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Abstract: With the recent results of promising cancer vaccines and immunotherapy1–5, immune monitoring has become increasingly relevant for 
measuring treatment-induced effects on T cells, and an essential tool for shedding light on the mechanisms responsible for a successful treatment. Flow 
cytometry is the canonical multi-parameter assay for the fine characterization of single cells in solution, and is ubiquitously used in pre-clinical tumor immu-
nology and in cancer immunotherapy trials. Current state-of-the-art polychromatic flow cytometry involves multi-step, multi-reagent assays followed by 
sample acquisition on sophisticated instruments capable of capturing up to 20 parameters per cell at a rate of tens of thousands of cells per second. Given the 
complexity of flow cytometry assays, reproducibility is a major concern, especially for multi-center studies. A promising approach for improving reproduc-
ibility is the use of automated analysis borrowing from statistics, machine learning and information visualization21–23, as these methods directly address the 
subjectivity, operator-dependence, labor-intensive and low fidelity of manual analysis. However, it is quite time-consuming to investigate and test new auto-
mated analysis techniques on large data sets without some centralized information management system. For large-scale automated analysis to be practical, the 
presence of consistent and high-quality data linked to the raw FCS files is indispensable. In particular, the use of machine-readable standard vocabularies to 
characterize channel metadata is essential when constructing analytic pipelines to avoid errors in processing, analysis and interpretation of results. For auto-
mation, this high-quality metadata needs to be programmatically accessible, implying the need for a consistent Application Programming Interface (API). 
In this manuscript, we propose that upfront time spent normalizing flow cytometry data to conform to carefully designed data models enables automated 
analysis, potentially saving time in the long run. The ReFlow informatics framework was developed to address these data management challenges.
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Introduction
With the recent results of promising cancer vaccines and immu-
notherapy,1–5 immune monitoring has become increasingly 
relevant for measuring treatment-induced effects on T cells, 
and an essential tool for shedding light on the mechanisms 

responsible for a successful treatment. Flow cytometry is the 
canonical multi-parameter assay for the fine characterization 
of single cells in solution, and is ubiquitously used in pre-
clinical tumor immunology and in cancer immunotherapy 
trials. Applications in cancer immune monitoring include 
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characterizing the tumor-antigen specificity of a patient’s  
T cells by peptide–MHC multimers, intracellular staining for 
effector cytokines, evaluating cytotoxicity, measuring prolif-
eration and assessing immune regulatory cells, including reg-
ulatory T cells and complex myeloid populations.5,6

Flow cytometry assays differentiate human immune cells 
via a combination of physical properties and fluorescent mark-
ers such as labeled monoclonal antibodies (mAb) targeting cell-
specific molecules. Current state-of-the-art polychromatic flow 
cytometry involves multi-step, multi-reagent assays followed by 
sample acquisition on sophisticated instruments capable of cap-
turing up to 20 parameters per cell at a rate of tens of thousands 
of cells per second.7 Advances in technology such as fluorescent 
dyes with less spectral overlap,8 improved deconvolution meth-
ods for resolving complex emission spectra, and the use of new 
mass spectrometry approaches means that the number of mea-
surable parameters will continue to increase in the near future.9

Given the complexity of flow cytometry assays, reproduci
bility is a major concern, especially for multi-center studies. 
This has been demonstrated in proficiency testing, where 
participating laboratories receive identical blood samples and 
report the results of pre-specified analysis to the coordinating 
center. These proficiency panels have shown large variations 
in the performance of T-cell assays among the flow commu-
nity, especially for the quantification of low frequency cell 
subsets.10,11 The flow community has made great strides in 
reproducibility, with notable advances being the establish-
ment of data standards,12–14 the development of standardized 
panels to characterize known basic cell subsets by the Human 
Immune Profiling Consortium (HIPC),15 sharing of rigor-
ously developed panels via the optimized multicolor immu-
nofluorescence panels (OMIP) initiative,16 and widespread 
participation in proficiency testing programs that aim to har-
monize procedures across laboratories.17–19

However, flow cytometry data used in immune monitor-
ing are often loosely annotated, with the metadata necessary 
for interpretation distributed over multiple sources (eg, file 
naming conventions, spreadsheets, presentations). Hence, 
much pre-processing may be necessary to coerce the data into 
a form suitable for automated processing, often via error-prone 
ad-hoc programming scripts. The effort required for pre- 
processing data is typically disproportionately larger when the 
data come from different laboratories. In this manuscript, we 
propose that upfront time spent normalizing flow cytometry 
data to conform to carefully designed data models enables 
automated analysis, potentially saving time in the long run.

