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Abstract: Water softening is desirable to reduce scaling in water infrastructure and to meet industrial
water quality needs and consumer preferences. Membrane capacitive deionization (MCDI) can
preferentially adsorb divalent ions including calcium and magnesium and thus may be an attractive
water softening technology. In this work, a process model incorporating ion exclusion effects was
applied to investigate water softening performance including ion selectivity, ion removal efficiency
and energy consumption in a constant voltage (CV) mode MCDI. Trade-offs between the simulated
Ca2+ selectivity and Ca2+ removal efficiency under varying applied voltage and varying initial
concentration ratio of Na+ to Ca2+ were observed. A cut-off CV mode, which was operated to
maximize Ca2+ removal efficiency per cycle, was found to lead to a specific energy consumption
(SEC) of 0.061 kWh/mole removed Ca2+ for partially softening industrial water and 0.077 kWh/m3

removed Ca2+ for slightly softening tap water at a water recovery of 0.5. This is an order of magnitude
less than reported values for other softening techniques. MCDI should be explored more fully as an
energy efficient means of water softening.

Keywords: water softening; membrane capacitive deionization (MCDI); selectivity; water recovery;
specific energy consumption (SEC)

1. Introduction

The majority of natural waters contain a certain amount of hardness (i.e., divalent
ions, primarily calcium and magnesium), causing potential fouling, scaling and taste
issues. Excess intake of calcium and magnesium inhibits the adsorption of other essential
elements and may cause diarrhea, while inadequate uptake of either calcium or magnesium
also poses health threats [1]. Removal of hardness is common in waters for industrial,
agricultural and domestic use.

Traditional techniques used for softening hard waters include ion-exchange [2], chem-
ical and electrochemical precipitation [3,4], nanofiltration [5,6] and electro-membrane
processes [7]. Capacitive deionization (CDI) removes charged particles in solution by
attracting them toward the oppositely charged porous electrodes and temporarily holding
them in the electric double layer (EDL) formed near the electrodes’ surface [8,9]. CDI is
applicable to water softening due to the preferential electrosorption of divalent hardness
ions over monovalent ions [10,11] and the technology has been investigated for softening
brackish waters [12–18].

Membrane CDI (MCDI) inserts ion-exchange membrane (IEM) between the electrodes
and porous spacer to enhance desalination performance and improve energy efficiency [19].
Specifically, a cation-exchange membrane (CEM) is assembled onto the cathode and an
anion-exchange membrane (AEM) is assembled onto the anode. IEM facilitates counter-
ions’ transport but inhibits co-ions’ penetration. IEM improves ion transport rate and
increases the flux of hardness ions over that of sodium ions, enabling a faster and more
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efficient water softening in MCDI compared to conventional CDI [20]. Fouling and scaling
issues are largely alleviated in MCDI compared to conventional CDI and other desalination
techniques due to the protection of the IEM and the reversed ion transport direction during
regeneration [21,22].

MCDI water softening performance is determined by feed water chemistry, hydrated
ion radius, ion valence, electrode and IEM construction and materials, operating modes and
operating conditions [15,16,23,24]. Hou and Huang [15] observed preferential adsorption of
ions with smaller hydrated ion radius, larger charge valence and higher initial concentration
in a batch mode CDI. IEM selective permeation toward specific ions is governed by the
affinity of IEM toward the ions, ion concentration outside the IEM and ion mobility inside
the IEM and can be enhanced by membrane surface modification [25]. Specific IEM
modifications such as replacing CEM with Ca-alginate [16] and coating polyelectrolyte
multilayers onto the CEM [24] have been employed to tune ion selectivity in MCDI. He
et al. [23] observed that selectivity of calcium ions was enhanced under lower applied
current and shorter hydraulic retention time in a flow-electrode CDI.

Substitution of monovalent ions (e.g., sodium) by divalent ions has been observed near
adsorption saturation of the electrode in constant voltage (CV) mode CDI [13,14,26]. Zhao
et al. [14] explained this selectivity using the Boltzmann distribution to indicate that close
to saturation, the accumulated potential in EDL becomes significant and ion selectivity is
dominated by valence. Ion selectivity in a constant current (CC) mode, however, depends
more on the ion transport through cell elements since electrode saturation is not reached
in CC mode. Wang and Lin [20] observed a correlation between ion selectivity and ion
flux through the IEM in CC mode MCDI resulting from differences in partition coefficient,
effective diffusion coefficient and ion concentration.

