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Abstract: WRKY transcription factors have been found in most plants and play an important role
in regulating organ growth and disease response. Outlining the profile of WRKY genes is a very
useful project for studying morphogenesis and resistance formation. In the present study, a total of 63
WRKY genes consisting of 13 class I, 41 class II, and 9 class III genes were identified from the newly
published A. trifoliata genome, of which 62 were physically distributed on all 16 chromosomes. Struc-
turally, two AkWRKY genes (AkWRKY6 and AkWRKY52) contained four domains, and AkWRKY17
lacked the typical heptapeptide structure. Evolutionarily, 42, 16, and 5 AkWRKY genes experienced
whole genome duplication (WGD) or fragmentation, dispersed duplication, and tandem duplication,
respectively; 28 Ka/Ks values of 30 pairs of homologous genes were far lower than 1, while those
of orthologous gene pairs between AkWRKY41 and AkWRKY52 reached up to 2.07. Transcriptome
analysis showed that many of the genes were generally expressed at a low level in 12 fruit samples
consisting of three tissues, including rind, flesh, and seeds, at four developmental stages, and interac-
tion analysis between AkWRKY and AkNBS genes containing W-boxes suggested that AkWRKY24
could play a role in plant disease resistance by positively regulating AkNBS18. In summary, the
WRKY gene family of A. trifoliata was systemically characterized for the first time, and the data and
information obtained regarding AkWRKY could be very useful in further theoretically elucidating the
molecular mechanisms of plant development and response to pathogens and practically improving
favorable traits such as disease resistance.

Keywords: WRKY gene; Akebia trifoliata; genome duplication; transcriptome analysis; disease resistance

1. Introduction

Transcription factors (TFs) play a non-negligible role in plant organ development
and disease resistance [1–3]. Plants contain many types of TFs, such as WRKY, bHLH
(basic/helix–loop–helix), ZF-HD (zinc finger homeodomain protein), MYB (myeloblastosis),
and NAC (NAM, ATAF, CUC) [4]. Among these, the WRKY TFs comprise one of the largest
families in plants and are named after the highly conserved WRKYGQK sequence [5].
Based on the number of WRKY domains and the type of zinc finger structure, the WRKY
family can be divided into three categories. Group I genes possess two WRKY domains
with a C2H2 zinc finger structure; group II genes possess a WRKY domain with a C2H2
zinc finger structure; and group III genes possess a WRKY domain with a C2HC zinc finger
structure. In addition, group II can be further divided into five subgroups, IIa, IIb, IIc, IId,
and IIe, according to phylogenetic data [6,7].

Studies have shown that WRKY TFs are not only widely involved in innate immunity
in both pathogen-associated molecular patterns (PAMPs) and effector-triggered immunity
(ETI) patterns, but also in the response to abiotic stresses such as drought, salt, and cold [8–11].
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In addition, WRKY TFs are involved in growth and development processes such as seed
dormancy and leaf senescence [12–14]. In fact, some WRKY genes could be pleiotropic. For
example, FvWRKY42 overexpression in Arabidopsis not only enhanced resistance to powdery
mildew but also improved plant tolerance to both drought and salt stress [15]. The WRKY
protein plays its role mainly by binding to the W-box (TTGACT/C) in the promoter region
of the target gene, in which TGAC is an invariant core sequence and thus crucial for the
function of the WRKY protein [16–18]. Therefore, we can determine whether the gene is
directly regulated by the WRKY transcription factor according to the presence or absence of
the W-box.

Akebia trifoliata, commonly known as August melon or wild banana, belongs to the
perennial woody liana plant family and grows in Asia, especially China, Japan, and Ko-
rea [19]. A. trifoliata has been used as an effective traditional Chinese medicine for diuretic,
anti-inflammatory, ulcer-care, and indigestion-relief applications [20–22]. In addition, some
authors have found that extracts of the fruits and stems of A. trifoliata can inhibit the prolif-
eration of liver cancer and gastric cancer cells, respectively [23,24]. Another economically
important application of A. trifoliata is as an edible fruit, which is very rich in sugars,
proteins, vitamins, saponins, and free amino acids. Additionally, the content of minerals
such as iron, zinc, calcium, manganese, and magnesium is significantly higher in A. trifoliata
fruits than in common fruits such as apples and pears [25,26]. It is evident that A. trifoliata
has great prospects for use as both a medicinal plant and a fruit crop.