Strategies for achieving reproducible data acquisition in 
flow cytometry are similar to other research domains. It is crit-
ical that detailed standard operating procedures (SOPs) that 
accurately reflect the current practices within a laboratory are 
drafted for panel development, cytometer calibration, reagent 
qualification, and sample preparation. Further, staff must be 
regularly trained on those SOPs, and stringent quality man-
agement practices must be in place.10,11,17,18,20 However, even 

when laboratory procedures are followed, data management 
remains a significant impediment. Flow cytometry data are 
often stored on local computer systems or shared network 
drives, with users frequently creating separate copies to review 
the data in specialized software applications installed on local 
workstations. In addition, calibration data, usually obtained 
on a daily basis, may be stored in a different location.

Reproducibility in the analysis of flow cytometry data is 
also a major challenge. The process of selecting groups of events 
within a flow cytometry standard (FCS) file, representing 
different cell subsets, is referred to as gating strategy. This 
selection is influenced by many factors including the analyst’s 
understanding of the parameters’ relationship to cell subsets, 
the data transformation applied to view the data, the com-
pensation applied to correct for fluorescent spillover, the order  
in which the gates are placed, analyst subjectivity in the 
placement of gate boundaries, and the use of different gating 
shapes (polygons, ellipses, quadrants, etc.). As is now widely 
recognized, manual gating is poorly suited for the analysis of 
multi-dimensional data, both because of our lack of intuition 
for higher dimensional spaces and the inefficiency of selecting 
events using a sequence of two-dimensional scatter plots.

A promising approach for improving reproducibility is the 
use of automated analysis borrowing from statistics, machine 
learning, and information visualization,21–23 as these methods 
directly address the subjectivity, operator dependence, labor 
intensiveness, and low fidelity of manual analysis. However, 
it is quite time-consuming to investigate and test new auto-
mated analysis techniques on large data sets without some 
centralized information management system.

Automated analysis requires structured data formats, 
typically in the form of a data matrix. However, annotation 
inconsistencies of most flow laboratories require extensive 
pre-processing and dialog between the bioinformatician and 
the clinical researcher to prepare data for automated analysis. 
Further, multi-center data tend to introduce larger time gaps 
between the data acquisition and the analysis, increasing the 
chance for errors because of miscommunication. Inconsisten-
cies common in flow cytometry data include different names 
for the same antibody or fluorochrome, the use of different 
fluorochromes conjugated to the same antibody in different 
laboratories, or data acquired with extra parameters not pres-
ent in samples from other laboratories.

The FCS defines the file format for data acquired from a 
cytometer. However, FCS does not define standard values for 
labeling individual channels,24 hence data annotation practices 
can vary greatly between and within flow cytometry labora-
tories. In some cases, marker and/or fluorochrome names are 
either implied based on global instrument configuration labels 
or absent entirely, making it impossible for the bioinformatician 
to map the appropriate marker to its corresponding parameter. 
The metadata necessary to interpret these flow cytometry data 
sets may only be available in a spreadsheet or presentation slide, 
requiring time-consuming and error-prone cross-referencing.
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For large-scale automated analysis to be practical, the 
presence of consistent and high-quality data linked to the raw 
FCS files is indispensable. In particular, the use of machine-
readable standard vocabularies to characterize channel meta-
data is essential when constructing analytic pipelines to avoid 
errors in processing, analysis, and interpretation of results. For 
automation, these high-quality metadata need to be program-
matically accessible, implying the need for a consistent appli-
cation programming interface (API).

Finally, it is indispensable for multi-center flow cytometry 
studies to accrue sufficient samples in order to search for com-
plex cellular biomarkers effectively, which poses even greater 
challenges for data management, annotation, and analysis. For 
comparative analysis, it is necessary that all the centers per-
forming flow cytometry analysis have consistent methods to 
identify and quantify these cell subsets. Such consistency can 
be achieved in a distributed fashion via harmonization or stan-
dardization programs, or analysis can be performed at a central 
location.17,23,25,26 Distributed analysis is often preferred because 
it preserves the autonomy of local laboratories, and avoids the 
complex and potentially expensive logistics of having to process, 
cryopreserve, and ship the samples in a timely fashion to the cen-
tral laboratory. In this case, the management, reconciliation, and 
analysis of flow cytometry data from multiple laboratories can be 
extremely challenging, as different laboratories will have their 
own protocols for the annotation of FCS files. In our experience 
with the EQAPOL project, even when laboratories are given a 
standard annotation protocol to follow, the FCS metadata still 
varied across laboratories. The ReFlow informatics framework 
was developed to address these data management challenges.

