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Abstract
Background. Modern molecular pathology workflows in neuro-oncology heavily rely on the integration of morpho-
logic and immunohistochemical patterns for analysis, classification, and prognostication. However, despite the recent 
emergence of digital pathology platforms and artificial intelligence-driven computational image analysis tools, auto-
mating the integration of histomorphologic information found across these multiple studies is challenged by large 
files sizes of whole slide images (WSIs) and shifts/rotations in tissue sections introduced during slide preparation.
Methods. To address this, we develop a workflow that couples different computer vision tools including scale-
invariant feature transform (SIFT) and deep learning to efficiently align and integrate histopathological information 
found across multiple independent studies. We highlight the utility and automation potential of this workflow in the 
molecular subclassification and discovery of previously unappreciated spatial patterns in diffuse gliomas.
Results. First, we show how a SIFT-driven computer vision workflow was effective at automated WSI alignment in a co-
hort of 107 randomly selected surgical neuropathology cases (97/107 (91%) showing appropriate matches, AUC = 0.96). 
This alignment allows our AI-driven diagnostic workflow to not only differentiate different brain tumor types, but also 
integrate and carry out molecular subclassification of diffuse gliomas using relevant immunohistochemical biomarkers 
(IDH1-R132H, ATRX). To highlight the discovery potential of this workflow, we also examined spatial distributions of 
tumors showing heterogenous expression of the proliferation marker MIB1 and Olig2. This analysis helped uncover an 
interesting and unappreciated association of Olig2 positive and proliferative areas in some gliomas (r = 0.62).
Conclusion. This efficient neuropathologist-inspired workflow provides a generalizable approach to help automate 
a variety of advanced immunohistochemically compatible diagnostic and discovery exercises in surgical neuropa-
thology and neuro-oncology.

Key Points

 • We develop an automated workflow to integrate morphologic and molecular data into 
tumor classification.

 • This approach could provide quality assurance and standardization to brain tumor 
classification at remote centers.

Integrating morphologic and molecular 
histopathological features through whole slide image 
registration and deep learning
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Progress in the molecular analysis of patient tissue con-
tinues to substantially revise traditional approaches to 
disease classification and analysis.1,2 As a result, most con-
temporary pathology workflows now rely on an integrated 
approach in which traditional histomorphologic patterns 
found on Hematoxylin and Eosin (H&E)-stained tissue 
sections are examined in tandem with ancillary molecular 
tests. These later studies are often carried out in the form 
of convenient immunohistochemical (IHC) assays on serial 
tissue sections. Many of these analytical steps however re-
main largely manual, qualitative, and difficult to scale across 
large cohorts for discovery.

Recently, breakthroughs in digital pathology have also 
allowed for glass histopathology slides to be digitized into 
high-resolution whole slide images (WSIs) and analyzed by 
computational tools. This has been particularly successful 
through the application of deep convolutional neural net-
works (CNNs) to H&E- and IHC-stained WSIs.3–6 However, 
attempts to automate integration of histomorphologic and 
molecular information found on respective WSIs are scarce. 
One challenge in automating this modern workflow is un-
predictability in tissue rotations and shifts introduced during 
slide preparation that alter the spatial coordinates of tissue 
when WSIs are generated. While human observers use visual 
cues of overall tissue shapes to manually align independent 
sections, the large files sizes of WSIs (~1-2 gigabytes) and 
contrasting colorization between H&E and IHC studies make 
this computationally difficult to streamline. Here, we show 
how adequate WSI alignment can be achieved by pairing 
the image registration tool, scale invariant feature transform 
(SIFT),7 with simple image resizing and pixel intensity nor-
malization steps (Figure 1a). We append this workflow with 
contemporary deep learning tools to automate quantitative 
integration of histopathologic data across multiple studies 
and resolve various known and less well appreciated pat-
terns of tumoral heterogeneity in gliomas.