The WRKY family has been extensively studied in many crops, such as rice, grape,
soybean, and barley [27–30], but no report has been published on the WRKY family in A.
trifoliata. To accelerate the theoretical study and commercial exploitation of A. trifoliata, it is
of great significance to systematically analyze the WRKY family. The public genome data
recently uploaded by our team and the reported transcriptomic data of A. trifoliata [31]
provide an opportunity to characterize the structural, evolutionary, and functional profile of
the WRKY family. In this paper, the structure, conserved motifs, chromosome localization,
homology, and expression patterns of 63 WRKY genes from A. trifoliata are described in
detail. The possible downstream target NBS genes were predicted according to the presence
of the W-box and the correlation analysis between WRKY and NBS genes, which provided
valuable clues for revealing the disease resistance of A. trifoliata.

2. Materials and Methods
2.1. Data Used in This Study

Due to the unavailability of the corresponding assembled files, the first published genome
of A. trifoliata subsp. Australis [32] was not used in the present study. Instead, we used genomes
from another BioProject (ID PRJNA671772) of the National Center for Biotechnology Informa-
tion (NCBI) (https://www.ncbi.nlm.nih.gov/bioproject?LinkName=assembly_bioproject&
from_uid=9862971; accessed on 30 November 2021) and Big Data Center accession number
GWHBISH00000000 (https://ngdc.cncb.ac.cn/; accessed on 25 February 2022). The raw data
and the related files of the transcriptomic data of 12 samples consisting of three tissues (rind,
flesh, and seed) at four stages (young, enlargement, coloring stage, and mature stage) have
recently been reported [31], and they were further used to outline the expression profile of
WRKY genes (https://www.ncbi.nlm.nih.gov/sra/?term=Akebia+trifoliata; SRA numbers:
SRX9395000-SRX9395009, SRX9395011-SRX9395036; accessed on 14 December 2021).

2.2. Identification of Akebia trifoliata AkWRKY

To identify WRKY genes from the A. trifoliata genome, 125 and 75 reference WRKY
genes of rice and Arabidopsis, respectively, were used as query sequences to perform local
BLASTp with an E-value of 1e-10 [5,33]. The hidden Markov model (HMM) of the WRKY
domain (PF03106) in the Pfam database (http://pfam.sanger.ac.uk/, accessed on 5 January
2022) was further used to search for conserved domains among the identified candidate
sequences obtained from BLASTp. Additionally, the conserved domain was analyzed
using the conserved domain database (CDD) in NCBI (https://www.ncbi.nlm.nih.gov/
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Structure/bwrpsb/bwrpsb.cgi, accessed on 13 January 2022), and the domain prediction
results were visualized by TBtools software [34]. The conserved motif was identified using
MEME (https://meme-suite.org/meme/doc/meme.html, accessed on 20 January 2022).

2.3. Protein Properties of AkWRKY

Subsequently, the amino acid sequences of AkWRKYs were retrieved from the A. trifoli-
ata genome and used to analyze physical and chemical properties, and subcellular locations
were predicted using ProtParam (http://web.expasy.org/protparam/, accessed on 30
January 2022), TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0/,
accessed on 30 January 2022), SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/,
accessed on 1 January 2022), WoLF PSORT (http://www.genscript.com/wolf-psort.html,
accessed on 2 January 2022), and UniProt (https://www.uniprot.org/, accessed on 2 Jan-
uary 2022). The motif composition was analyzed using the Multiple Em for Motif Elicitation
(MEME) online program (http:/meme.nbcr.net/meme/intro.html, accessed on 4 January
2022) [35].

2.4. Phylogenetic Analysis

The amino acid sequences of the reference WRKYs from Arabidopsis were obtained from
the Ensembl database (http://plants.ensembl.org/info/data/ftp/index.html, accessed on
8 January 2022) and used for phylogenetic analysis against 63 A. trifoliata WRKYs. The
phylogenetic tree was constructed using MEGA7.0 with the maximum likelihood (ML)
method (http://www.megasoftware.net, accessed on 9 January 2022) and 1000 bootstrap
replications.