The ReFlow Framework for Reproducible Flow 
Analysis

Constraints and requirements. We developed the ReFlow 
framework to address the challenge of inconsistent FCS meta-
data annotation so that data can be processed by automated anal-
ysis routines without time-consuming and error-prone manual 
pre-processing. Since there is no way for bioinformaticians to 
control individual laboratory practices, ReFlow was designed to 
store FCS data regardless of specific annotation, as long as the 
needed information could be provided by the flow operator at 
the time of upload. However, ReFlow will also take advantage 
of consistent and complete annotation in the FCS metadata to 
automate data categorization, streamlining the upload process 
for laboratories with good annotation practices.

Based on the above considerations, a summary of the core 
requirements for the ReFlow framework is listed below:

•	 Automate the analysis of flow cytometry data to identify 
potential cell subsets without manual processing (gating)

•	 Avoid requiring changes to individual laboratory prac-
tices – as this is not a feasible option for many labs

•	 Manage data from multi-center clinical trials as well 
as proficiency testing programs, both of which share a 

multi-center design but with different emphasis (single-
center data are a simpler, special case)

•	 Allow remote labs to conveniently share flow cytometry 
data with a coordinating center

•	 Restrict user access to data by project as well as to labora-
tory data within a project

•	 Restrict data modification and analysis actions to specific 
users

•	 Allow a project administrator to pre-define the required 
parameters for flow cytometry panels

•	 Provide a user-friendly interface for a typical immunol-
ogy researcher or flow cytometry analyst

Design considerations. Most of the design considerations 
emerged naturally from the project requirements. Since the flow 
analysts, researchers, or clinicians generating the data are most 
familiar with their data annotation, a major focus of ReFlow was 
to allow flow cytometry experts to categorize data within ReFlow 
rather than bioinformaticians. In order to provide a streamlined 
process for researchers to categorize and upload their own data, 
we designed data models to reflect real-world flow cytometry 
concepts and terms, created a user interface with responsive 
feedback, enforced consistent use of standard terminology, and 
avoided any local installation of software packages.

At the heart of the domain model is the panel, a flow 
cytometry concept that refers to the specific combination of 
markers (eg, mAbs), light scatter, and fluorochromes used in 
an experiment. In multi-center trials or proficiency testing 
programs, the parameters required for a panel are specified 
by the coordinating center. In standardized situations, partici-
pating laboratories have to meet the requirements exactly; in 
harmonized situations, participating laboratories must meet 
preselected mandatory requirements but have some flexibility 
in the choice of reagents and additional parameters to record.

We also wanted to ensure that ReFlow is scalable to 
future needs, while also being easy to maintain and extend. To 
this end, we took a “do one thing, and do it well” philosophy 
for the individual components. To facilitate deployment in 
multiple environments, we chose technology allowing ReFlow 
to be operating system and database agnostic. We wanted the 
data consumption via clients to be language agnostic as well, 
so that a user could use any programming language to interact 
with the system.

While ReFlow provides an easily accessible and modern 
web interface, it was not designed as Software as a Service 
(SaaS). This was intentional, as many laboratories and insti-
tutions cannot store their data on external servers because 
of Health Insurance Portability and Accountability Act 
(HIPAA) concerns. Furthermore, the resources to store and 
process the entire flow community’s data would be prohibi-
tively expensive. Since ReFlow is developed by and for non-
profit academic institutions this structure is not feasible. As a 
freely available, open-source software project, ReFlow is avail-
able for any group to install and use as a standalone cytometry 
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informatics management system, or as a front end for ensuring 
consistent data annotation.

Implementation
Summary of approach. ReFlow consists of a back end  

relational database server and a front end web interface 
designed as a single page application, with an intermedi-
ary web framework providing an object-relational mapping 
(ORM) interface to the database and controlling client-side 
access to resources. Communication between clients and the 

web framework takes place via a representational state transfer 
(REST) API, decoupling data from presentation. An over-
view of the connections between these system components is 
shown in Figure 1.

To minimize extra memory or processing burdens on the 
ReFlow server, the processing workload is decoupled from the 
web server. Analysis pipelines are executed by remotely distrib-
uted worker clients that also utilize the REST API for com-
municating to a central ReFlow server. ReFlow workers can be 
deployed as needed or available, with each worker polling the 
central server at regular intervals using token authentication 
to check for available jobs. This pull-based scheme was chosen 
to avoid network issues such as dynamic IP addresses and fire-
walls, as the workers may be distributed over many different 
locations and networks.