Methods

Whole Slide Image Registration

Given two WSIs, I1 and I2, both are downsized (bicubic) by 
100×, foregoing cellular level detail but allowing the outline 

of tissue shapes to be retained. Images are then automati-
cally converted to gray scale in order to match the distribu-
tion of pixel intensities found within I2 to those found within 
I1 (histogram matching8). In the case where I1 is an H&E 
image and I2 is an IHC image, this is particularly needed to 
better equalize the different pixel intensity values between 
the two images that hinder alignment. These gray scale im-
ages thus represent a 10,000-fold reduction in pixel count 
with only a single channel. It is important to note that while 
these down-sampled slide avatars provide manageable 
image sizes to carry out WSI alignment, all downstream 
classification steps are carried out on the full resolution 
versions as outlined below. Following the initial auto-
mated processing steps, we use SIFT on these small tissue 
representation images to find features (keypoints and fea-
ture vectors) and then match them using Fast Library for 
Approximate Nearest Neighbors (FLANN).9 Bad matches 
are filtered out using Lowe’s ratio test10 and the following 
conditions are required to be met to create a match:

 1. ≥ 4 matches
 2.  Homography can be estimated using random 

sample consensus (RANSAC)11

 3.  The alignment score is above the cutoff of 71.4% 
(described in the next section)

Because the homography H was computed on the smaller 
images, we scale it appropriately to work on the original 
images as H′ = S × H × S−1 where ∗ is our resize factor 
of 100

S =

Ö
∗ 0 0
0 ∗ 0
0 0 1

è

To determine where a given image patch in I1 belongs 
to in I2, we take its center coordinate and apply H′. The 
transformed coordinate is thus the corresponding center 
coordinate of the image patch in I2. By using the center co-
ordinate, we are able to maximize the robustness of the 
transformation when images are rotated and/or have other 
alterations. Any transformed coordinates in I2 that end up 
out of bounds or in empty space are ignored.

Importance of the Study

Histopathological analysis of brain tumor con-
tinues to remain an important tool for both clin-
ical management and neuro-oncology research. 
The complexity of these analyses has however 
greatly increased in the molecular era with 
a growing number of immunohistochemical 
studies that need to be interpreted in a tandem 
and parallel manner. In this study, we develop 
and demonstrate a generalizable workflow that 
helps address this issue by automating align-
ment of multiple tissue sections generated 

from different immunohistochemistry-based 
molecular studies. We highlight how this spatial 
preservation of tissue coordinates and staining 
patterns, across these multiple studies, pro-
vides improvements to both clinical workup of 
molecularly defined brain tumor entities and 
discovery of novel associations of tumor bio-
markers. Together, this automated workflow 
offers the potential to provide a powerful quality 
assurance and discovery tool for both remote 
and tertiary academic centers respectively.
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Figure 1. Automated WSI registration using scale-invariant feature transform (SIFT). a. Scheme illustrating automated multi-WSI 
alignment and analysis workflow. b–c. H&E and IHC (IDH1-R132H) WSI pairs of contiguous sections of diffuse gliomas. Notice 180° rotation intro-
duced during slide preparation in panel c that makes alignment difficult. d–e. Numerous SIFT feature matchings (red lines) highlight good alignment 
despite these rotations/shifts. f. Scatter plot showing relationship between a tissue overlap alignment score, number of good matches, and human-
based assessment of alignment. g. Receiver operating characteristic (ROC) curve illustrating the accuracy of this SIFT-based matching with varying 
alignment score thresholds. Optimal cutoff: 71.4% (Youden’s index).
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The following summarizes the variations of the align-
ment workflows highlighted in the manuscript:

 1.  Evaluating lesion-only areas on an IHC image 
(Figure 2): Given an H&E (I1) and IHC (I2), the coor-
dinates of all lesional patches (probability score of 
85%) within I1 are transformed using H′ and only 
these coordinates are evaluated on in I2. The en-
tire tissue present in I2 would be evaluated on if the 
alignment conditions listed above fail to be satisfied.