2.5. Exon–Intron Structure Analysis

The cDNA and genomic sequences of A. trifoliata WRKY genes were obtained from
NCBI and then used to analyze the exon–intron organizations using the Gene Structure Dis-
play Server (GSDS) (http://gsds.cbi.pku.edu.cn/index.php, accessed on 12 January 2022).

2.6. Chromosomal Location, Gene Replication, and Ka/Ks Analysis

The physical location of A. trifoliata WRKY genes was obtained from position informa-
tion in the GFF3 file. Subsequently, they were mapped to A. trifoliata chromosomes using
Circos [36]. The gene replication events among A. trifoliata WRKY genes were analyzed
using multiple collinear scanning toolkits (MCScanX) with the default parameters [37].
Subsequently, Calculator 2.0 was used to calculate the Ka/Ks ratio of the identified WRKY
genes [38].

2.7. AkWRKY Gene GO Annotation and KEGG Annotation

TBtools was adopted to visualize the annotated results using the Blast2 GO tool with
default parameters [39]. The WRKY genes of A. trifoliata were annotated in the KEGG
database website and then mapped and analyzed with TBtools, and the KEGG pathway
map was drawn using the online KEGG mapping tools (https://www.kegg.jp/kegg/
mapper/reconstruct.html, accessed on 17 January 2022).

2.8. Expression Pattern of AkWRKY Genes in A. trifoliata Fruit Tissues

First, RNA-seq data of 12 samples were aligned with the genome of A. trifoliata [19].
Second, the SAM tool was used to compress the alignment results into BAM format files,
and the expression values of the WRKY genes were extracted according to a previously
reported method [40]. Finally, the expression data were made into a heatmap with the help
of TBtools [34].

2.9. Putative Promoter Region Analysis

To investigate the cis-acting elements of the putative promoter regions, the W-box
within 2000 bp upstream of the start codon of 73 AkNBS genes and 63 AkWRKY genes was
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analyzed using the online site PlareCARE (http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/, accessed on 19 January 2022).

2.10. Correlation Analysis between AkWRKY Genes and AkNBS Genes

To further study the correlation between WRKY genes and NBS genes, 18 NBS genes
with W-box and 63 WRKY genes were analyzed by the R package Corrplot (https://github.
com/taiyun/corrplot, accessed on 25 January 2022).

3. Results
3.1. Identification and Classification of the AkWRKY Genes of A. trifoliata

A total of 63 WRKY genes were identified in A. trifoliata; 62 WRKY genes were named
AkWRKY1 to AkWRKY62 according to their chromosomal locations (Figure 1), and the
remaining gene in the unassembled contig was named AkWRKY63 (Supplementary Table
S1). The average total length and CDS length were 3854 and 1161, ranging from 698
to 12,174 and from 396 to 3318, respectively (Supplementary Table S1). Structurally, all
63 WRKY genes were interrupted by introns, and the number of exons ranged from two
to seven (Figure 2). A total of 32 out of the 63 WRKY genes (50.8%) contained three
exons, and AkWRKY6 and AkWRKY52 had the most (seven exons), while AkWRKY18,
AkWRKY38 and AkWRKY51 had the least (two exons) (Supplementary Table S1). Out of the
63 AkWRKYs (98.4%), 62 were distributed on all 16 chromosomes of A. trifoliata, of which
most were located in the chromosomal end regions (Figure 1). The number of AkWRKY
genes distributed on each chromosome ranged from one to seven. Chromosomes 1 and
11 contained the mostseven AkWRKY genes, while chromosome 9 contained only one
AkWRKY gene.
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Figure 2. Gene structure and motif analysis of WRKY genes. (A) Phylogenetic tree of 63 AkWRKY
genes. (B) By analyzing the amino acid sequence, 10 composition motifs were obtained, and motifs
were drawn in different colors. (C) Schematic diagram of the domains of the 63 AkWRKY proteins;
green indicates the characteristic WRKY domain. (D) The genetic structure of the WRKY genes, with
exons separated by introns that are represented by thin lines. Light green indicates the untranslated
5’ and 3’ regions, and yellow indicates the exons.