A number of process models have been developed for depicting dynamic ion trans-
port and adsorption in (M)CDI but all to-date have been limited to treating ions as point
charges [20,27–32]. Yet treating ions as point charges is unable to capture excluded ion
volume effects [33], limiting the ability to simulate ion adsorption and selectivity in multi-
component solutions containing ions with different hydration radii. Suss [34] introduced
an excess chemical potential term into the modified Donnan theory to correct ion concen-
tration in macropores and micropores for the available volume (pore volume minus the
excluded volume of each ion that are inaccessible to other ions). Guyes et al. [35] employed
Suss’s theory and incorporated the effects of the attached surface charges on the electrode,
successfully capturing the experimentally observed preferential adsorption toward the
smaller ions in a batch mode CDI using functionalized electrode.

Trade-offs between calcium selectivity and calcium removal efficiency were discovered
in CC mode MCDI [20]. However, hardness removal efficiency is a more important
performance metric in water softening. CV mode MCDI was observed to reach high salt
removal efficiency by reversing electrode polarity at maximum salt removal efficiency
(termed here as “cut-off” mode) [32]. In this work, water softening performance of a CV
mode MCDI is theoretically explored by investigating the selectivity and removal efficiency
of hardness ions and the energy behaviors. The objectives of this work are to 1) extend
our previously built MCDI process model [32] to incorporate excluded ion volume effects
and compare the respective simulation results to those achieved with the original model,
2) compare selectivity and removal efficiency of hardness ion under varying operating
duration, 3) explore the trade-offs between selectivity and removal efficiency of hardness
ions in a cut-off CV mode MCDI and 4) analyze the cell performance, energy consumption
and feasibility of applying MCDI to soften waters of various purposes, including industrial
cooling tower blowdown water and domestic tap water.

2. Model Framework

Our model is based on a single-pass CV mode MCDI with flow direction in parallel
with the electrodes [32]. Common components in brackish waters, including the divalent
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ions typically responsible for hardness, calcium and magnesium, their reported hydrated
radii [36] and diffusion coefficients [37] are displayed in Table 1.

Table 1. Common components in brackish waters and their hydrated radii and diffusion coefficients
in water.

Components Hydrated Radii, (nm) [36] Diffusion Coefficients, (m2/s) [37]

Na+ 0.358 1.33 × 10−9

K+ 0.331 1.96 × 10−9

Ca2+ 0.412 0.79 × 10−9

Mg2+ 0.428 0.71 × 10−9

Cl− 0.332 2.03 × 10−9

NO3
− 0.335 1.90 × 10−9

SO4
2− 0.379 1.07 × 10−9

The basic modeling approach is described in [32]. Here, we focus on the modifications
necessary to include excluded ion volume effects. We employ a modification to Donnan
theory considering an excess chemical potential difference term [34]:

cmi,i = cma,iexp
(
− ziFϕd

RT
− ∆µex

i

)
(1)

where cmi,i is the concentration of species i in micropores, cma,i is the concentration of species
i in macropores, zi is the ion valence of species i, F is the Faraday’s constant (96,485 C/mol),
ϕd is the Donnan potential of micropores, R is the universal gas constant (8.314 J/mol/K),
T is the ambient temperature and ∆µex

i is the difference of the excess chemical potentials in
micropores and the adjacent macropores:

∆µex
i = µex

mi,i − µex
ma,i (2)

where µex
mi,i and µex

ma,i are the excess chemical potentials in micropores and the adjacent
macropores, respectively, accounting for ion exclusion effects.