 2.  Evaluating H&E clustered subgroups on an IHC 
image (Figure 3): Given an H&E (I1) and IHC (I2), all 
tissue patches within I1 are extracted and have their 
deep learning feature vector (DLFV) hierarchically 
clustered into computer-based subgroups.12 The co-
ordinates of the tissue patches in a given subgroup 
are transformed using H′ and only these coordi-
nates are evaluated on in I2.

 3.  Correlating IHC images (Figure 4): Given an 
IHC (I1) and IHC (I2), the coordinates of all tissue 
patches within I1 are transformed using H′. The 
image patches belonging to each coordinate 
are iterated over concurrently, examining their 
immunopositivity score at each step.

If I2 fails to be aligned to I1 for any reason, an auxiliary WSI 
I1′, if available, may be used to serve as a “slide-bridge” 
to improve the chances for alignment assuming the 
following:

 1. I1′ is the same specimen as I1 and I2
 2. I1′ is able to be aligned with I1
 3. I2 is able to be aligned with I1′

in which case we would have two resulting homographies 
H∗ and H∗∗. Coordinates would be transformed sequen-
tially as (TH∗∗ ◦ TH∗) (x). The typical tissue thickness of H&E 
and IHC at our institute are 4 and 3 micrometers, respec-
tively. This “bridging” step is therefore especially useful 
in the cases in which multiple IHC studies were carried 
on a given tissue block and alignment is desired between 
two distant H&E/IHC studies in which the overall tissue 
patterns may have changed sufficiently to compromise 
alignment. As all our slides were anonymized prior to the 
commencement of this study, the effect of slide position 
on the slide alignment performance could not be formally 
evaluated and is likely also affected by other tissue factors 
(eg variation in the distinctiveness of tissue shapes across 
specimens).

Code can be found at https://bitbucket.org/
diamandislabii/faust-alignment-2021

Performance Evaluation of Whole Slide Image 
Registration

To evaluate the accuracy of our alignment (tissue overlap 
alignment score) between two whole slide images I1 
and I2, we first extract the coordinates of every possible 
100 × 100 pixel image patch belonging to I1. Assuming the 
homography H′ was able to successfully be computed, 
we transform these coordinates to get the corresponding 

coordinates in I2. Both coordinate lists are iterated over 
concurrently, observing one of the following results at 
each step: (i) Both p1 and p2 are blank, (ii) Both p1 and p2 
are tissue or (iii) p1 is blank but p2 is tissue (or vice versa), 
where p1 and p2 are the image patches located at the cur-
rent coordinate in I1 and I2  respectively. Using these condi-
tions, we compute an alignment score as the percentage:

Tissue alignment score :
(i)+ (ii)

(i)+ (ii)+ (iii)
× 100 %

The image patch size of 100 × 100 for this was chosen as 
we found it small enough to ensure patches were either 
wholly blank or wholly tissue while having an acceptable 
computational runtime. Using a cohort of 107 image pairs 
(H&E and IHC) (Supplementary Table 1), the alignment 
score algorithm took an average of 8 min 40 s to complete 
for each slide and resulted in an AUC of 0.96 (Figure 1g) 
when compared to the ground truth (manual human as-
sessment). Youden’s index13 was used to find a cutoff value 
for our alignment score; calculated to be 71.4%. We used 
tissue alignment score for the purpose of paper, but SIFT-
based alignment only takes ~1 second on average per WSI 
pair.

CNN Optimization and Development of Image 
Training Sets

For the development of the histomorphologic classifier, we 
optimized the widely available VGG19 CNN using transfer 
learning to fine-tune the existing ImageNet-based weight 
matrices towards histological patterns of 16 common 
tissue and brain tumour classes/patterns encountered in 
surgical neuropathology practice. Training images for this 
exercise were retrieved from a previous study and con-
sisted of 172,712 pathologist-annotated image patches 
generated from 973 WSIs.14,15 Closely related tumor types 
(eg meningioma subtypes) or those often requiring mo-
lecular analysis to subtype (eg gliomas) were grouped 
together for simplicity for this H&E model. This model 
reached a validation accuracy of 97.6% among training im-
ages after 50 epochs.

