of all cancers (1, 2). Approximately 1.8 million new cases
and mortality of 0.88 million were recorded until 2018. From 1975 to 2013, CRC incidence rate
increased from 10–15 cases per 100,000 population of Americans between the age of 20–49 years
old (3). In developing countries such as Argentina, Brazil, and China, the incidence and mortality
rate due to CRC increased around 20% (4). Furthermore, the prognosis for patients with metastatic
CRC remains poor with a median 5-year survival of only 18.5% in the United States and 27.7% in
Europe (1, 2).

Standard conventional treatments for CRC are surgery, chemotherapy and radiotherapy.
Depending on the localization and progression of the disease, these treatments can be used in
combination (5–8). Total mesorectal excision (TME) through laparoscopic and transanal surgery
approaches are often the options for localized cancer and whenever the tumor location is easy
to access (9–11). However, complete removal of all cancer cells is often not possible. About 66
and 61% of stage II and III colon and rectal patients underwent further treatments with adjuvant
chemotherapy and/or radiotherapy, respectively (12). These treatments have many side effects due
to their unspecificity and cytotoxicity toward any cells that are growing and dividing (13, 14).
Furthermore, 54% of patients relapse even after neoadjuvant treatment (15). Thus, it is crucial to
have more alternative and effective treatments to treat CRC patients.
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Cancer immunotherapy is one of the new alternatives in
cancer treatment. In comparison to the standard treatment, this
treatment manipulates and utilizes patients’ own immune system
in combating the cancer cells. The innate and adaptive immune
responses are alerted to recognize the cancer cells and potentially
eradicate the tumor (16–18). Many successes have been reported
especially in hematological malignancies and solid tumors (19,
20). Cancer immunotherapy overcomes the issue of specificity
which is the major problem in chemotherapy and radiotherapy.
Cancer immunotherapy targets cancer antigens on the malignant
cells specifically, alerts the immune systems to the presence of
foreign substances and eradicates cancer through the concert of
immune responses. The normal cells with no cancer antigens
are not affected. The outcomes of some cancer immunotherapies
have been astonishing in some cases, but some which rely on the
status of patients’ own immune systems are not. Those patients
who responded well to cancer immunotherapy have a better
prognostic and better quality of life.

Historically, cancer immunotherapy started in 1866 where
notable tumor shrinkage was observed among cancer patients
who were diagnosed with erysipelas caused by Streptococcus
pyogenes (21, 22). Later in 1891, William Coley who is known
as the ‘Father of Immunotherapy’ continued the discovery
journey by introducing heat-inactivated Streptococcal bacteria
(Coley’s toxin) into unresectable osteosarcoma patients with
the hope that any side effects produced from the infection
would shrink the tumor (23). The approach was successful
for a time. The patients who developed erysipelas went into
spontaneous remission (24, 25). Following this, Coley improved
the formulation by combining live and attenuated Streptococcus
erysipelas and Bacillus prodigiosus (26). Around 1000 patients
were successfully treated using this method. After 8 years of
hard work, Coley’s toxin was commercially available in 1899
(26). However, patients who underwent this treatment were
exposed to extremely pathogenic bacteria. Furthermore, due to its
unreproducible results, Coley’s toxin was opposed by most of the
health practitioners. Surgery remained the most preferable way to
treat cancer during that time (27).

After nearly two decades, immunotherapy once again
captured scientists’ attention with the new concept of tumor-
specific antigens which was found in a mouse model. This was
followed by theories on acquired immunological tolerance and
immunosurveillance (28–30). A year later in 1957, another cancer
immunotherapy approach using interferon-α, a type of cytokine
was introduced (31). The first cancer vaccine was also discovered
during this era when 25 out of 114 (22%) gynecologic cancer
patients went into remission upon treatment with adjuvant
tumor lysate (32). In the subsequent years, novel findings on
the importance of T cells in cancer immunity made cancer
immunotherapy more exciting, thus lead to the discovery of
dendritic cells and natural killer cells’ activities in mouse models
(33–36). The first monoclonal antibody production using the
hybridoma technique was also initiated in 1975 by Koehler
and Milstein. They both were awarded a Nobel Prize in 1984
for this crucial finding which is widely used until today (37).
Another significant finding in cancer immunotherapy was the
discovery of the first immune checkpoint inhibitor namely

CTLA-4 in 1988, which led to its first clinical trial in the
year 2000 and approval by United States Food and Drugs
Administration (FDA) to treat metastatic melanoma in 2011 (38).
The emergence of cancer immunotherapy continued until the
FDA-approved Interleukin-2 and the first monoclonal antibody
(mAbs), Rituximab were used as anti-cancer therapies in 1992
and 1997, respectively (39, 40).

In the 20th century, the FDA has approved various types
of immunotherapeutic drugs including Sipuleucel-T, a cancer
vaccine to treat castration-resistant prostate cancer in 2010 (41,
42). Five years later, the first oncolytic virotherapy agent known
as T-VEC was approved in treating metastatic melanoma (43).
The chimeric antigen receptor (CAR) T-cell therapy was also
introduced to relapsed B-cell acute lymphoblastic leukemia and
diffuse large B-cell lymphoma patients in 2017 and 2018 after
getting approval (44, 45). In the same year, Tasuku Honjo and
James Allison received their Nobel Prize in Physiology due
to their significant contributions in discovering the immune
checkpoint inhibitors, PD-1 and CTLA-4, respectively (46).
Currently, with an increasing number of FDA approved single
and combinational immunotherapeutic drugs over the years, the
cancer immunotherapy field is continuously showing potential in
treating various types of malignancies.

IMMUNE CLASSIFICATION

Cancer immunotherapies are classified based on the types of
immune mechanisms that are involved either through passive
or/and active mechanisms or based on antigen specificity
(47). Passive immunotherapies are tumor-targeting mAbs,
adoptive cell transfer (ACT) and oncolytic virotherapy while
active immunotherapies are immunomodulatory mAbs, anti-
cancer vaccines, immunostimulatory cytokines, inhibitor of
immunosuppressive metabolism, pattern recognition receptor
(PRR) agonists, immunogenic cell death inducer and other non-
specific immunotherapeutic agents.

Monoclonal Antibodies (mAb)
Monoclonal antibodies (mAbs) are immunoglobulin molecules,
which are made up of antigen-binding fragments that are
connected to a constant region with two identical light and
heavy chains. The light chains are made up of one variable
and one constant domain while the heavy chains consist of one
variable and three constant domains (48). There is also a special
region within the variable domain with 3 loops known as the
complementarity determining region (CDR) (48).