The software developed for the ReFlow project is divided 
into several independent packages, each with its own ver-
sion control repository (Fig. 2). The main ReFlow repository 
contains the web application developed in the Python-based 
Django web framework and the JavaScript-based AngularJS 
client-side framework. The ReFlowRESTClient package is a 
reference implementation in Python for client-side interaction 
with the REST API exposed by the ReFlow web application. 
All processing for the analysis pipeline is performed by the 
ReFlowWorker package, which employs the ReFlowREST-
Client for interacting with the ReFlow server. In addition, 
there are three helper libraries independent of the ReFlow 
system used for interacting with FCS files: FlowIO, for read-
ing and writing FCS files; FlowUtils, containing utility func-
tions for transforming and compensating flow cytometry data; 
and FlowStats, which contains the statistical functions used 
for clustering multi-dimensional flow cytometry data. These 
independent flow cytometry libraries are based on previous 
work in our lab.21,27–31

Web framework and file storage. We chose the Django 
web framework as it provided a convenient ORM that met 

Relational
database File storage

Web
framework

Web
browser

Remote
workers

REST API

ORM

Figure 1. Overview of ReFlow hardware components.
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Figure 2. Overview of ReFlow software components.
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Figure 3. Data schema for ReFlow showing the mapping of table names to flow cytometry domain concepts. Arrows indicate foreign key relationships 
between database tables.

our design consideration for a database agnostic platform 
and was compatible with our existing Python code base 
for processing FCS files. It also provided a rich set of third 
party libraries, such as a library for creating REST APIs and 
a library for the management of granular object-level user 
permissions.

The back end stores the data and metadata for every 
uploaded FCS data file. The actual FCS binary files are stored 
as a Django FileField, which stores the files on a file sys-
tem with a database reference to the file’s path. An SHA–1 
checksum is generated and stored for every uploaded FCS 
file to ensure data integrity and prevent duplication of files 
within the same project. The metadata within each FCS file 
is recorded in a separate table for more efficient searching. On 
upload, the data for each FCS file are sub-sampled at 10,000 
events with the sub-sampled event indices recorded. The sub-
sampled data is then saved as a NumPy data file in a separate 
Django FileField that allows clients to quickly access the flow 
data in either NumPy or CSV format. Note that the original 
full data set is also always available; the sub-sampled data are 
a convenience for rapid analysis and plotting.

Data models for domain-specific concepts. Many tables 
in the database are fairly straightforward and capture the rela-
tionships between a project and its sites (laboratories), sub-
ject groups, subjects, samples, and so on. The most complex 
data models center on the concept of flow cytometry panels, 
which specify how the channels of FCS data files are mapped 
to ReFlow naming conventions and also enable verification 
that the project’s requirements for the panel design are met. 
Other tables handle administrative concerns such as tracking 
users and their permissions, as well as the input and output of 
analytic processes. A summary of the main database schema 
is shown in Figure 3.

Reflecting the need to mandate specific panel require-
ments, a two-tiered panel schema is employed. The top level 
Panel Template captures the abstract requirements of an 
experiment – for example, that the antibodies against CD3 

and CD8  must be present, that CD3 is conjugated to the 
FITC fluorochrome, and that only the area “-A” measure-
ment for each antibody–fluorochrome pair is required. At 
a minimum, each data set must be associated with a Full 
Stain template; there may also be related partial templates 
such as Fluorescence Minus One (FMO) or Isotype Control 
templates that are defined and interpreted in relation to a 
Full Stain panel.32 In contrast, the lower tier, called the Site 
Panel, captures the actual measurements made in an experi-
ment and how they map to data columns in the matrix of 
measured values in the FCS file. Site Panels may have addi-
tional parameters in addition to those specified in the Panel 
Template; however, any FCS file lacking a parameter speci-
fied in its parent Panel Template will be rejected. The panel 
concept embodies the most complex set of relationships in 
the schema, and was developed with extensive feedback from 
flow cytometry users and experts.

Both the Panel Template and Site Panel models are 
assembled using related parameter models, the Panel Template 
Parameter and Site Panel Parameter, respectively. Each of 
these parameter models was built using data in the Marker 
and Fluorochrome models, which contain pre-defined markers 
and fluorochromes serving to control the vocabulary used 
for mapping to FCS file channel annotation. The parameter 
models also have relationships for defining the function (For-
ward Scatter, Side Scatter, Fluorochrome Conjugated Marker, 
Unstained, Isotype Control, Exclusion, Viability, Isotope 
Conjugated Marker, Time, Compensation Bead, Null) and 
value type (Area, Height, Width, Time) for each channel 
(Fig. 4).

Data models for automated analysis. The data models for 
defining analysis pipelines and capturing the inputs/outputs for 
process requests were designed to permit flexibility for future 
additions or modifications without requiring changes to the 
existing database schema. To accomplish this, two main design 
concepts were employed: (1) an abstraction to separate the dis-
tinct operations that comprise a processing pipeline and (2) a 
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data modeling scheme that requires any pipeline to classify all 
events in all analyzed samples as belonging to some category.