To complement the histomorphologic analysis, IHC 
classifiers were also optimized using transfer learning 
on VGG19 CNN. We used retrospective WSI images 
for training the ATRX and IDH1 classifiers that did not 
overlap with the testing set. Each IHC classifier was 
trained to recognize IHC stains of specific molecular 
markers (ATRX, IDH1-R132H, and MIB-1) relevant for 
molecular subclassification of glioma.16 Training im-
ages for these various classifiers consisted of 4,248 
ATRX and 8,259 IDH1-R132H. Our binary ATRX clas-
sifier (retained/lost) reached a validation accuracy of 
97.8% among training images after 250 epochs. The bi-
nary IDH1-R132H classifier (mutated/negative) reached 
a validation accuracy of 99.3% among training images 
after 250 epochs. For this specific study, our classifiers 
were meant to quantify the overall staining pattern in 
areas defined as diagnostic lesioned tissue. While we 
felt this was sufficient for this specific application, 

https://bitbucket.org/diamandislabii/faust-alignment-2021
https://bitbucket.org/diamandislabii/faust-alignment-2021
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
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the workflow could in theory be updated in future it-
erations with more intricate IHC classifiers that differ-
entiate between tumor and nontumor cells (eg blood 
vessels).

For Ki67/MIB-1 and Olig2 quantification, we developed 
a mask R-CNN-based workflow which uses a nuclei seg-
mentation approach, classifying each detected nucleus as 
positive, negative, or miscellaneous (eg blood cells and 
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Figure 2. Molecular subclassification of diffuse gliomas with WSI registration and convolutional neural network. a. Glioma 
cases can be further subclassified with relevant IHC stains (IDH1-R132H and ATRX) using binary IHC CNNs. b. Confusion matrix of 125 classi-
fied brain tumor cases using our 16 class H&E model. In addition to providing a morphological diagnosis, image segmentation using this model 
provides the spatial reference for lesion-specific IHC assessment following alignment. c. Confusion matrix of subclassification of gliomas with 
lesion-specific IHC assessment following alignment. d. Cartoon illustrating “bridging” approach between other available IHC WSIs to increase the 
proportion of aligned cases. e. Relative proportion of aligned WSIs in this analysis. f–g. Box plots showing the quantitative positive score of IDH1-
R132H and ATRX IHC WSIs before and after alignment. *** denote P < .001 and **** denote P < .0001. h–o. Example of spatial assessment of IDH 
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tissue folds).17 Three MIB-1 stained WSIs (ie meningioma, 
glioblastoma, and small cell neuroendocrine metastatic 
cancer) were sectioned into 128 × 128 image patches that 
were manually annotated by a web-based tool,18 19,502 
annotations across 300 training images. Transfer learning 
was leveraged to fine tune the ResNeXt-101 R-CNN model 
which was pre-trained on the COCO 2017 dataset (~37 
COCO epochs). The final classifier achieved a box average 
precision (AP) of 31.83 and mask AP of 30.14 after 10,000 
epochs.

Development of Prospective Histopathology 
Testing Sets of Whole Slide Images

To test the histomorphologic classifier, 125 diagnostic 
slides from representative and randomly selected clin-
ical cases from our neuropathology service were digi-
tized into whole slide images (WSIs) on the Aperio AT2 
whole slide scanner at an apparent magnification of 20×  
and a compression quality of 0.70. This includes 38 dif-
fuse gliomas, 32 meningiomas, 26 metastatic carcinomas, 

and 29 schwannomas. For our glioma cohort, in addition 
to H&E-stained slides, we also scanned associated IHC 
slides to show how we could mimic the integrated mo-
lecular classification schemes used in routine practice. 
All histomorphologic diagnoses for these cases were re-
viewed by at least 2 board-certified pathologists and 
had corroborating clinical (eg radiology) and molecular 
(eg immunohistochemistry) information to support the 
ground truth label. Only the diagnoses relating to indi-
vidual cases was extracted from the medical records and 
all WSIs were otherwise deidentified. Our study was re-
viewed and approved by The University Health Network 
Research Ethics Board (REB). For the IHC analysis, we took 
the 38 glioma samples from the initial histomorphologic 
analysis and added 9 additional samples for a total of 47 
samples to ensure we had sufficiently covered all major 
adult glioma subtypes (32 astrocytomas, IDH-wildtype, 8 
oligodendrogliomas, and 7 astrocytomas, IDH-mutant). 
We note that all the included glioma cases were either IDH 
wild-type or had the canonical IDH1-R132H mutation de-
tectable by IHC. All cases in which the pathologist could 
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objectively interpret the IDH1-R132H and ATRX stain in 
their pathology reports were included in the cohort without 
any other technical or quality control requirements.