Initially, the hybridoma technique (49) and phage display
(50) were used in producing murine mAbs in the laboratories.
With advanced technologies, three types of antibody-engineered
mAbs are produced using the same technique, namely chimeric,
humanized and human monoclonal antibodies. Chimeric mAbs
consist of cloned human amino acids at the constant domain
whereas mouse amino acids are located at the variable domain.
Chimeric mAbs can be produced by directly joining the variable
region immunoglobulin of selected mouse hybridoma into the
human constant region through in vitro cell-based technology
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(51). Examples of FDA approved chimeric mAbs are Rituximab
that is used to treat Non-Hodgkin Lymphoma, Cetuximab to
treat colorectal cancer and Dinutuximab that is used among
neuroblastoma patients (52). On the other hand, humanized
mAbs are generated through the addition of murine CDR
into the human’s variable and constant domain through CDR
grafting (53). Some of the FDA approved humanized mAbs are
Trastuzumab used to treat breast cancer, Alemtuzumab to treat
chronic myeloid leukemia and Bevacizumab to treat colorectal
cancer (52). The third type of mAbs is the human mAbs which
are produced when the whole mAbs are made up from human
amino acids (54). This may be done through the preference
of human antibody fragments from human hybridomas and
in vitro libraries by transgenic mice (48). Human mAbs that are
approved by FDA for cancer treatments are Panitumumab to
treat colorectal cancer, Ofatumumab to treat chronic lymphocytic
leukemia and Ramucirumab to treat gastric cancer (52).

Unlike polyclonal antibodies that bind to multiple epitopes,
mAbs have a monovalent affinity which makes them bind to
an epitope of antigens (55). The mAbs can recognize and bind
specifically to tumor antigens of tumor-specific antigen (TSA)
(56) or tumor-associated antigen (TAA) (57) that are present on
cancer cells surface (Figure 1). TSAs are a group of mutated
proteins due to somatic mutations and relatively are restricted to
tumor cells (58). Their specificity in tumor cells makes them a
good candidate for immunotherapy. One of the good examples
of a TSA is the mutated p53 protein that is present in many
cancer cells including colorectal cancer. As a result, the p53
synthetic long peptide vaccine was designed to treat metastatic
CRC patients (59). The results show that around 90% of the
respondents treated with this vaccine produced p53-specific-T
cell response with low-grade toxicity suggesting that p53 is indeed
one of the attractive TSAs in cancer immunotherapy (59).

In contrast, TAAs have differentially expressed proteins
that are present in both malignant and non-malignant cells.
Although TAAs are expressed on normal cells, their expression

FIGURE 1 | Monoclonal antibodies in cancer. Monoclonal antibodies (mAbs)
such as Cetuximab are designed to target tumor-associated antigens (TAAs)
or tumor-specific antigens (TSAs) that are abundant in cancer cells surface.
The signals produced by receptor activities mediated immune cells toward
malignant sites thus produced immune responses that lead to cell death to
eradicate the tumor.

on malignant cells has a unique characteristic resulting in specific
immunogenicity (60). Nevertheless, because the antigens are also
expressed on the normal cells, they may induce autoimmunity
in the host (61). To overcome this, the self-antigen concept
suggests that the self-reactive T cells are to be deactivated,
therefore increasing their specificity in targeting the unique
TAA on tumor cells (62). Furthermore, cancer vaccines must
have a high tendency to specifically bind to tumor antigens
and effectively kill them with minor adverse effects on normal
cells. TAAs can be divided into four categories based on
their expression pattern namely cancer-testis antigens (CTA),
differentiation antigen, oncofoetal antigen and overexpressed
antigens (62). CTA are aberrantly expressed protein in cancer and
testis tissues with restricted expression in other normal tissues
(63). A widely studied CTA in CRC is the melanoma-associated
antigen (MAGE) group, particularly MAGE-A (64), MAGE-A-
12 (65), and MAGE-A3 (66) variants. Differentiation antigens
are expressed during cell differentiation stages such as Mucin 1
glycoprotein (MUC1) (61) and epithelial cell adhesion molecule
(EpCAM) (67). These antigens may not create major side effects
as they are tissue-specific and are only expressed during the cell
differentiation stage (62). Oncofoetal antigens such as 5T4 (68,
69) and carcinoembryonic antigens (CEA) (70) are found in fetal
tissues during its development as well as in several malignancies
including ovarian, colorectal and breast cancers. Overexpressed
antigens are huge, various groups of common proteins that can
be found in both malignant and normal cells. However, they
are highly expressed in malignant cells compared to the normal
which thus have potential as an immunotherapeutic target (71).
Some of the extensively studied overexpressed antigens in CRC
are epidermal growth factor receptor (EGFR) (72), coiled-coil
domain containing 34 (CCDC34) (73) and RAS-related protein
(Rab-1A) (74). The binding of mAbs to TSA or TAA produces
molecular signals to immune cells such as T cells, B cells and
natural killer cells. This further initiates and activates receptors
activities that lead to apoptosis and tumor-killing (75, 76).

The two major types of mAbs are tumor-targeting mAbs and
immunomodulatory mAbs.

Tumor-Targeting mAbs
One of the passive immunotherapies is tumor-targeting mAbs
and it is the most commonly mAbs used in treating hematological
malignancies and other solid tumors. There are 76 mAbs that
are approved by the European Medical Agency (EMA) and Food
Drugs Administration (FDA) for therapeutic use (status 2017)
(77). Table 1 listed the top 10 current EMA and/or FDA approved
mAbs that are used for cancer treatments.

Immunomodulatory mAbs
One of the common immunomodulatory mAbs is immune
checkpoint inhibitors (ICIs). The ICIs are used to target and/or
block immune checkpoints protein ligands on T cells surfaces or
other immune cell subpopulations in restoring immune function.
The immune checkpoints serve as key regulators that serve as
an immune brake when there is sufficient immune response.
However, in cancer, there is high activation and overexpression
of immune checkpoints leading to suppression of anti-tumor
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TABLE 1 | The top 10 current EMA and/or FDA approved mAbs that are used for cancer treatments (78, 79).