For a multi-component system containing hard-sphere ions with different hydrated
ion radii, the excess chemical potential can be analytically expressed by Boublik-Mansoori-
Carnahan-Starling-Leland (BMCSL) equation [34]:

µex
j,i = −

(
1 +

2ξ3
2d3

i
φ3 −

3ξ2
2d2

i
φ2

)
ln(1 − φ) +

3ξ2di + 3ξ1d2
i + ξ0d3

i
1 − φ

+
3ξ2d2

i

(1 − φ)2

(
ξ2

φ
+ ξ1di

)
− ξ3

2d3
i

φ2 − 5φ + 2

φ2(1 − φ)3 (3)

where j represents mi and ma and di is the hard-sphere diameter of species i, which is
related to the reported hydrated ion diameter dh,i through a constant factor C to fit the
experimental data.

di = Cdh,i (4)

φ is the volume fraction of all the ions:

φ = ∑
i

φi = ∑
i

πd3
i

6
cj,i Na (5)

where cj,i is the concentration of species i in location j, macropores or micropores and Na is
the Avogadro’s constant (6.022 × 1023 mol−1).

ξk is expressed by:
ξk = ∑

i
φidk−3

i (6)

External resistance effects are included in the model with the relation:

Vcell = Ve + IextRext (7)
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where Vcell is the applied voltage, Ve is the electric potential drop on the electrode pair, Rext
is the external resistance and Iext is the external current [27].

In this study, MCDI is assumed symmetric with identical cathode and anode and
identical CEM and AEM. Detailed MCDI device parameters and operating conditions based
on a single cell unit are listed in Table 2. The parameters marked with * and # are only used
in the example of industrial cooling tower blowdown water softening (Section 3.3.1) and
domestic tap water softening (Section 3.3.2).

Table 2. Membrane capacitive deionization (MCDI) device parameters and operating conditions
based on a single cell unit.

Parameter Value Unit

Cell length 10 [cm]
Cell width 10 [cm]

Electrode thickness 0.15 [mm]
Macropore porosity 0.4 [27] -
Micropore porosity 0.3 [27] -

Micropore capacitance 1.5 [27] [GF/m3]
IEM thickness 0.15 [mm]

IEM water content volume fraction 0.4 [L(water)/L(swollen IEM)]
IEM fixed charge density 1000 [mol/m3]

Spacer-filled channel thickness 0.3 [mm]
Spacer porosity 0.71 -

Spacer permeability 1.23 × 10−12 [m2]
External resistance 0.6 [Ω]

C = di/dh,i 1.15–1.35, 1.25 * # [34] -
Flow rate 0.3, 0.35 *, 0.2 # [L/h]

Applied voltage 0.1–0.3, 0.4 *, 0.08 # [V]

* Parameters used in industrial cooling tower blowdown water softening example, Section 3.3.1. # Parameters
used in residential tap water softening example, Section 3.3.2.

3. Results and Discussion
3.1. Excluded Ion Volume Effects

In a multicomponent saline solution, selectivity of cationic species i is usually defined
as the ratio of the removal efficiency of the cationic species i to that of sodium ions [20]:

S
(

i
Na+

)
=

∆ci
c0,i

∆cNa+
c0, Na+

=
ηi

ηNa+
. (8)

where S(i/Na+) is the selectivity of the cationic species i, c0,i is the initial concentration of the
cationic species i, c0,Na

+ is the initial concentration of sodium ions, ∆ci is the concentration
reduction of the cationic species i during desalination, ∆cNa

+ is the concentration reduction
of sodium ions during desalination, ηi is the removal efficiency of the cationic species i
and ηNa

+ is the removal efficiency of sodium ions. Ion selectivity in (M)CDI is calculated
based on the simulated effluent concentration with and without considering excluded ion
volume effects by setting an inlet concentration of 20 mol/m3 for all cations. The respective
transient selectivity curves of K+ and Ca2+ are displayed in Figure 1.

In order to verify this extended process model, transient K+ selectivity in K+-Na+-Cl−

solution in CDI considering excluded ion volume effects is compared with that of ignoring
excluded ion volume effects in Figure 1a. The use of these monovalent ions in this analysis
allows us to explore only the effects of ionic radii separate from valence.