The Sub-process Category model defines classes for process-
ing steps used to build a complete analysis pipeline. Currently, 
these include transformation, filtering, and clustering opera-
tions. The Sub-process Implementation model defines concrete 
instances of sub-process operations. For example, one imple-
mentation for the clustering category may be “HDP” for the 
hierarchical Dirichlet Process clustering algorithm.28 Finally, 
each implementation must define its inputs in the Sub-process 
Input model. The sub-process inputs provide the details for the 
type of value allowed for each implementation input. Con-
tinuing with the HDP implementation example, there is an 
input for the cluster count that is defined as a required field 
with a positive integer value.

The Process Request model captures individual process 
requests submitted by users. The Process Request Input model 
is a key-value design, where each key is the Sub-process Input 
used to identify the input. The user specifies the value corre-

sponding to this key during the creation of the process request. 
The inputs do not specify the FCS samples to be included for 
processing in the process request; a separate Sample Collection 
model that provides a many-to-many relationship with the 
FCS sample model captures the FCS samples selected by the 
user for analysis (Fig. 5).

The ReFlow Worker model contains the names and cre-
dentials of the remote workers. For security, a ReFlow admini
strator must register each remote worker in the Worker model, 
and only a registered worker can request assignment of an 
individual process request. Since the ReFlow server does not 
contain any information about the analysis implementation, 
the actual worker can be implemented in any programming 
language, provided the implementation follows the web ser-
vice contract via the appropriate web API calls. We provide a 
reference implementation for a ReFlow worker in the ReFlow-
Worker software package.

When an assigned ReFlow worker completes a process 
request, the clustering output data used for visualizing and 

Sub-process
category

Worker

Process request

Sub-process
implementation

Sub-process input

Process request
input

SampleSample collection

Sample collection
member

Process request
output

Panel models

Cluster
models

Figure 5. Data schema for ReFlow showing the process request models.

Panel template

Fluorochrome
Panel template

parameter

Panel template
parameter marker

Marker
Site panel

parameter marker

Site panel
parameter

Site panel

Panel models

Figure 4. Data schema detail for ReFlow showing the relationships that define the Panel Template and Site Panel domain concepts.
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reporting analysis results is sent to the ReFlow server along 
with the optional algorithm-specific Process Request Output 
data files. The clustering output is stored in a structured 
collection of data models where every event is assigned to a 
sample cluster via the Events Classification and Sample Cluster 
tables. Sample Clusters belong to a parent Cluster that is shared 
among all samples in the process request, allowing the pos-
sibility of identifying aligned clusters over different samples. 
A future refinement of this scheme will use the adjacency list 
model to capture biological lineage hierarchies (Fig. 6).

The Process Request Output model is a key-value table 
containing implementation-specific details beyond what 
is captured in the cluster models. These output files are 
intended to capture details of the implementation to enable 
reproducibility of the analysis pipeline outside of the ReFlow 
ecosystem, but are not directly used by ReFlow for visualiza-
tion and reporting.

Authentication and user permissions. ReFlow is 
designed for use by a central laboratory processing FCS files 
from several different laboratories, for example, to coordinate 
proficiency testing programs or a multi-center study. Hence 
there are different user roles requiring customized access – for 
example, the central laboratory staff must be able to view data 
from all laboratories, but participating laboratories should 
only have access to their own data for review, editing, and 
analysis. Interactive access is governed by standard username/
password session authentication, and the site will automati-
cally log users out beyond a specified duration of inactivity. 
The REST API allows session or token authentication. For 

programmatic access via the REST API, token authentica-
tion is recommended as a compromised token can easily be 
revoked and re-generated without resetting a user’s password. 
The use of token authentication for programmatic access also 
allows users to avoid storing passwords within their local 
script files.

Each project and site has administrative and user level 
permissions. A project administrator may have full access to 
their specific project or site content, as well as the capability 
to manage users for that project or site. Object level permis-
sions are provided by Django Guardian (https://github.com/
lukaszb/django-guardian), and custom permissions can be set 
for users to view, add, or modify data for individual sites or 
projects. There are also superusers with the ability to create 
new projects, as well as add or modify the controlled vocabu-
lary models such as the Marker and Fluorochrome tables.

To allow deployed ReFlowWorker clients access to data 
for automated analysis yet keep data from being accessible 
by the general public, worker access also requires authenti-
cation. Workers are assigned user accounts, however, unlike 
regular users, workers are restricted to only token authen-
tication and are not allowed to use session authentication. 
Since workers do not have a password and are barred from 
authenticating via the web interface, they are less likely to 
become compromised and used for nefarious purposes. In 
addition, the use of encryption via the Hypertext Transfer 
Protocol Secure (HTTPS) is encouraged for all ReFlow 
server deployments to protect data communications from 
eavesdropping.

Process request

Process request
output Cluster

Sample cluster
parameter

Sample cluster

Sample

Event classiffication

Cluster models

Figure 6. ReFlow data schema illustrating clustering models used to store process request results.