No. Trade name International
Non-proprietary
Name (INN)

Target Type EMA approval
(Year)

FDA approval
(Year)

Cancer

1 Bavencio R© Avelumab PD-L1 Human IgG1/K Not approved 2017 Metastatic Merkel cell
carcinoma

2 Imfinzi R© Durvalumab PD-L1 Human IgG1/K Not approved 2017 Metastatic urothelial carcinoma

3 Lartruvo Olaratumab PDGFR-α Human IgG1 2016 2016 Sarcoma

4 Darzalex R© Daratumumab CD38 Human IgG1/K 2016 2015 Multiple myeloma

5 Empliciti Elotuzumab SLAMF7 Human IgG1 2016 2015 Multiple myeloma

6 Portrazza Necitumumab EGFR Human IgG1 2016 2015 Non-small cell lung cancer

7 Tecentriq R© Atezolizumab PD-L1 Human IgG1 Not approved 2016 Metastatic non-small cell lung
cancer

8 Opdivo Nivolumab PD-1 Human IgG4 2015 2015 Non-small cell lung carcinoma;
renal cell Hodgkin diseases,
melanoma

9 Unituxin Dinutuximab GD2 Human IgG1/K 2015 (but has been
withdrawn)

2015 Neuroblastoma

10 Blincyto R© Bevacizumab CD19 BiTEs 2015 2014 Precursor cell lymphoblastic
leukemia-lymphoma

immune response that favors malignant cell proliferation and
spread (80, 81).

The most widely studied immune checkpoint targets are
programmed cell death 1 (PD-1) and cytotoxic T lymphocyte
antigen 4 (CTLA4) due to their overexpression and abundance
in various solid tumors and hematological malignancies (82).
Nevertheless, other checkpoints are currently being studied for
their potential roles in tumor immunity regulation such as
lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin-
3 (TIM-3), and T cell immunoglobulin and ITIM domain
(TIGIT) (83–86).

In colorectal cancer, three FDA-approved ICIs drugs are
targeting PD-1 and CTLA-4 (Table 2). However, ICI treatment
efficiency is influenced by the microsatellite instability (MSI)
status in each CRC patient (87, 88). MSI status is determined
through immunohistochemistry staining and polymerase chain
reaction targeting 5 MSI markers of BAT25, BAT26, D2S123,
D5S346, and D17S250 (89). CRC patients are divided into
three groups based on their mutation patterns of microsatellite
instability-high (MSI-H), microsatellite instability-low (MSI-L),
and microsatellite stable (MSS) (90, 91). ICI drugs targeting
PD-1 and CTLA4 are more potent on metastatic CRC patients
with MSI-H due to its higher tumor mutation burden (TMB).
High TMB is positively correlated with high neo-antigen load
thus increasing tumor immunogenicity (92). The majority of
CRC patients with MSI-H benefited with this immunotherapy
where the disease control rate was 80% using the combination
of Nivolumab and Ipilimumab compared to patients having
microsatellite stable (93).

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4)
Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) is one
of the immune checkpoints that serve as co-inhibitory receptors
on the T cell surface (38). The role of CTLA-4 in cancer
immunotherapy was discovered through antibody generation
that specifically targets the CTLA-4 glycoprotein (94). Under

TABLE 2 | FDA approved immune checkpoint inhibitors drugs for colorectal
cancer treatments (78).

Trade name International
Non-
proprietary
Name (INN)

Target FDA
approval
date

Cancer

Keytruda R© Pembrolizumab PD-1 23 May
2017

Unresectable or
metastatic mismatch
repair deficient (dMMR)
and microsatellite
instability-high (MSI-H)
CRC

Opdivo R© Nivolumab PD-1 1 August
2017

Metastatic mismatch
repair deficient (dMMR)
and microsatellite
instability-high (MSI-H)
CRC

Yervoy R© Ipilimumab CTLA-4 10 July
2018

Used in combination
with nivolumab
Metastatic mismatch
repair deficient (dMMR)
and microsatellite
instability-high (MSI-H)
CRC

normal circumstances, T cell antigen receptor stimulation is
regulated by CD28 co-stimulatory and CTLA-4 co-inhibitory
signals (95). When there is an attack from a foreign substance,
CD28 co-stimulatory signals increase to stimulate the T cell
antigen receptors which further activate the downstream immune
signaling (96). When the foreign substance has been cleared,
CTLA-4 co-inhibitory signals are activated to stop immune
signaling and thus prevent excessive immune responses or
autoimmunity. Unlike CD28, CTLA-4 acts as negative regulatory
feedback in T-cell stimulation. It switches off the T cell activity
during priming and thus inhibits T cell activation and leads to
antigenic tolerance. Hence, both CD28 co-stimulatory and
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CTLA-4 co-inhibitory signals are critical in maintaining T
cell homeostasis and self-tolerance (97–99). However, there
are some instances where CTLA-4 co-inhibitory signals are
constitutively high and this can halt T cell activation (100). Such
scenarios are seen in many cases of cancers and suppressor T
cells such as T regulatory cells, suggesting the reason for lack
of immune responses in cancer patients (101, 102). CTLA-4
protein is homologous to CD28 protein and has a higher binding
affinity toward CD80 and CD86 on major histocompatibility
complex (MHC) (Figure 2). This has been the avenue in
immunotherapy in targeting CTLA-4 protein expression to
stimulate the patient’s own T cell immune response. Many
immune checkpoint inhibitor drugs are targeting CTLA-4 that
is designed to bind and block this protein, thus allow CD28
binding to MHC and stimulate T cell immune response, activate
downstream immune signaling and destroy the malignant
cells (103, 104).

Programmed death 1 receptor and its ligand (PD-1/PD-L1)
Programmed death 1 (PD-1; CD279) is a novel member of
the immunoglobulin gene superfamily (IgSF) with restricted
expression in the thymus of mice (105). The PD-1 gene was first
discovered in apoptosis gene screening and was shown to be
involved in apoptosis of interleukin-3 (IL-3)-deprived LyD9 (a
murine hematopoietic progenitor cell line) and stimulated 2B4.11
(a murine T-cell hybridoma) (105).

In humans, the PD-1 (PDCD1) gene is located at 2q37.3
which encodes for PD-1 proteins (106). This protein is a type
I transmembrane glycoprotein with a size of 50–55 kDa (107).
PD-1 is expressed in various immune cells such as CD4 and
CD8 T cells, B cells, macrophages, dendritic cells and tumor-
infiltrating lymphocytes (TILs) (108, 109). It functions as an
immune checkpoint that balances the peripheral tolerance and
regulates T-cell responses under normal conditions (110).

Programmed death 1 binds to two ligands, PD-L1 (CD274;
B7-H1) and PD-L2 (CD273; B7-DC) with differential expression
(111). This binding activates PD-1: PD-L1/L2 pathway
which then mediates potent inhibitory signals to hinder the
proliferation and function of T effector cells and have inimical
effects on antiviral and antitumor immunity (112).