According to the phylogenetic tree (Figure 3), the 63 AkWRKY genes were divided
into three groups, I, II and III, containing 13, 41, and 9 AkWRKY genes, respectively. Group
II was further divided into five subgroups: IIa (3), Iib (8), Iic (19), Iid (4), and IIe (7). Further
comparison analysis found that group I AkWRKY genes had a significantly larger gene
length and CDS length than both groups II and III genes at the p = 0.05 level (Table 1 and
Supplementary Table S2).

Table 1. Groups of WRKY genes in the A. trifoliata genome.

Type Num.
Gene Length (Exon Number)

Min Max Maen

Group I 13 3129 (AkWRKY63) 12,174 (AkWRKY48) 6365.69 a

(5.31) a

Group II 41 698 (AkWRKY55) 7626 (AkWRKY45) 3368.76 b

(3.63) b

Subgroup IIa 3
Subgroup IIb 8
Subgroup IIc 19
Subgroup IId 4
Subgroup IIe 7

Group III 9 1411 (AkWRKY58) 4013 (AkWRKY7) 2435.00 b

(3.33) b

The different letters indicate significant differences in multiple comparisons.
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3.2. Basic Information and Motif Composition of the AkWRKY Protein

Basic information, including the number of amino acids (NA), isoelectric point (PI),
molecular weight (MW), and subcellular localization of the proteins encoded by 63 Ak-
WRKY genes, is listed in Supplementary Table S1. The average NA, MW, and PI were
386, 42,942.85 kDa, and 6.95, with variations from 131 (AkWRKY55) to 1105 (AkWRKY55),
from 14,971 (AkWRKY55) to 120,803 (AkWRKY52), and from 4.90 (AkWRKY50) to 9.70
(AkWRKY20), respectively. Most of these genes (59) were located in the nucleus, while
only one existed in the cytoplasm (AkWRKY11), chloroplast (AkWRKY35), peroxisome
(AkWRKY38), and vacuole (AkWRKY56), respectively. In addition, only two AkWRKY
proteins (AkWRKY6 and AkWRKY52) contained four WRKY domains, while 51 of the
63 AkWRKY proteins contained only one WRKY domain, and the remaining ten AkWRKY
proteins contained two WRKY domains (Supplementary Table S1 and Figure S2).

The conserved motifs of the AkWRKY protein were further predicted using MEME
(Supplementary Table S1 and Figure S2), and the results showed that motifs 1 and 2 could
be hallmarks of typical WRKY highly conserved sequences and zinc finger sequences,
respectively. Almost all WRKY proteins contained motifs 1 and 2. Although AkWRKY17
lacked motif 1, the WRKY domain contained in the gene was confirmed by SMART analysis.
The distribution of different motifs also showed subfamily specificity. For example, all
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13 group I AkWRKY proteins except AkWRKY40 contained motifs 3 and 5, while motif 6
only existed in group IIa or IIb (Supplementary Table S1 and Figure S2). In addition, 7 of the
63 AkWRKY proteins had four forms of heptapeptide variants: WRKYGKK (AkWRKY1,
AkWRKY8, AkWRKY11, and AkWRKY13); WCKYGRK (AkWRKY6 and AkWRKY52);
WKKYGQK (AkWRKY55); and WLKYGKK (AkWRKY52) (Supplementary Table S1). In-
terestingly, the four heptapeptides of AkWRKY52 consisted of two WRKYGQKs, one
WCKYGRK, and one WLKYGKK.

3.3. Duplication and Natural Selection Type of AkWRKY Genes

MCScanX analysis showed that five AkWRKY genes experienced tandem duplication,
42 experienced whole genome duplication (WGD) or fragmented duplication, and the
remaining 16 AkWRKY genes experienced dispersed duplication (Supplementary Table S1
and Figure S1). There were four duplicated genes on chromosome 4, while chromosomes
2, 3, and 15 did not contain WGD or fragment duplication. In addition, we detected a
total of 30 paralogous pairs among the AkWRKY genes, and the calculated Ka/Ks values
with an average of 0.41 ranged from 0.18 (AkWRKY38 and AkWRKY51) to 2.07 (AkWRKY41
and AkWRKY52). Among them, 28 (93.3%) calculated Ka/Ks values were far lower than 1,
while only one (AkWRKY5 and AkWRKY52) (Supplementary Table S3) was very close to 1,
indicating that the WRKY genes in A. trifoliata were mainly selected for purification in the
evolutionary process.