As shown in Figure 1a, excluded ion volume effects slightly increases K+ selectivity. At
the beginning of charging, K+ selectivity is higher than 1, which is attributed to the higher
diffusivity of K+ compared to Na+. When electrode saturation is reached (times greater
than 300 s in this simulation), macropore concentration becomes uniform and identical
to feed water concentration and selectivity in the absence of excluded ion volume effects
approaches unity. With excluded ion volume effects, the smaller hydrated ion size of K+

increases adsorption of K+ and leads to a selectivity greater than 1 at equilibrium. The
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respective K+ selectivity curves indicate that this extended process model successfully
captures excluded ion volume effects. The varying adjustable constant C (see Equation (4))
from 1.15 to 1.35 is within the range of C values determined from experimental observa-
tions [34].
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Figure 1b shows the transient K+ selectivity in MCDI. Initially, K+ selectivity in MCDI
is lower compared to that in CDI since K+ and Na+ transport through the IEM are similar
and the IEM controls transport (see Figure S1c,d). Excluded ion volume effects only appear
after some time due to increased adsorption on the electrodes. After electrode saturation is
reached (times greater than 250 s, see Figure S1c,d), the K+ selectivity decreases, which is
caused by the slow ion penetration through the IEM due to the concentration gradient from
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electrode macropores to the bulk, causing a repulsion of all ions including K+ and Na+.
Since K+ is transported faster than Na+, K+ selectivity is reduced after electrode saturation.

Figure 1c shows that the selectivity toward the divalent ion Ca2+ is significantly greater
than for the monovalent species and that excluded ion volume effects can approximately
increase selectivity by 50% over that estimated by neglecting those affects. Ca2+ selectivity
is much higher compared to K+ selectivity and continues increasing even after the electrode
saturation is achieved (times greater than 200 s, see Figure S1e,f). The increase of Ca2+

selectivity after electrode saturation is due to the competitive substitution of Na+ by Ca2+,
which was also observed by Zhao et al. [14].

3.2. Trade-Offs between Selectivity and Removal Efficiency of Calcium Ions

Figure 2 shows transient Ca2+ selectivity and removal efficiency in a Ca2+-Na+-Cl−

solution in MCDI. The trend in Ca2+ selectivity is almost opposite to that of Ca2+ removal
efficiency, indicating a trade-off between selectivity and removal efficiency of Ca2+ during
desalination. This trade-off was also observed in CC mode MCDI [20]. Although Ca2+

selectivity is enhanced by extending desalination operation to near-electrode saturation,
overall removal efficiency decreases. To maximize removal efficiency, we propose operating
MCDI such that only partial electrode saturation is achieved, i.e., “cut-off” mode [32]. In
a multicomponent solution containing Ca2+ as the major hardness ions, cut-off mode is
defined by cycling MCDI at maximal Ca2+ removal efficiency per cycle.
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desalination in MCDI. Feed concentration of each cation is 20 mol/m3. Applied voltage is 0.3 V. Ratio
of hard sphere diameter to hydraulic diameter, C is taken as 1.25.

Figure 3 shows the Ca2+ selectivity and removal efficiency in Ca2+-Na+-Cl− solution
during desalination in a cut-off mode MCDI under varying applied voltage and initial
concentration ratios of cations. By increasing the applied voltage from 0.1 V to 0.3 V, Ca2+

selectivity decreases by 20%, while Ca2+ removal efficiency increases three-fold due to
the increased adsorption capacity at the higher voltage (Figure 3a). Selectivity for Ca2+

decreases with increasing feed ratio of Na+ to Ca2+ (Figure 3b) but Ca2+ removal efficiency
increases to over 80%.

3.3. Case Studies

The feasibility of cut-off CV mode MCDI for softening waters is explored by examining
water softening performance and energy consumption for two cases (1) industrial cooling
tower blowdown water and (2) domestic tap water.
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3.3.1. Industrial Cooling Tower Blowdown Water Softening Scenario

Electrochemical processes [38,39] and pressure-driven membranes [40] have been
applied to softening and recycling industrial cooling tower blowdown water to eliminate
scaling and reduce the overall water usage. In this case study, the major ion compositions
in the cooling tower blowdown water is from Ref. [41] as shown in Table 3. The MCDI is
operated in cut-off CV mode with the salt adsorption step operated to achieve maximum
salt removal. Water recovery is tuned by adjusting the operating time of the regeneration
or desorption step. The operating conditions are shown in Table 2.
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Table 3. Water softening performance and energy behaviors of quasi-steady state MCDI for partially
softening industrial cooling tower blowdown water.