Figure 7. ReFlow REST API URL schema illustrating various component labels.
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REST API and client reference implementation. ReFlow 
uses the Django REST Framework (http://www.django-rest-
framework.org) to provide a REST API for communications 
between clients and the Django ORM using the Hypertext 
Transfer Protocol (HTTP). We also use the Django REST 
Framework Docs package to provide a web-based description of 
the REST API structure. The REST API is utilized for com-
munication with the single-page application front end and for 
programmatic access to ReFlow data stores. Standard HTTP 
request methods are used to perform specific actions on ReFlow 
resources. The resource model for the ReFlow REST API is 
designed to be consistent and predictable, and uses a common 
pattern for accessing the various ReFlow resources (Fig. 7).

The protocol and domain are determined by the web 
server configuration for a particular ReFlow deployment. 
The URL path for all ReFlow REST API resources begin 
with the “/api/repository/” sub-path. Resources are grouped 
into two categories: singletons and collections. Singleton 
resources represent a single database record, whereas col-
lections provide a list of singleton resources. All collections 
within the ReFlow REST API are homogeneous, meaning 
they are lists of the same resource type (eg, a list of sites). 
Resources can be retrieved via their primary keys, and col-
lections may additionally be filtered using a standard HTTP 
query string with multiple query parameters separated by 
the “&” character. The example URL in Figure 7 returns 
the site collection resource filtered by project and site name 
using an HTTP GET request. All resources are returned 
in the JavaScript Object Notation (JSON) data format.

In addition to retrieving records via an HTTP GET 
request, the REST API also allows the creation, modification, 
and deletion of resources using the HTTP actions POST, 
PUT, and DELETE, respectively. All actions that use the 
interactive single-page application front end are realized via  
the REST API; thus any interactive user operation done via 
the web interface can also be performed programmatically 
via the REST API, provided the authenticating user has the 
appropriate privileges.

The ReFlowRESTClient, a client reference implementa-
tion for interacting with the ReFlow REST API and freely 
available as an open source library on GitHub, is implemented 
in the Python programming language. The ReFlowWorker 
software package utilizes this client library for communicat-
ing all process request related information to and from the 
ReFlow server. However, since ReFlow utilizes a standard 
HTTP-based API, any software HTTP library can be used 
for programmatic access to a ReFlow server’s resources for any 
task ranging from the simple retrieval of resources to the con-
struction of complex analysis pipelines that post results back 
to the ReFlow server.

Single-page application. As some flow cytometry users 
do not have software installation privileges, we designed 
ReFlow so that the whole user interaction could occur via the 
web. Although Django is a full-stack web framework, we chose 

to use the AngularJS library for interactive web access. Because 
of the complex requirements for user interaction, such as the 
creation of panels or categorizing multiple FCS files for con-
current uploading, the standard Django forms infrastructure 
became quite tedious and fragile. Our first attempt at combin-
ing Django forms and jQuery for user interactions negatively 
impacted the user experience because of the lack of responsive-
ness caused by multiple HTTP request–response cycles. With 
AngularJS, we were able to create a single-page application to 
provide a user experience that is similar to interacting with a 
desktop application. In the single-page application design, the 
web page changes dynamically in response to user-generated 
events similar to desktop graphical user interfaces (GUI), and 
any needed data are transferred asynchronously from the server 
to the browser client via the REST API.

Workflow
The main use cases for ReFlow are (1) a project coordinator/
administrator specifies the project panels, manages site users, 
and reviews uploaded data from each site participating in the 
project; (2) a site user uploads and categorizes FCS data files 
using a standard vocabulary, and (3) an analyst runs analytic 
pipelines and generates reports about some subset of FCS files 
within the project. Of course, any particular user may play mul-
tiple roles. Here, we describe the workflow for these use cases.

Project setup. A project administrator pre-populates 
the range of sites, cytometers, panel templates, subjects, and 
visit codes via the single-page application web interface. These 
operations typically only need to be done once per project, 
although updates and revisions are of course possible.

Uploading data. Users upload FCS files via the web using 
the HTML5  multiple file upload feature. A primary goal of 
ReFlow is to ensure consistent naming conventions for data 
parameters across multiple centers. All FCS files must be fully 
categorized during this upload process (see Fig. 8). Every effort 
was made so that users could adequately and efficiently describe 
FCS files, making full use of the dynamic updating afforded by 
AngularJS. For example, the drop-down selections are dynami-
cally updated – since all FCS uploads are initiated within a 
project, only parameters compatible with that particular project 
are available for selection. After a site is selected, the selection 
choices are further whittled down. This reduces both the burden 
for the user and the risk of incorrectly categorizing project data.