3.4. GO and KEGG Enrichment Analysis of AkWRKY Genes

The 63 AkWRKY genes were divided into three categories, molecular function, cell com-
position, and biological processes, by GO enrichment analysis, with 11, 5, and 125 subcate-
gories, respectively (Supplementary Figure S1). Fifty-five AkWRKY genes were involved
in molecular functions, such as transcriptional regulatory activity and DNA-binding tran-
scription factor activity; seventeen in cell composition; and fifty-five in biological processes,
such as RNA biosynthesis, the regulation of cell metabolism, the regulation of biosynthesis,
nucleic acid metabolism, heterocyclic biosynthesis, and transcription regulation. Likewise,
they were also divided into five categories, plant–pathogen interactions, environmental
adaptation, organic systems, TFs, and protein families (genetic information processing), by
KEGG enrichment analysis, in which the plant–pathogen interaction category was ranked
in the first position (Figure 4).
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3.5. Transcriptome Analysis of AtWRKY Genes in Different Tissues of A. trifoliata Fruit

The analysis of a transcriptomic dataset consisting of 12 samples including three
tissues (rind, flesh, and seed) at four developmental stages (youth, enlargement, coloring,
and maturity) of A. trifoliata fruit showed that all 63 AkWRKYs were expressed at detectable
levels, although most of them were expressed at low levels, and that their expression level
was generally higher in the late developmental stages than in the early developmental
stages (Figure 5A). Overall, AkWRKY37 showed the highest expression, while AkWRKY38
exhibited the lowest expression in fruit tissues. AkWRKY4, 7, and 16 were significantly
expressed in the rind and their expression levels increased with time. AkWRKY12, 24,
27, and 37 all had the highest expression levels in the third stage of rind development.
AkWRKY7 and 37 not only had high expression in the rind, but also had relatively obvious
expression in the flesh. AkWRKY4, 7, 12, 16, 24, 27, and 37 had the largest difference
between the lowest and highest expression levels (Supplementary Table S4). The different
expression characteristics of different AkWRKY genes in the fruit tissues of A. trifoliata
indicated that this family may be involved in a wide range of developmental pathways,
playing different roles. In addition, the average expression levels of WRKY genes in the
rind, flesh, and seed were 12.15, 4.18, and 4.51, respectively, and the expression levels of
WRKY genes in the peel were approximately three times higher than those in both the pulp
and seed (Figure 5B). In addition, some AkWRKY genes in the same subfamily had similar
expression patterns, such as AkWRKY12 and AkWRKY37 in the IId group.
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3.6. Putative Downstream Target WRKY and NBS Genes Regulated by WRKY Genes

To understand the downstream target WRKY and NBS genes regulated by the AkWRKY
genes, the W-box cis-acting elements in 63 AkWRKY genes and 73 previously reported
AkNBS genes were predicted by Yu et al. (2021) [41]. Among the 63 AkWRKY genes, 24 con-
tained a W-box, of which 8 contained two W-boxes and 2 contained 3 W-boxes. Among
the 73 AkNBS, 21 contained W-box cis-acting elements, of which 4 AkNBS genes (AkNBS34,
AkNBS41, AkNBS42, and AkNBS66) contained 2 W-boxes and the remaining 17 contained
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only 1 W-box (Supplementary Table S5). Correlation analysis between 63 AkWRKY genes
and 18 of the 21 W-box AkNBS genes was carried out because there was no detectable
expression level of the remaining three W-box genes (AkNBS16, AkNBS38, and AkNBS55)
in the same transcriptomic dataset, and the results are shown in Supplementary Figure S1.
Both AkNBS and four AkWRKY genes were selected for further correlation analysis accord-
ing to FPKM and correlation values (Supplementary Table S4), and the results showed that
there was a strong relationship between AkNBS18 and AkWRKY24 (Figure 6). Similarly,
there were four strong correlation coefficients involving four WRKY genes, among which
only AkWRKY49 contained a W-box.
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4. Discussion
4.1. The WRKY Gene Family of A. trifoliata Follows a Conservative Classification System