Parameter Value

Concentration of ionic
species in the feed water,

(mM) [41]

Na+ 24.35
Ca2+ 7.48
Cl− 14.95

NO3
− 0.98

SO4
2− 11.69

Water recovery
0.3 0.5 0.7

Concentration of ionic
species in the product water,

(mM)

Na+ 13.21 17.44 22.64
Ca2+ 1.28 2.50 5.19
Cl− 9.23 11.53 14.19

NO3
− 0.62 0.76 0.93

SO4
2− 2.96 5.07 8.95

Ion removal efficiency, (%)

Na+ 45.76 28.37 7.03
Ca2+ 82.88 66.64 30.62
Cl− 38.25 22.89 5.09

NO3
− 37.21 22.37 5.22

SO4
2− 74.68 56.61 23.43

Ca2+ selectivity 1.81 2.35 4.36
SEC, (kWh/m3) 0.406 0.304 0.217

SECmole, (kWh/mole) 0.065 0.061 0.095
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The simulated water softening performance including concentration of ionic species
in product water, ion removal efficiency, Ca2+ selectivity and specific energy consumption
(SEC) of quasi-steady state MCDI are shown in Table 3. Here, SEC is based on unit
cubic meter of product water and calculated as described in Section S5 of the supporting
information. In order to compare with the energy consumed by other water softening
techniques, energy consumption per mole of removed Ca2+ is given by:

SECmole =
SEC

∆cCa2+
(9)

where ∆cCa
2+ is the concentration reduction of Ca2+ in product water during desalination.

Quasi-steady state effluent concentration curves (see Figure S4) are reached within
five adsorption/desorption cycles. Under the same water recovery, the removal efficiency
of divalent ion is higher than that of monovalent ion with selectivity shown in Table 3.
As water recovery increases, overall removal efficiency of each ionic species decreases
due to incomplete desorption from the electrodes as a result of shortening of the regenera-
tion/desorption time while Ca2+ selectivity increases. The increased product water causes
SEC to decrease with increasing water recovery, while SECmole varies but can increase at
high water recovery since short regeneration/desorption times are used at high water
recoveries reducing Ca2+ removal. The SECmole values in this case study are an order
of magnitude less than the reported values from other water softening techniques [39].
Overall, MCDI is energy efficient for partially softening industrial cooling tower blowdown
water under moderate water recovery.

Figure 4 shows the major components of SEC including energy consumption of pump,
external resistance and cell pair and the energy stored in EDL under fractional water
recoveries of 0.3, 0.5 and 0.7.
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Figure 4. Specific energy consumption (SEC) with the contribution of each component including
pump, external resistance and cell pair and the energy stored in electric double layer (EDL) with
varying water recovery under quasi-steady state in cut-off constant voltage (CV) mode MCDI for
partially softening industrial cooling tower blowdown water. Flow rate is 0.35 L/hr. Applied voltage
is 0.4 V.

Pump losses are the major energy losses, especially at low water recovery. Since
water recovery is tuned by adjusting operating time of regeneration step, lower water
recovery indicates longer regeneration and reduced water production, increasing relative
pump energy consumption. External resistive losses account for 10–20% of the total
energy consumption. The recoverable energy is not significantly affected by varying water
recovery, so the recoverable energy as a proportion of the SEC increases with water recovery.
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In order to reduce SEC, permeability of the porous media spacer should be increased to
reduce the pressure drop through the porous spacer-filled channel. Meanwhile, external
resistance, especially contact resistance of MCDI elements, should be lowered to bring
down the resistive losses.

3.3.2. Domestic Tap Water Softening Scenario

Softening domestic tap water helps address scaling issues and enhances the efficacy
of soaps. Considering the relatively low hardness in tap water, slight softening is often
sufficient and necessary to avoid corrosion [42]. In this case study, a cut-off CV mode MCDI
is used for slightly softening domestic tap water with the major mineral compositions from
Ref. [43] shown in Table 4. Anions in tap water are assumed to be Cl−. Water recovery is
also tuned by adjusting the operating time of regeneration while keeping the same flow
rate for both desalination and regeneration steps. The operating conditions are shown in
Table 2.

Table 4. Water softening performance and energy behaviors of quasi-steady state MCDI for slightly
softening domestic tap water.