Similar to CTLA-4, the main role of PD-1/PDL1 interaction
(PD-1 pathway) under normal conditions is as a brake for
immune response in which the pathway can limit T-cell
effector responses. One of the ways is through enhancing
immunosuppressive regulatory cells (Tregs) development, thus
prevent over-activation of the immune response in human
peripheral tissues (113). This immune homeostasis is important
in protecting us from autoimmune and severe inflammation.

However, this is not always the case in cancer. Overexpression
of PD-1 is observed that leads to constant PD-1 (on the T cell
surface) binding to its ligand, PDL1 (on the cancer cells). As a
result, PD1/PDL1 signals are constitutively high, suppress the
activation of T cells and cause antigenic tolerance. This allows
immune cell evasion by cancer cells which then support the
high tumor proliferation rate (114, 115). Therapeutic strategies
targeting PD1/PDL1 pathways have resulted in many checkpoint
inhibitors that function to interfere with PD-1/PDL1 binding

through competitive binding and lead to restoring effector T
cells activity in cancer patients. Drugs inhibitors were designed
to bind and block PD1/PDL1 binding to restore effector T
cells activation, proliferation, function and downstream immune
signaling to destroy the malignant cells (104).

To date, there are five FDA approved PD-1 inhibitor
drugs for various cancers (103, 116) (Table 3). The first FDA
approved PD-1 inhibitor drug was Pembrolizumab (Keytruda R©),
a humanized monoclonal IgG4 antibody, used in treating
melanoma (78). Phase I trial of the drug was tested in solid
tumor and hematological malignancies patients. Results show
that Pembrolizumab was well tolerated among multiple solid
tumors patients (117). There was a significantly longer survival
rate with minimum side effects among advanced non-small cell
lung cancer (NSCLC) with high PDL1 expression compared to
patients treated with platinum-based chemotherapy (118).

In CRC patients, Pembrolizumab shows significant benefit to
the mismatch-repair deficient or microsatellite instability-high
CRC patients (dMMR/MSI-H). Results show the progression-
free survival rate up to 78% compared to mismatch-repair
proficient, microsatellite stable (pMMR/MSS) patients of
11% (119). Another successful PD-1 inhibitor is Nivolumab
(Opdivo R©) that shows durable responses among the dMMR
metastatic CRC (mCRC) cohort of patients. Approximately, 69%
of these patients have 12 months of overall survival (OS) (120).
Interestingly, a combination of Nivolumab with Ipilimumab (a
CTLA4-targeting drug) demonstrates a higher response rate of
up to 94% in these patients. This suggests that the combination
of immune checkpoints therapy can greatly improve the efficacy
of the treatment for dMMR/MSI-H mCRC patients (93).

Adoptive Cell Transfer (ACT)
Adoptive cell transfer is a cell-based therapy that uses cells
either from the patient (autologous transfer) or other donors
(allogeneic transfer) to improve immune function (121). There
are 3 methods for the ACT; use of tumor-infiltrating lymphocytes
(TILs), insertion of chimeric antigen receptor (CAR), and
modification of T cell receptors (TCR) (122).

Adoptive cell transfer that uses TILs (ACT-TIL) was first
successfully observed in 60% of metastatic melanoma patients
who had not been treated with interleukin-2 (IL-2) and
40% of non-respondents IL-2 treatments which resulted in
cancer regression (123). However, major drawbacks with ACT-
TIL using patients’ own TIL was a limitation in generating
tumor-specific T cells. This leads to the development of
another approach using patients’ own genetically engineered-
TCR. Approximately 13% (2 out of 15) metastatic melanoma
patients benefited from this type of ACT with high sustained
engineered T cells level were observed after a year of infusion
(124). A few years later, ACT uses a better method of
CAR insertion. This was shown to be safe to use among a
cohort of clear cell renal cell carcinoma (ccRCC) and ovarian
cancer patients with no toxicity observed although only two
and none of these patients respond toward the treatment,
respectively (125, 126).

CAR-T cells consist of antibody variable fragments specific
to the antigen of interest that are fused to the isolated
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FIGURE 2 | Deactivated (A) and activated (B) T cell-based on immune checkpoint inhibitors mechanism. During resting of T cell (deactivated T cell), CTLA4 and PD1
receptors on T cell surface binds to CD80 and CD86 on the antigen-presenting cell (APC) such as dendritic cell and PDL-1 and PDL-2 on cancer cell, respectively,
while T cell receptor (TCR) binds to major histocompatibility complex (MHC) with the presence of peptide. Thus, no immune response triggered to kill cancer cells. T
cells will only be activated with the presence of blockade or inhibitor on CTLA4 and PD1 receptors. Hence, a CTLA4 inhibitor known as Ipilimumab and PD1 inhibitor
of Nivolumab functioned to block those receptors and elicit immune response thus leading to the apoptosis of cancer cells.

patient’s or donor’s T cells (127). In the CAR approach,
T cells are isolated from a patient (autologous) or HLA-
matched donor (allogeneic), cultured through ex vivo and
genetically modified through the insertion of the chimeric
antigen receptor (CAR) onto the T cells as CAR-T cells (128).
The modified ex vivo CAR-T cells are re-infused back into
the patient and monitored. The modifications are necessary
for enhancing the T cells’ ability to recognize the antigen
of interest and avoid the major histocompatibility complex
restriction recognition. This leads to highly targeted antigen
recognition and allows active trafficking to tumor sites, in vivo
expansion and long-term persistence. Usually, CAR-T cells
are engineered toward tumor-associated antigens (TAAs) such
as CD19 in diffuse large B cell lymphoma (DLBCL) (129),
interleukin 13 receptor alpha-2 (IL13Rα2) (130) and epidermal
growth factor variant III (EGFRvIII) in glioblastoma (131) and
carcinoembryonic antigen (CEA) in colorectal cancer (132) to
promote cytotoxicity and apoptosis (Figure 3). The advantage
of CAR-T cells is their specificity in targeting cell surface

TAA in an MHC-independent manner. This allows more
patients to be treated without the need for MHC-specific
treatment. In addition, co-stimulatory domains such as CD28
or 4-1BB (CD137) can be added to improve CAR-T cells’
proliferation and survival rate in vivo, thus enhancing the anti-
tumor activity of CAR-T cells (133, 134). Furthermore, the
T cell responses produce memory cells that help to preserve
the immunotherapeutic effect for several years even after
treatments (135, 136).