As a basal eudicot, A. trifoliata plays an important role in the early evolution of
eudicots [42]. WRKY TFs are one of the largest families in plants and modulate many
biological processes, especially disease resistance, which provides important insight into
the evolutionary signaling webs of transcriptional regulators [43]. In the present study,
the number of WRKY genes identified in the A. trifoliata genome was 63, which was more
than that in both Ostreococcus tauri [44] and Selaginella moellendorffii [45], less than that in
both Pinus monticola [46] and Malus domestica [47], and close to that in Vitis vinifera [29]
(Supplementary Table S6). Various studies have suggested that both WRKY domains and
zinc finger structures are evolutionarily highly conserved [6,43,48]; therefore, both the
number of WRKY domains and the type of zinc finger structure are usually employed for
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classification. According to the classification of 75 reference WRKY genes of the Arabidopsis
genome, all 63 identified WRKY genes were classified into three groups, I, II and III, among
which group II consisted of five subgroups (Figure 3). The number of WRKY genes in group
II was the highest (41, 65.1%), while that in group III was the lowest (9, 14.3%); the number
distribution between the different groups in A. trifoliata was similar to that in most eudicots,
such as Santalum album, Vitis vinifera, and Daucus carota [29,49] (Supplementary Table S6).
Similarly, the IIc subgroup of group II contained 19 AkWRKY genes, accounting for 30.2%
(i.e., the most members) of the total, while the IIa subgroup only contained three members,
accounting for 4.8% (i.e., the fewest members) of the total (Figure 3). Comparison analysis
found that the average number of exons, gene length, and CDS length of group I were
significantly greater than those of groups II and III at the p = 0.05 level. In summary, along
with the difference in the exon number, gene length, and CDS length of WRKY genes
in different classifications, the uneven gene number in different groups/subgroups and
uneven physical distribution on chromosomes (Figure 1 and Supplementary Table S2)
indicated that different WRKY genes could have experienced different evolutionary events,
such as genome duplication style and both the type and strength of natural selection.

4.2. The Variation in the Number and Components of Heptapeptides in WRKY Genes

Both the heptapeptide structure and the zinc finger structure are structurally important
and functionally crucial characteristics of WRKY genes; therefore, motif 1, containing the
conserved heptapeptide, and motif 2, containing the zinc finger structure, could be treated
as hallmarks of WRKY genes. We found that all AkWRKY genes contained motif 2, almost
all contained motif 1, and only AkWRKY17 lacked motif 1 and a heptapeptide structure [5],
which reinforced the view that heptapeptide and zinc finger structures are highly conserved.
Compared with the conserved heptapeptide, the zinc finger tolerates less variation in both
structure and number. In the present study, the zinc finger structure of all 63 AkWRKY
genes comprised both normal C2H2 and C2HC types (Supplementary Table S1). In contrast,
we found that both AkWRKY6 and AkWRKY52 had four heptapeptide structures, while
AkWRKY17 lacked this structure. We detected 78 heptapeptides on 63 AkWRKY genes.
Among the 13 group I genes, 2 had four heptapeptides and 11 had two heptapeptides;
however, only one heptapeptide was detected in the remaining AkWRKY40, but two WRKY
domains could be identified by SMART (Supplementary Table S1), which suggested that
the additional heptapeptides were mainly concentrated on group I WRKY genes in the
A. trifoliata genome. We also found that eight (10.3%) mutants of heptapeptides putatively
varied from the classic WRKYGQK. In addition, AkWRKY52 had two mutant heptapeptides
(Supplementary Table S1). The evidence suggested that although the heptapeptide structure
was highly conserved in plant WRKY proteins, it could better tolerate certain variations in
both number and sequence, especially in WRKY genes with additional heptapeptides.