Generating CNNH&E-SIFT-CNNIHC-based 
Interpretations

To reduce classification errors, our SIFT/CNN-based 
workflow also employs a number of quality control met-
rics to flag and remove outlier cases that we previously 
described.14 Briefly, to automate classification of H&E 
slides, image tiles consisting of tissue were extracted and 
only those containing mostly of lesional tissue were con-
sidered (ie Ptile(glioma) + Ptile(mening) + Ptile(met ca) + Ptile 
(schwan) ≥85%). If sufficient lesional tiles are identified 
(≥15), we output the WSI’s probability of inclusion for 
each of the 16 classes by: (i) The average of Ptile across all 
lesional tiles and (ii) The proportion of DLFVtile belonging 
to pre-computed true DLFV’s of a given class. Both DLFVtile 
and Ptile are established using the CNN’s pre-FC and 
softmax output layers respectively.14 Similar to our pre-
vious work, when these predictions are concordant, the 
matching diagnosis provides a high confidence overall 
prediction. Discordant classifications between the two ap-
proaches were classified as challenging/anomalous and 
were omitted as not relevant to the image registration ob-
jectives of this study. Only the high confidence predictions 
were used to estimate the accuracy of the model and work-
flow (n = 125).

From the IHC integration study, we took the 38 glioma 
samples in our initial H&E cohort and added 9 addi-
tional glioma samples to increase our overall cohort size 
(n = 47). For each glioma sample, we obtained the corre-
sponding ATRX, IDH1-R132H, TP53, and MIB-1 IHC stains. 
These additional slides (TP53, MIB1), while not evaluated 
during subclassification, proved helpful for aligning ad-
ditional sets of slides of interest using SIFT. If the slides 
did not meet the alignment score cutoff, they were not 
included in the analysis (Supplementary Fig 7). In total, 
41/47 ATRX and 40/47 IDH1 slides were either aligned or 
re-aligned (Figure 2e). Since IDH1 is required to subclassify 
glioma, we ultimately used a total of 40 gliomas. For this 
immunohistochemistry study, we simplified the glioma 
tree (Figure 2a) so that we would only examine the glioma’s 
ATRX and IDH1-R132H status for its subclassification. After 
SIFT-based alignment (either directly or through an IHC 
slide bridge) the ATRX and IDH1 slides were quantified by 
their respective binary classifiers. Based on the optimal 
cutoff (Youden’s index) determined by the ROC curves 
(62.07% and 10.45% positivity for ATRX and IDH1 classifier 
respectively) (Supplementary Fig 6), the slides were deter-
mined to be either “positive” or “negative” for each stain. 
Once the glioma’s ATRX and IDH1 status were determined, 
we used a human constructed decision-tree to subclassify 
the glioma samples.

Statistics

We used R (v4.0.4), Python (v3.8) to analyze data and gen-
erate figures. Wilcoxon signed-rank (matched pairs) test 
was used to compare differences in IHC quantification 

between whole tissue analysis versus SIFT-based tumor 
analysis. Student’s t-test was used to test the difference 
between red cluster and green cluster in synaptophysin 
positivity. Three asterisks (***) denote P < .001 and four as-
terisks (****) denote P < .0001.