Like many other methods, ACT comes with some limitations.
This approach is highly technical and economically challenging
for both the industry and patients due to the need to
generate tumor-specific lymphocytes for each patient. Secondly,
the patient who is receiving the allogeneic transfer is often
exposed to the danger of graft-versus-host-disease (GvHD).
Furthermore, toxicity is the main issue when targeting antigenic
targets such as TAA which are also expressed on normal
tissues but are overexpressed on the tumor. An example
of these cross-reactivities was seen in CAR-T cells targeting
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TABLE 3 | FDA approved PD-1 and PDL-1 inhibitor drugs in various types of
cancer immunotherapy (78, 116).

Agent Target Commercial
name

Date of FDA approval/types
of cancer treated

Pembrolizumab PD-1 Keytruda R© 9/2014: Melanoma

10/2015: Non-small cell lung
cancer

8/2016: Head and neck
squamous cell carcinoma

3/2017: Hodgkin lymphoma

5/2017: Urothelial carcinoma

5/2017: MSI-H colorectal
cancer

9/2017: Gastric cancer

Nivolumab PD-1 Opdivo R© 12/2014: Melanoma

11/2015: Renal cell carcinoma

5/2016: Hodgkin lymphoma

11/2016: Head and neck
squamous cell carcinoma

2/2017: Urothelial carcinoma

8/2017: MSI-H colorectal
cancer

9/2017: Hepatocellular
carcinoma

Atezolizumab PDL-1 Tecentriq R© 5/2016: Urothelial carcinoma

10/2016: Non-small cell lung
cancer

Avelumab PDL-1 Bavencio R© 3/2017: Merkel cell carcinoma

5/2017: Urothelial carcinoma

Durvalumab PDL-1 Imfinzi R© 5/2017: Urothelial carcinoma

HLA-A∗0201–restricted peptide in melanoma-associated antigen
(MAGE)-A3. This approach had caused severe damage to gray
matter in the brain as the TCR recognized a different but related
epitope that was expressed at low levels in the normal brain
cells (137). Another limitation is related to cytokine release
syndrome (CRS), which is life-threatening toxicity that has been
observed in the ACT. CRS refers to an elevated state of circulating
level of cytokines, chemokines and other signaling proteins
including interleukin 6 (IL-6) and interferon γ as a result of
tumor lysis. This, in turn, activates more immune cells and
other immune signalings, leading to excessive immune responses
and toxicities (138). Other side effects including neurological
problems such as problems remembering words, difficulty in
speaking, being less alert, hallucinations, seizures and coma. In
many patients, these problems fade on their own in a few days,
but some have died from these problems. Nevertheless, FDA
approved ACT was listed for many hematological malignancies
(Table 4) but most of the solid tumors are still undergoing
clinical trials.

In CRC, CAR-T cells target carcinoembryonic antigens (CEA)
and guanylyl cyclase C (GUCY2C) (142, 143) tumor-associated
glycoprotein (TAG72) (144), epithelial cell adhesion molecule
(EpCAM) (145), NK cell surface receptor ligands (NKG2DLs)
such as major histocompatibility complex (MHC) class I-related
chain A and B (MICA and MICB, respectively) and six unique

long 16 binding protein (UL-BP1-6) (146). The CAR-T cell
therapy can work effectively only if these targets are highly
expressed in colorectal carcinoma tissues with low expression in
other normal tissues. Normally, these molecules are present at
low or undetectable levels on normal cells but rapidly appear
on the surface of stressed, malignant transformed and infected
cells. For example, therapeutic potential targeting CEA was
observed with tumor regression and antigen specificity but with
some CRS toxicity and severe colitis (143, 147, 148). These
effects were due to the overexpression of CEA in both colorectal
adenocarcinomas and several normal colonic mucosae of the
gastrointestinal tract (149). Despite some of the drawbacks
of CEA targeted CAR-T cell approaches, a phase I trial was
performed among CEA+mCRC patients to evaluate its efficacy.
Interestingly, there were no CAR-T related severe adverse events
observed among all the 10 patients involved in this study (150).
Furthermore, combination treatment between CEA-CAR-T cells
in addition to recombinant human interleukin 12 (rh-IL12) in
mouce models show effective and elevated anti-tumor activity
of CAR-T cells among various types of solid tumors including
CRC (151).

However, some limitations are encountered in effective
targeting of solid tumors by CAR-T cells. This explains
why CAR-T cells have not proceeded into commercialization
and approval for solid tumors. One of the challenges is
the efficient trafficking and infiltrating of solid tumors. The
microenvironment of solid tumors contains an abundant fibrous
matrix and immunosuppressive cells, which protects the tumor
tissue and resists immune cell attack. This includes certain
chemokines such as CXCL1, CXCL12, and CXCL5 that are
secreted by the tumor cells to inhibit the effective delivery of the
CAR-T cells (152, 153). Therefore, overcoming this hindrance
is through engineering chemokine receptor (CXCL1 receptor) –
T cells. This has greatly drive CAR-T cells to migrate toward
chemokines secreted-tumor cells (154). However, having the
CXCL1 receptor- engineered T cells is not an ultimate solution.
Even if the CAR-T cells successfully traffick and infiltrate the
cancer cells, the nature of the tumor and environment themselves
further inhibit the actions of the CAR-T cell. This refers to
the architecture of the cancer cells such as extensive vascular
leakage, poor integrity of tissue structure, hypoxia and low pH.
In hypoxic conditions, the acidic tumor microenvironment lacks
the necessary essential amino acids. Thus, T cells are likely to
experience anergy, exhaustion, senescence and stemness, making
it a challenge to achieve the desired CAR-T cells tumor killing
(155). Also, other immune suppressor cells such as T cells (Tregs),
myeloid-derived suppressor cells (MDSCs) and tumor-associated
macrophages are present in the tumor microenvironment that
further inhibit the CAR-T cells from being activated and
producing a response toward cancer cells. Furthermore, immune
checkpoint receptors on tumor cells or immunosuppressive cells
are able to inhibit T cells by binding to negative regulatory
ligands on T cells. As an example, PD-L1 on the tumor cell
surface binds to PD1 on T cells, which will inhibit CAR-T cell
activation. Lastly, the tumor-derived inhibitory cytokines such
as transforming growth factor-β (TGF-β) are able to deter the
function of CAR-T cells in killing the cancer cells. TGF-β plays
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FIGURE 3 | CAR-T cells approach to treating cancer. T cells were firstly isolated either from the patient itself or HLA matched donor through apheresis. Next, the
cells were cultured and a genetically modified chimeric antigen receptor (CAR) was inserted into it and these T cells are now known as CAR-T cells. This modification
is necessary to enhance T cells’ ability to recognize tumor-associated antigens (TAAs) such as CD19 and avoid the major histocompatibility complex class I (MHC I)
restriction recognition on the cancer cell. Upon binding, FAS ligand (FASL) and TNF-related apoptosis-inducing ligand (TRAIL) promotes cytotoxicity by releasing
effector cytokines and lead to cancer cell apoptosis.