Parameter Value

Concentration of ionic species in
the feed water, (mM) [43]

Na+ 1.65
Ca2+ 0.75
K+ 0.13

Mg2+ 0.38
Cl− 4.04

Water recovery
0.5 0.7

Concentration of ionic species in
the product water, (mM)

Na+ 1.44 1.58
Ca2+ 0.53 0.66
K+ 0.11 0.13

Mg2+ 0.27 0.34
Cl− 3.16 3.71

Ion removal efficiency, (%)

Na+ 12.94 4.38
Ca2+ 28.90 11.43
K+ 12.80 1.63

Mg2+ 28.58 10.78
Cl− 21.80 8.12

Ca2+ selectivity 2.23 2.61
Mg2+ selectivity 2.21 2.46
SEC, (kWh/m3) 0.077 0.055

SECmole, (kWh/mole) 0.356 0.256

The simulated cell performance, such as concentration of ionic species in product
water, ion removal efficiency, Ca2+ selectivity, Mg2+ selectivity and SEC of quasi-steady
state MCDI are shown in Table 4. Since a relatively high water recovery is often preferred
for tap water treatment, water recovery is set to 0.5 and 0.7. SECmole is also based upon unit
mole of Ca2+ removed.

Under the same water recovery, Ca2+ removal efficiency and selectivity are slightly
higher than those of Mg2+. This is due to the dual effects of the higher feed concentration
and smaller hydrated ion radius of Ca2+. Increasing water recovery leads to an increase in
the selectivity of both Ca2+ and Mg2+ and a decrease in SEC and SECmole, but reduces the
removal efficiencies of all ionic species because of incomplete regeneration of the electrodes.
SEC is very low for tap water softening. The SEC values are an order of magnitude less
than those reported in a tap water softening study via electrochemical process [42]. Hence,
MCDI is energy efficient for slightly softening tap water under moderate water recovery.

Figure 5 shows the major components of SEC including energy consumption of pump,
external resistance and cell pair and the energy stored in EDL under water recovery of 0.5
and 0.7.
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Figure 5. (a) SEC with the contribution of each component including pump, external resistance and cell pair and the
energy stored in EDL with varying water recovery under quasi-steady state in cut-off CV mode MCDI for slightly softening
domestic tap water; (b) SEC without pump losses. Applied voltage is 0.08 V.

Although increasing water recovery shortens the operating time of regeneration
and thus reduces pump losses, pump losses still account for 95% of the energy usage in
these simulations although the permeability of the cell spacer can influence that amount.
External resistive losses are negligible due to the low external current during desalination,
which is attributed to the low applied voltage together with the high resistance of tap
water. The recoverable energy increases slightly with increasing water recovery, but is
also negligible compared to the huge pump losses. Hence, when softening super low
concentration solution such as tap water, reducing pump losses can significantly enhance
energy efficiency.

4. Conclusions

In this work, our proposed two-dimensional MCDI process model was extended to
incorporate excluded ion volume effects, making it possible to distinguish the adsorption
behavior of equally charged ions with different hydrated ion radii as well as the selectivity
toward divalent ions. Trade-offs between Ca2+ selectivity and Ca2+ removal efficiency
were observed in a Ca2+-Na+-Cl− solution under either varying applied voltage or varying
initial concentration ratios of cations in a cut-off CV mode MCDI. This extended MCDI
model was further applied to evaluating water softening performance of a cut-off CV
mode MCDI for industrial cooling tower blowdown water and domestic tap water. The
SEC of each case was an order of magnitude less than the reported values from other
water softening techniques, indicating MCDI to be energy efficient for partially softening
industrial waters and slightly softening tap waters under moderate water recovery. Pump
losses become dominant for softening super low concentration solutions, such as tap
water. Hence, improving the permeability of the porous spacer to reduce the hydraulic
pressure drop can reduce the pump energy and save energy. The proposed model can be
applied to predicting water softening performance for saline waters with low content of
foulants. Pretreatment is required for waters with high content of foulants. The proposed
model should be modified to incorporate the effects of Faradaic reactions to predict water
softening performance under relatively high applied voltage.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-037
5/11/4/231/s1.
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