When FCS files are dragged to the upload area, they are 
immediately read by a custom JavaScript FCS parser to extract 
the metadata, which is immediately viewable by clicking on 
the filename and choosing View Metadata or View Channels. 
The file metadata is used to automatically populate the Date 
field (which is still editable). The FCS metadata values in the 
$PnN and $PnS fields are validated against the existing site 
panels matching the user-selected Project Template. ReFlow 
automatically searches for an exact Site Panel match – if no 
matching site panel is available, the user is guided through the 
process to create a new site panel (Fig. 9).

http://www.la-press.com
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Figure 8. Sample upload snapshot.

Figure 9. Panel creation snapshot.

Creating a site panel from an FCS file requires the user 
to properly identify all the channels present in the file. The 
site panel effectively acts as a map between the file’s annota-
tion and the naming conventions used by ReFlow. The site 
panel dialog window is semi-guided as ReFlow attempts to 
match any text found in the channel annotation with existing 
markers and fluorochromes. The user can, of course, override 
these pre-filled default values. Laboratories that have included 
meaningful channel names will have little additional work to 
do beyond accepting the proposed mapping. Once ReFlow has 
“learned” the file’s annotation, subsequent FCS files with the 
same annotation will be automatically matched when added to 
the file upload area.

Once files are fully categorized, they can be added to 
the Upload Queue, which provides a summary of the cat-
egories selected for each FCS file. After reviewing their 
choices, the user can select multiple files for concurrent 
upload to ReFlow, with an option to send incorrectly anno-
tated files back to the annotation tool for revision. In our 
testing sessions, once users get familiar with the ReFlow 
interface, it only takes a few minutes to categorize a new 
batch of FCS files.

Data analysis. While the focus of the manuscript is on 
data management, the ultimate goal of ReFlow is to provide 
a front end for reproducible unsupervised or semi-supervised 
automated analysis. As proof of concept, ReFlow currently 

http://www.la-press.com
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provides a convenient interface to perform multi-sample 
clustering using our hierarchical Dirichlet Gaussian mixture 
model.28 The intention is to eventually generalize the analysis 
interface to accommodate new algorithms implemented in any 
programming language.22

A process request is generated via a dynamic “wizard” 
interface that guides the user through sample selection via 
property filters, selection of FCS channels to be included, pre-
processing options, and parameters for the statistical mixture 
model. New requests are posted to the process queue and 
processed by remote workers as previously described. Criti-
cally, a complete record of all process parameters is recorded 
in the ReFlow database, facilitating tracking and review of 
process requests for reproducible analysis.

When a user submits a request to analyze a selected data 
set, ReFlow updates the request status on a process dashboard 
to Pending, and puts it in a process request queue. The queue is 
polled by remote workers registered with ReFlow (using token 
authentication), and the request is assigned on a first come, 
first served basis. A registered worker requests assignment, 
and once ReFlow grants the assignment, the process request 
status is updated to Working. When the worker completes the 

task, the results are posted, and the ReFlow server updates the 
status to Completed.

Visualizing analysis results. The detail view for a com-
pleted process request contains a link to visualize the clus-
tering results stored in the cluster models as an interactive 
scatterplot. The interactive visualization is implemented in the 
D3.js JavaScript library (http://d3js.org) and provides a more 
intuitive interface for understanding the relationships between 
cluster events in high-dimensional data than is available in 
traditional static images. Samples are compensated within 
the web client using the same compensation matrices used for 
the analysis, and fluorescence channels are transformed using 
an inverse hyperbolic sine transformation. For each sample, 
the sample events can be viewed superimposed on their cor-
responding cluster representations.

Figure 10A shows the main visualization display, with the 
left panel for choosing samples analyzed in the process request, 
the middle panel for visualizing clustering and event data, and 
the right panel for selecting and interrogating individual clus-
ters. In the left panel, choosing a sample retrieves the clustering 
and event data for that sample from the back end database. The 
main component of the middle panel is the interactive scat-

Figure 10. ReFlow screen shot demonstrating the visualization of clustering data. A detailed explanation of the viewing options is presented in the  
main text.

http://www.la-press.com
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terplot, which displays events colored by local density (heat-
map) or by cluster assignment. Clicking on a cluster centroid 
in a sample toggles the display of its associated events. When 
animation is enabled, the transition path for each centroid and 
event is shown dynamically as the user selects different FCS 
parameters. Above the scatterplot are options for changing the 
parameters displayed, specifying the axes scale values, toggling 
the heat map display, disabling the transition animations, as 
well as toggling the visibility of cluster centroids. The right 
panel contains a table of the clusters present within the scat-
terplot along with a color-coded checkbox for controlling the 
display of events within that cluster. The event data for each 
cluster can also be viewed by simply clicking on a cluster. All 
events can be viewed by clicking on the checkbox in the header 
row of the cluster table. Finally, in the upper right there is a 
color-coded cluster information panel, updated when the user 
hovers their mouse over a cluster centroid, showing the event 
percentage and location of the selected cluster.