TABLE 4 | FDA approved CAR T cells treatments in cancers (78).

No. Types of cancer CAR T cells Description FDA approval
date

References

1 B-cell acute
lymphoblastic
leukemia (B-ALL)
Diffuse large B-cell
lymphoma (DLBCL)

Tisagenlecleucel
(Kymriah)

CART19 product composed of
an extracellular CD19 targeting
scFv fused to CD137 and CD3z
intracellular signaling domains

30th August 2017 (45, 129, 139, 140)

2 Non-Hodgkin
lymphoma

Axicabtagene
ciloleucel (Yescarta)

Formerly known as KTE-C19.
CART19 product composed of
an extracellular CD19 targeting
scFv fused to CD28 and CD3z
intracellular signaling domains

18th October 2017 (44, 141)

a major role in alleviating the antitumor response where it can
downregulate CD8 + effector T cell function and upregulates
Treg maturation (156).

Modification of T cell receptors (TCR) is another approach
for ACT and it is known as TCR transduced therapy. It is quite
similar to CAR-T cells but their mechanisms for recognizing
antigens are quite different. In CAR-T cells, antibody fragments
are employed to bind the specific antigens on the surface of cancer
cells. In contrast, TCRs use heterodimers consisting of alpha
and beta-peptide chains to recognize polypeptide fragments
presented by MHC molecules (157). This allows recognition of
an intracellular, cell surface antigen or a neo-antigen produced
by tumor cells after mutation. The TCR-T cell therapy directly
modifies TCR binding to tumor antigens with high-affinity by
genetic engineering technology (158). Therefore, it requires the
identification of specific targets on cancer cells to ensure minimal
off-target effects and cross-reactivity in other cells.

In TCR-T cell therapy, the MHC-dependent allows more
antigen targeting compared to CARs. These antigens include
MART-1, Gp100, CEA, NY-ESO-1, MAGE-A3, MAGE-A4, and
others, which are suitable for TCR-T cell therapy (Table 5).
In addition, TCR can also be targeted toward neoantigens
generated by random mutations in tumor DNA and cancer-testis
antigens (159).

Normally, the affinity of human TCRs toward cancer antigens
is relatively low, which makes it impossible to recognize and kill
tumors effectively. With the advance of engineering technology,
genetically-modified TCR is encoded in T cells that give it better
specificity and affinity toward cancer antigen. For example in
the multiple myeloma patients, TCR was engineered through
modifications of several key amino acids in order to have a
higher affinity for cancer antigens, NY-ESO-1 (165). The clinical
trial showed that 80% of these patients had a good clinical
response while 70% of them had a complete or near-complete
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TABLE 5 | Current clinical trials of TCR-T therapy for solid tumors with reported outcomes.

Target Disease Clinical trial
number

Phase Response Country References

MART-1 Metastatic
melanoma

NCT00091104 II 30% objective antitumor
response

United States (160)

Gp100 Metastatic
melanoma

NCT00923195 II (completed) 19% objective antitumor
response

United States (160)

CEA Metastatic
colorectal

NCT00923806 I (Terminated) Decreases in serum CEA levels
(74–99%) and one patient had
an objective regression. Severe
transient inflammatory colitis all
three patients.

United States (143)

NY-ESO-1 Metastatic
melanoma/synovial
cell sarcoma

NCT00670748 I 2 complete remission, 1 partial
remission

United States (161)

NY-ESO-1 Multiple myeloma NCT01352286 II 80% remission Objective
response was 80% at day 42.
At year 1, 52% of patients were
disease progression-free, 11
were responders. No fatal
serious adverse events.

United States (162)

MAGE-A3 Metastatic
melanoma/multiple
myeloma

NCT01350401 and
NCT01352286

III/IV 2 dies for cardiac toxicity United States (163)

MAGE-A4 Esophageal cancer Registered in the
UMIN Clinical Trials
Registry as ID:
UMIN000002395.

I 7/10 tumor regression Japan (164)

TABLE 6 | FDA approved and clinical trial cancer vaccines (78).

Types of vaccine Trade name,
manufacturer

Indication/Study details FDA approval date References/Clinical trial
identifier

Attenuated bacteria BCG Live (TICE, Merck)
Previously (TheraCys R©,
Sanofi)

• Treatment and prophylaxis of
carcinoma in situ (CIS) of the urinary
bladder.
• Prophylaxis of primary or recurrent

state Ta and/or T1 papillary tumors
following transurethral resection (TUR).

TheraCys – 21 May 1990.
TICE– 16 December 2010

(172, 173, 194)

Autologous patient-derived
immune cell vaccine

Sipuleucel-T (PROVENGE,
Dendreon)

• Asymptomatic or minimally
symptomatic metastatic
castrate-resistant (hormone-refractory)
prostate cancer (mCRPC)

29 April 2010 (42, 195–198)

Oncolytic virotherapy Talimogene laherparepvec
(IMLYGIC, Amgen Inc.)

• Local treatment of unresectable
cutaneous, subcutaneous, and nodal
lesions in patients with melanoma
recurrent after the initial surgery.

27 October 2015 (43, 199, 200)

Tumor antigen-expressing
recombinant virus vaccines

PSA-TRICOM
(PROSTVAC-V/F)

• Prostvac is safe and well-tolerated in
asymptomatic or minimally
symptomatic metastatic
castration-resistant prostate cancer

Phase III clinical trial
completed

(190, 201–203)
NCT01322490

Peptide vaccines CEA and mammary type
mucin (MUC1),
(PANVAC-V/F)

• PANVAC-V and PANVAC-F plus
sargramostim vaccination among
metastatic CRC versus non-CRC,
breast and ovarian cohorts

Phase I clinical trial
completed

NCT00088413

response (165). Another example is TCR-T cell therapy toward
MART-1 for the treatment of metastatic melanoma patients.
Results in clinical trials showed higher antitumor reactivity with
objective cancer regressions were seen in 30 and 19% of patients
who received the human or mouse TCR, respectively. However,

patients suffered some acceptable side effects without CRS (160).
These findings show that T cells expressing highly reactive
TCRs could mediate cancer regression in humans and target
rare cognate–antigen-containing cells throughout the body. This
is an important implication for the gene therapy of cancer.
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TABLE 7 | FDA and EMA approved cytokines drugs for various cancer treatments.