Results

Evaluation of SIFT-based Alignment of H&E- and 
IHC-stained WSIs

Towards testing this fully automated workflow, we digitally 
scanned 107 H&E- and IHC-stained section pairs into WSIs 
spanning common brain tumor types (diffuse gliomas, 
meningiomas, metastatic carcinomas, schwannomas) en-
countered in our neuropathology service (Supplementary 
Table 1). To overcome size and colorization barriers to 
image registration, our workflow carries out bicubic re-
sizing of WSIs into small thumbnail-like images (~100 × re-
duction in size) and normalize pixel intensity distribution of 
the respective IHC through histogram matching, to mirror 
that of the H&E image (Figure 1b–e, Supplementary Fig 1). 
On these resulting images, we use SIFT to find features for 
image matching and filter “good matches” using Lowe’s 
ratio test. The resulting matches are used to generate a 
homography, mapping points from one image to another, 
using random sample consensus.

To evaluate the performance of this approach, we corre-
late an alignment score, defined by the degree of overall 
tissue overlap, with: (i) the number of “good matches” 
from Lowe’s ratio test and (ii): a manual binary human 
assessment of WSI alignment (consensus by three in-
dependent blind observers) (Figure 1f). Overall, 97/107 
(91%) of cases were defined as appropriately matched by 
the human evaluators, with poor matches being associ-
ated with fewer number of good matches by Lowe’s ratio 
test and tissue overlap scores (Figure 1f, Supplementary 
Fig 2-3). The latter alignment score provided a particularly 
sensitive and specific metric for WSI alignment (area under 
the receiver operating characteristic curve (AUC) = 0.96, 
Figure 1g). With a pre-defined threshold of good matches 
as shown in Figure 1f, we are able to align H&E- and IHC-
stained WSIs pairs in under 1  s, providing an attractive 
approach for routine clinical applications and large-scale 
discovery efforts. Interestingly, review of cases with subop-
timal alignments revealed numerous technical limitations 
such as dramatic differences in the overall tissue shapes or 
multiple duplicate (“deeper”) tissue sections on individual 
slides (Supplementary Fig 3).

SIFT-based Spatial Quantification of IHC Stains 
for Subclassification of Glioma

We next wanted to demonstrate how this WSI alignment 
approach could be coupled with contemporary CNN-based 
image analysis to automate resolution of various spatially 
dependent components of inter- and intra-patient tissue 
heterogeneity. To do this, we developed a 16-class H&E and 
several IHC-based CNN classifiers relevant to surgical neu-
ropathology. Briefly, we used sets of pathologist-annotated 

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data


9Faust et al. Integrating morphologic and molecular histopathological features
N

eu
ro-O

n
colog

y 
A

d
van

ces

image patches (516  μm2) generated from WSIs and 
transfer learning to train the VGG19 CNN19 to recognize 
different histomorphologic brain tumor/tissue patterns 
(Supplementary Fig 4).20 This resulting 16-class H&E model 
included images spanning the four common brain tumor 
types (meningiomas, diffuse gliomas, metastases, and 
schwannomas), which in aggregate represent ~80% of rou-
tine clinical practice.1 The remaining 12 classes represented 
normal/nondiagnostic tissue types to allow for lesion seg-
mentation from nondiagnostic regions (eg gray matter, 
white matter, cerebellar tissue, acute and chronic hemor-
rhage, crush artifact, necrosis, radiation necrosis, muscle, 
dura, blank space, and inflammatory cells). For testing, we 
used this model to segment and classify tumor regions 
away from the noncontributory tissue classes and then 
used our IHC classifiers on appropriately aligned sections 
by SIFT to carry out lesion-specific immunohistochemical 
assessments.