Figure 10B demonstrates how a user can select for clusters 
corresponding to viable lymphocytes and display their assigned 
events colored by cluster by clicking on the appropriate cluster 
centroids. In Figure 10C, a different projection of these viable 
lymphocytes (on CD4 and CD8) is shown, now with cluster 
centroids toggled off to better see the distribution of individual 
events. This interactive display makes it simple for laboratory 
users to evaluate the results of the clustering algorithm and 
identify clusters corresponding to subsets of interest.

User testing. The data management aspects of the ReFlow 
framework were beta tested by a group of eight flow cytometry 
laboratories in Europe and USA to evaluate workflow, func-
tionality, and usability by typical flow analysts. Laboratories 
participated in focused tasks, including uploading FCS files 
using the web interface, creation of site panels, creation of 
project panels, and creation of project metadata. Each labora-
tory was asked to provide directed feedback to specific ques-
tions about the functionality and usability of the system.

As an example of critical early feedback, we initially 
developed a desktop application for file upload and annota-
tion, but two laboratories were not able to use it because of 
institutional firewall protocols, driving us toward a solution 
that did not require local software installation. The creation 
of the single-page application web interface using AngularJS 
was investigated and ultimately used to avoid local software 
installation, with the added benefit of eliminating cross-plat-
form development of the FCS upload tool.

Another example where useful feedback led to a much 
improved user experience was the overall consensus that the 
site panel creation process was tedious and time-consuming. 
The process was initially implemented in such a way that 
required potentially large FCS files to first be uploaded in 
order for the ReFlow back end to parse the FCS metadata 
for the channel annotation. In response, we developed a 
JavaScript-based FCS file reader to avoid having to upload 
files prior to creating a site panel. Again, the use of Angu-

larJS allowed a dynamic web interface where site panels could 
be created on the fly during FCS uploads. The result was a 
much more efficient workflow.

In addition to the questionnaires, we also benefited from 
group discussions with the participating laboratories over 
video conferencing sessions. The data model schema and many 
of the features described in this manuscript resulted from the 
valuable serial feedback provided by our testers. Examples of 
the testing instructions and feedback questionnaires are pro-
vided in Supplementary materials.

Conclusion
We describe a flow cytometry informatics system organized 
around domain concepts that simplifies and validates flow 
cytometry data annotation for multi-center studies. The 
framework is currently being developed for use in manag-
ing flow cytometry proficiency test data from the Cancer 
Immunoguiding Program of the Association for Cancer 
Immunotherapy (CIP/CIMT) with support from the Wal-
lace Coulter Foundation and the External Quality Assurance 
Program Oversight Laboratory (EQAPOL), a NIH-funded 
program to standardize immunological assays in HIV clinical 
research laboratories. As we have described above, the design 
of ReFlow leverages standards to provide a modern web user 
interface with defined user roles and granular permissions, 
decouples data models from the interface by having a well-
designed REST API, and is scalable to large-scale analysis.

Because ReFlow generates a semantic mapping from 
marker/antibody to channel number for every FCS file, it pro-
vides a simple and reproducible mechanism to analyze data 
with a common panel template across multiple laboratories. 
The ReFlow interface is expected to greatly reduce the pre-
processing burden for multi-center data from proficiency test-
ing programs, and this together with the automatic capture of 
process request parameters in the database results in a more 
robust pipeline for analysis of flow cytometry data.

Future developments will include expansion of the data 
analysis pipeline to incorporate a richer set of algorithms, 
more flexible management of remote workers and load-bal-
ancing, export of annotated FCS files for use in third party 
software, enhancements in the visualization of analysis 
results using D3.js, and template-guided automated genera-
tion of reports.

Software availability. The ReFlow software is under 
an open-source BSD license and freely available for down-
load from GitHub. A ReFlow server may be deployed using a 
traditional web server such as Apache or Microsoft IIS, and 
configured to use either the standard HTTP or HTTPS for 
more secure communication.

•	 ReFlow web application: https://github.com/whitews/
ReFlow

•	 ReFlow REST client (Python): https://github.com/
whitews/ReFlowRESTClient
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•	 ReFlow Worker: https://github.com/whitews/ReFlow 
Worker

•	 FlowIO: https://github.com/whitews/FlowIO
•	 FlowUtils: https://github.com/whitews/FlowUtils
•	 FlowStats: https://github.com/whitews/FlowStats
•	 https://test.reflowproject.org/
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    test data within ReFlow
• lab_parameters.pdf - The channel metadata        
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