In addition, we also found that both the position and number of the varied amino
acids of the heptapeptides could be group- or subgroup-specific. For example, the second
“R” or the sixth “Q” was transferred into “K” in the corresponding position on five (26.3%)
of the 19 IIc group genes (Supplementary Table S1). The varied heptapeptides in both
AkWRKY6 and AkWRKY52 contained the same two amino acid transitions at the second
and sixth positions, from “R” into “C” and from “Q” into “R”, respectively, belonging to
group I. In fact, previous reports on Populus, banana, and maize found similar results [50].
Finally, we noticed that AkWRKY6 and AkWRKY52, which contained four heptapeptides,
had significantly greater CDS lengths, molecular weights, and both exon and amino acid
numbers (Supplementary Table S7), which indicated that the larger the gene, the greater
the number of heptapeptides and that heptapeptide-coding segment duplication could be
responsible for the increase in the number of heptapeptides in the evolutionary process.

4.3. WRKY Genes Evolutionarily Experienced Genome Duplication and Natural Selection Events

Previous studies have concluded that gene duplication events are among the impor-
tant drivers of gene family expansion [51]. In this study, it was found that the repeat
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types of 63 AkWRKY genes were mainly WGDs or segment repeats, dispersed repeats,
and tandem repeats, and there was no single copy. Of these, 42 (66.7%) were WGDs or
fragment repeats, 16 (25.4%) were dispersed repeats, and 5 (7.9%) were tandem repeats
(Supplementary Table S1). This showed that the WRKY family in A. trifoliata may be
derived from the duplication of other genes. Obviously, although dispersed and tandem
duplication partly contributed to the production of the WRKY gene family, WGD or frag-
mental genomic duplication could be the main evolutionary event experienced by WRKY
genes in A. trifoliata.

Additionally, the Ka/Ks value is usually treated as an important informative indicator
of both the type and the strength of natural selection [41]. The watershed Ka/Ks value
between purifying selection and positive selection is 1.0, which indicates neutral selection,
and if the calculated value is larger than 1.0, the corresponding orthologous gene pairs could
have experienced positive selection; likewise, if the value is smaller than 1.0, they could
have experienced purifying selection [52]. Among the 30 Ka/Ks values of the orthologous
gene pairs, 28 were far lower than 1.0, one was close to 1.0, and one was far greater than 1.0,
which suggested that many AkWRKY genes had experienced strongly purifying selection
(Supplementary Table S3). Interestingly, we found that all three AkWRKY genes (AkWARY5,
AkWARY41, and AkWARY52) that contributed to the three largest Ka/Ks values of the
orthologous gene pairs (AkWARY41 and AkWARY52 with 2.07, AkWARY5 and AkWARY52
with 1.06, and AkWARY5 and AkWARY41 with 0.61) belonged to group I; thus, unlike those
in groups II and III, different AkWRKY genes in group I could have experienced different
types and strengths of natural selection.

4.4. Prediction of the Potential Downstream Target Genes of WRKY Genes in the Disease
Resistance Process

The highly conserved W-box (TTGACC/T) is the cognate binding site of WRKY TFs,
which consequently mirrors the conservation of the WRKY domain [6]. Therefore, the
W-box is the minimal and essential consensus required for specific DNA binding [53], and
almost all WRKY TFs preferentially bind to the W-box, although there have been a few
reports of WRKY proteins binding to non-W-box sequences [43,54]. In fact, the WRKY
proteins binding to non-W-box sequences had at least a transited amino acid sequence
rather than the common WRKYGQK [55], which further reinforced rather than denied the
view that the W-box could be a hallmark of the downstream target genes of WRKY genes.
Obviously, bioinformatics would be a useful method for predicting the candidate target
genes possibly regulated by WRKY TFs by identifying the existence of the W-box.

In the present study, the W-box was detected in 63 AkWRKY and 73 AkNBS genes
because of the putative function of AkWRKY genes [43], the available information regarding
AkNBS genes [41], and the urgency of A. trifoliata disease resistance improvement [56]. The
results showed that 24 (38.1%) out of the 63 AkWRKY genes contained W-boxes, and the
number of W-boxes ranged from one to three, with ten (41.7%) AkWRKY genes containing
more than one W-box. In contrast, 21 (28.8%) out of the 73 AkNBS genes contained W-boxes.
The largest number of W-boxes was two, though only four (19.0%) AkNBS genes (AkNBS34,
AkNBS41, AkNBS42, and AkNBS66) contained two W-boxes (Supplementary Table S5). This
granted us some valuable evidence to speculate that autoregulation and cross-regulation
could exist extensively in many AkWRKY genes, and both the multiple regulating styles and
various regulatory abilities of AkWRKY genes also afforded a reasonable explanation for
the small number of AkWRKY genes (Supplementary Table S6). In addition, the expression
characteristics of the AkNBS genes and AkWRKY genes containing W-boxes were the
same: both were highly expressed in the pericarp, and their expression increased with
the change in developmental process (Supplementary Table S4). Previous studies have
demonstrated that the NBS family plays a very important role in the defense system
of plant disease resistance, which is usually regulated by WRKY genes [57]. Both GO
(Supplementary Figure S1) and KEGG (Figure 4) enrichment analyses indicated that at
least some AkWRKY genes could be involved in plant–pathogen interaction processes.
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Additionally, the 21 AkNBS genes containing W-boxes could be involved in the disease
resistance response putatively regulated by AkWRKY genes.