Cytokines Trade name, manufacturer FDA approval date Type of cancer treated References

Recombinant interleukin (IL)-2 Aldesleukin, (Proleukin, Chiron) 1992 1. Metastatic melanoma (209, 210)

2. Renal cell carcinoma (RCC)

Recombinant alpha 2a IFN-α2a (Roferon R©-A, Roche) 1986 1. Hairy cell lymphoma (210–212)

2. Chronic myelogenous leukemia (CML)

3. Melanoma (not successful due to toxicity)

Recombinant alpha 2b IFN-α2b (Intron R© –A, Merck) 1986 1. AIDS-related Kaposi’s sarcoma (213–216)

2. Melanoma

3. Follicular lymphoma

4. Multiple myeloma

5. Hairy cell leukemia

6. Cervical intraepithelial neoplasm

TABLE 8 | The type of novel trends in the immunotherapy with their advantages and drawbacks.

No. Types of immunotherapy Advantages Drawbacks

1 Monoclonal antibodies
(mAbs)

• Relatively cost-effective among all of the other types,
therefore it is highly reproducible.

• Labor intensive in order to determine the potential
immunotherapeutic targets.

• Commercializable • Short half-life mAbs may be less effective after some time

• High specificity toward targeted antigens • Some cells produce high protein level and these cells may
escape from T cells and survive in the host• Effective in treating various types of cancers, regardless of

hematological malignancies or solid tumors

2 Immune checkpoint
inhibitors (ICIs)

• Relatively sensitive. Therefore, only minimum doses
required for each patient

• The adverse effect such as systemic toxicity is most likely
to occur among patients

• High specificity toward targeted inhibitors • Not all of the patients may respond toward ICI as some of
their T cells are unable to identify and kill malignant cells• May enhance patient’s T cell function through the activation

mechanism prior blockade

•Works best with combination treatment which may increase
its efficacy

3 Vaccine • Vaccine goes direct to the tumor upon introduced
(localized)

• Potential of rejection due to the introduction of foreign
materials

4 Oncolytic virus • The virus only replicates in malignant cells thus lead to
apoptosis whereas no virus will be survived in normal cells
as they perform virus killing mechanism

• Efficacy may be reduced due to anti-viral immunity

5 Adoptive cell transfer
(Chimeric antigen receptor
CAR T cells)

• Personalized toward each patient • Expensive procedures

• Works better among hematological malignancies patients
as CAR T cells may prolong the remission among these
group of patients

• Very technical, require highly skilled staff

• Have immune memory features due to permanent
modification done toward the T cells.

• Prone to cytotoxicity toward hosts such as GvHD, CRS and
B-cell aplasia

6 Cytokines • Earliest approaches in immunotherapy and FDA approved
drugs

• Prone to cytotoxicity (cytokine storm) among patients due
to excess cytokine level

• It is small in size makes it easier to interfere and disturb
cancer cells division

• Helps in boosting patients’ immune system function thus
promotes T cells to kill the malignant cells effectively

The reported outcomes of clinical TCR-T cell therapies are
listed in Table 5. The first report on TCR-T cell therapy in
colon cancer was targeting CEA antigens where some evidence
of clinical response was seen but with severe colitis due to
the presence of CEA in normal cells in the colon (143). This
demonstrates the feasibility of T-cell therapy in metastatic colon
cancer, but also the limitations of targeting CEA as an antigen.
Following the promising results, another attempt was developed
for treating advanced metastatic colon cancer patients. This was

using mRNA-engineered T Cells targeting transforming growth
factor β- receptor type II (TGFβII) frameshift antigen which
is expressed in microsatellite instability positive (MSI+) colon
cancer (166). However, the clinical trial was terminated due to
severe adverse effects. Other ongoing TCR therapies are against
KRAS G12V+ tumor (NCT03190941) and KRAS G12D+ tumor
(NCT03745326), both are at clinical trials phase I/II (166).

T cell receptors therapy although it is a very promising
approach comes with many challenges including good targets
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selection, specific TCRs search, optimal TCR affinity screening,
safety evaluation, time and cost (159). In addition, since TCR
therapy is highly dependent on MHC for peptide presentation,
it may escape immune surveillance due to the downregulation or
mutation of MHC molecules in the tumor environment, resulting
in clinical limitations. Furthermore, hybridization (mismatch)
between exogenous and endogenous chains may occur and
induce harmful recognition of self-antigens, leading to graft-
versus-host disease (167). Although higher TCR affinity offers
a great benefit, there is a possible risk of false targeting. In
a nutshell, TCR-T cell therapy has shown some therapeutic
potential but there are still many limitations that should be
considered carefully.

Cancer Vaccines
Cancer cells express altered self-antigens that induce weaker
responses compared to foreign antigens such as infectious
agents. Often, immune stimulants and adjuvant are incorporated
together with the cancer vaccines to enhance the effects.
Cancer vaccine includes autologous patient-derived immune cell
vaccines, tumor antigen-expressing recombinant virus vaccines,
peptide vaccines, DNA vaccines and heterologous whole-cell
vaccines derived from established human tumor cell lines (168).

Preventive (prophylactic) and therapeutic are the approaches
of cancer vaccines treatments in which preventive cancer vaccines
intended to minimize cancer incidence, morbidity and mortality
while therapeutic vaccines aimed to treat current malignancies
and may prevent (169, 170). To date, there are three FDA
approved therapeutic cancer vaccines (Table 6).

The first FDA approved cancer vaccine was TheraCys R©

(Sanofi) (171). It is an intravesical, attenuated Connaught strain
of Bacillus Calmette-Guarin (BCG) derived from Mycobacterium
Bovis. TheraCys R© is used in the treatment and prophylaxis
of urothelial carcinoma-in situ (CIS), particularly non-muscle
invasive bladder cancer (NMIBC) subtype. Results showed
that approximately 74% of the patients showed a complete
response with BCG compared to Doxorubicin (172). This vaccine
also improves the protection against superficial bladder cancer
recurrence. A randomized trial demonstrated that 70% of the
CIS patients have a complete response to BCG therapy instead of
doxorubicin suggesting the effectiveness of this vaccine compare
to chemotherapy (173). At the start, two BCG strains were
available; Connaught (TheraCys R©, Sanofi) and Tice (TICE R©,
Merck). However, due to the supply shortage of TheraCys R©, it
was discontinued and replaced by TICE R©. Nevertheless, a study
conducted previously shows that treatments using different BCG
strains among NMIBC patients have a significant role as BCG
Connaught treatment was more effective than BCG Tice in terms
of 5 years recurrence-free survival rate (174). Furthermore, a
cohort study among 2099 NMIBC patients using both strains
indicates that Connaught was more effective than Tice among
patients without BCG maintenance (175).