4.5. AkWRKY24 Could Be Involved in the Disease Resistance Process Possibly by
Regulating AkNBS18

Transcriptomic analysis is an important method for studying plant genes, especially
resistance gene function [58,59]. We found that the expression level of all 63 AkWRKYs could
be detected, although it was generally low, and that the expression level increased with fruit
development (Figure 5A, Supplementary Table S4). Similarly, 66 (90.4%) of the 73 AkNBS
genes had a detectable expression level, while 28 AkNBS genes had a higher expression
level than the threshold for categorization as genes with low expression [41]. Subsequently,
we examined the correlations between all 63 AkWRKY genes and 18 detectable-expression
AkNBS genes with W-boxes, and the results showed that two AkNBS and four AkWRKY
genes were correlated (Figure 6). We also found a strong relationship between AkNBS18
and AkWRKY24 (Figure 6).

In the present study, both AkNBS18 and AkWRKY24 exhibited high expression in rinds
compared with flesh and seeds (Supplementary Table S4, which are the outermost parts
exposed to various pathogens [60,61]. Second, AkNBS18, belonging to the CNL type, could
be independently involved in the resistance response and did not need the help of RNL [62].
Third, AtWRKY54, as the homologous gene of AkWRKY24 in group III, is involved in plant
defense in Arabidopsis [63–65]. Hence, we propose that AkWRKY24 could take part in the
disease resistance process by regulating AkNBS18.

5. Conclusions

In conclusion, we identified 63 WRKY genes in the A. trifoliata genome. The WRKY
genes were classified into three groups, I, II (with five subgroups), and III and were
physically mapped on all 16 chromosomes. The conserved zinc finger and heptapeptide
motifs were analyzed. Compared with the zinc finger structure, the heptapeptides showed
some variations in both structure and number. WGD or fragmental genomic duplication
and purifying selection were the main evolutionary events experienced by WRKY genes in
A. trifoliata. Many WRKY genes had a W-box, so they could be functionally autoregulated
and cross-regulated. Transcriptome data analysis showed that the genes of the AkWRKY
family had multiple expression patterns, indicating that they may have multiple functions,
while some AkWRKY genes and AkNBS genes had similar expression patterns, indicating
that these genes may be functionally related. Finally, co-expression analysis between all
AkWRKY genes and 18 W-box AkNBS genes suggested that AkWRKY24 could take part
in the disease resistance response, possibly by regulating AkNBS18. Therefore, this study
added some important data to the plant WRKY transcription factor pool and afforded some
new tools for studying the molecular mechanism of resistance in A. trifoliata.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13091540/s1, Figure S1: GO enrichment analysis map of
the WRKY gene family. Blue blocks represent molecular functions, orange blocks represent cellular
components, and yellow blocks represent biological processes; Figure S2: Correlation between
63 AkWRKY genes and 18 AkNBS genes; Table S1: List of the 63 AkWRKY genes identified in this
study; Table S2: Multiple comparisons of AkWRKY genes and protein related parameters; Table S3:
Ka Ks and Ka/Ks values of A. trifoliata WRKY gene pairs; Table S4: Expression of AkWRKY gene and
W-box AkNBS gene in fruit tissues; Table S5: W-box in AkNBS; Table S6: Comparison of the WRKYs of
A. trifoliata with other species; Table S7: Multiple comparisons among groups containing different
numbers of WRKY domains in AkWRKY genes.
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