Another FDA approved therapeutic vaccine is Sipuleucel-
T (Provenge; Dendreon) which used to treat prostate cancer
patients who are asymptomatic or minimally symptomatic
metastatic castration-resistant. This vaccine uses the patient’s
own immune cells (dendritic cells, T cells, B cells and natural

killer cells) isolated through leukapheresis. The immune cells
were cultured and incubated with PA2024, a fusion protein
made up of prostatic acid phosphatase (PAP) which is linked to
granulocyte-macrophage colony-stimulating factor (GM-CSF) as
the adjuvant (41, 176). Antigen-MHC complex was presented on
activated DCs surface during incubation thus inducing CD4+
and CD8+ cells to act against PAP while GM-CSF improves
DCs maturation upon being introduced into patients (177). This
vaccine also shows significant survival benefit (50% higher than
in control) for this population of asymptomatic patients who
have not been treated with chemotherapy, except for docetaxel
(whose inherent toxicities often lead patients and physicians to
delay administration until symptoms develop) (42). Currently
approaches to enhance efficacy are considered to increase the
efficiency of Sipuleucel-T in a wider range of patients. A study to
look at the adverse effects related to the usage of this vaccine was
performed and an adverse event spectrum was consistent with no
new safety concerns observed from 2010 to 2017 (178).

Talimogene laherparepvec (T-VEC) (IMLYGIC R©, Amgen Inc.)
is the latest FDA approved vaccine to treat unresectable
cutaneous, subcutaneous, and nodal lesions melanoma recurrent
before initial surgery (179). T-VEC is a genetically modified
oncolytic virotherapy made up of herpes simplex virus type I
(HSV-1) (180). Significantly higher (16.3%) durable response rate
(DRR) was demonstrated among unresected stage IIIB to IV
melanoma patients injected with T-VEC compared to GM-CSF
(2.1%) (43). A randomized trial among advance and unresectable
melanoma patients revealed that combination therapy of T-VEC
and ipilimumab have a significantly higher (39%) objective
response rate compared to ipilimumab only (18%) due to their
substantial activity (181, 182).

CRC Cancer Vaccines
To date, there are no CRC cancer vaccines approved by the
FDA. Most of them are still undergoing clinical trials. Many
studies are looking at various attractive, overexpressed single and
combination uses of TAAs such as CEA (183–185), MAGE (186,
187), and MUC1 (188, 189). One of the cancer vaccine examples
is the Poxviral vaccine regimen which targets TAAs such as
CEA and MUC-1 using TRICOM vaccination strategy. In this
approach, poxviruses are used as a viral vector for targeting CEA
and MUC-1 in combination with T-cell co-stimulatory molecules
(B7-1, ICAM-1, and LFA-3). The addition of the co-stimulatory
molecules has been shown to greatly enhance the immune
response to the antigen (170, 184, 190). The recombinant
poxviruses were engineered to express both signal 1 (antigen)
and signal 2 (co-stimulatory molecules), with each transgene
being driven by a different poxvirus promoter. Preclinical studies
have demonstrated that when a TAA transgene is placed into a
poxvirus genome, its expression leads to a more vigorous host
T-cell immune response to the TAA than would be achieved
otherwise (191). Approximately 56% of the metastatic carcinoma
patients showed a significant immune response toward MUC-
1 and/or CEA following this vaccination (184, 190). In a phase
I clinical trial of PANVAC-V, PANVAC-F and sargramostim
(GM-CSF immunostimulator), this type of vaccine is associated
with enhancing immune responses and has shown evidence of
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clinical activity among advanced CRC versus non-CRC, breast
and ovarian carcinoma cohort.

Another peptide-based cancer vaccine targets CEA only.
The study which was conducted using transgenic mice has
shown that immunization with CEA peptides can elicit an
immune response to kill cancer cells and hence may improve
survival (192). Vaccination with an anti-CEA can break immune
tolerance to TAA CEA and induce anti-CEA antibodies as
well as CEA-specific CD4+ T-helper responses in colon cancer
patients and mice transgenic for human CEA (193). Furthermore,
combination strategies with the CTL peptides of CEA to get both
CDT-helper and CTL responses in the transgenic CEA/HLA-A2
mouse model have shown overall significant immune responses
and survival (192). The combined vaccination strategy results
in the potential use of this vaccination strategy for future
clinical applications.

Cytokines
Cytokines are a group of small cell-signaling polypeptides with a
molecular weight of less than 30 kDa (204). They are secreted by
various cells mainly the immune cells (T cells, neutrophils and
macrophages), endothelial cells, fibroblasts, and other stromal
cells (205). There are more than 130 cytokines with various roles.
However, their main function is similar which is to stimulate and
modulate robust immune responses toward inflammations and
infections (206). Besides, these glycoproteins can act on the cells
that produce them (autocrine action), in adjacent cells (paracrine
action) or in distant cells (endocrine action) (207).

Cytokines are one of the potential polypeptides used in
immunotherapy since they can enhance patients’ immune
responses well. Three recombinant cytokines such as
recombinant interferon-alpha and interleukin-2 drugs have
been approved by the FDA and EMA for the treatment of
several malignancies (Table 7) (208). A renewed interest in the
anti-tumor properties of cytokines has led to an exponential
increase in the number of clinical trials that explore the safety

and efficacy of cytokine-based drugs, not only as single agents
but also in combination with other immunomodulatory drugs.
These second-generation drugs under clinical development
include known molecules with novel mechanisms of action, new
targets, and fusion proteins that increase the half-life and target
cytokine activity to the tumor microenvironment or the desired
effector immune cells. In addition, the detrimental activity of
immunosuppressive cytokines can be blocked by antagonistic
antibodies, small molecules, cytokine traps or siRNAs.

SUMMARY

In this review, we provide an overview of the novel trends in
the immunotherapy field that are yielding therapeutic benefits
in CRC patients. We summarize the advantages and drawbacks
of each type of immunotherapy in Table 8. The future for
immunotherapy is vast with different approaches. What it takes
is smart strategies in overcoming the evasion of cancer cells from
immune recognition.
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