To highlight automation potential, we applied our 
workflow to the immunohistochemical subclassification 
of diffuse gliomas into (i) IDH-wildtype astrocytomas, 
(ii) IDH-mutated astrocytomas, and (iii) IDH-mutated 
1p19q-codeleted oligodendrogliomas (Figure 2). Most 
IDH-mutated gliomas (~90%) can be detected by IHC for 
IDH1-R132H mutation (Figure 2a). Within IDH-mutated 
gliomas, loss of ATRX staining is a specific marker for the 
astrocytic lineage. To mimic this molecular- and human-
inspired pathological workup of these cases, we therefore 
developed and applied a serial CNNH&E-SIFT-CNNIHC work-
flow on a prospectively collected set of brain tumors from 
our service. We first used the H&E classifier (CNNH&E) to dif-
ferentiate the four common and distinct brain tumor types 
(98% accuracy, n = 125) (Figure 2b). By aligning IHC WSIs 
relevant to diffuse glioma cases (eg IDH1, ATRX) using 
the SIFT-based workflow, we could also effectively inte-
grate molecular information (CNNIHC) needed for further 
subclassification (n = 47) (Figure 2c). Using the alignment 
cutoffs generated in Figure 1g, we matched 79% and 81% 
of IDH1 and ATRX WSIs with their respective H&E sections. 
Interestingly, we noticed we could also overcome some 
poor alignments due to serial changes in tissue shapes, 
across the different studies, by using other available WSIs 
(eg TP53, MIB1 in addition to ATRX, IDH) as “bridges” be-
tween the H&E and IDH1-R132H/ATRX images (Figure 2d, 
Supplementary Fig 5). This led to 3 additional matches for 
each IHC study and an overall matching frequency of 85% 
and 87%, respectively (Figure 2e). Importantly, the quanti-
tative interpretation of the IHC studies by CNNs following 
alignment significantly improved for almost all ATRX re-
tained and IDH1 positive WSIs with higher scores achieved 
when compared to the overall nonaligned sections  
(P-valueIDH = 1.22 × 10−4; P-valueATRX = 1.02 × 10−5) (Figure 
2f and g, Supplementary Fig 6). Dramatic improvements 
in score came from highly heterogenous samples where 
alignment allowed for appropriate exclusion of noncon-
tributory tissue elements such as necrosis (Figure 2h–o). 
Similar to initial testing of SIFT, unmatched cases often 
had technical limitations such as duplicate tissue sections 
found only on one slide and dramatic changes in overall 
tissue shape (Supplementary Fig 7). Overall, this highlights 
the automation capabilities of framework to integrate 

histomorphologic and IHC-based molecular information 
in a spatially preserved and quantitative manner with gen-
eralizable implications to automating molecularly driven 
subclassification and grading tasks.

SIFT-based Evaluation of Intra-tumoral 
Heterogeneity

We also explored applications of our workflow to var-
ious concepts of intra-tumoral heterogeneity (Figure 3). 
Diffuse gliomas, particularly glioblastomas (GBMs), are 
known to show “multiform” region-to-region variations 
in histomorphologies (eg infiltrative, cellular, and hy-
poxic niches) and molecular markers.21,22 As our 16-class 
supervised CNN model was however not designed to re-
solve intra-tumoral differences (Figure 3a and b), we used 
a previously diversely trained CNN15 to serve as a feature 
extractor and help define areas of morphologic heteroge-
neity. Unsupervised analysis of image patch-level tissue 
patterns highlighted two major histomorphologic clus-
ters (k = 2 agglomerative hierarchical clustering, silhou-
ette score) (Figure 3c and d, Supplementary Fig 8). Despite 
these regions initially appearing as cellular tumor areas 
on H&E, one subregion, following alignment with the 
synaptophysin IHC, could be better defined to represent 
an infiltrative tumor component (Synaptophysin positivity: 
52% vs. 13% (red vs. green clusters), P-value = 2.2 × 10− 16; 
Figure 3e and f, Supplementary Fig 9). This approach could 
therefore serve to automate objective selection of highly 
pure area of tumor of expressed-based molecular analysis 
or explore the heterogenous expression of specific tumor 
markers across different tumor niches.

SIFT-based Discovery of Novel Spatial 
Relationships Between Molecular Markers 
of Gliomas

We also used this workflow to align and examine the 
global spatial variation and relationships in the staining 
patterns of other IHC studies we routinely order for 
gliomas. Perhaps the most interesting example for this 
presented case, was a strong correlation (r = 0.62) when 
aligning mask R-CNN-based estimates of the prolifera-
tion marker Ki-67/MIB1 in each image patch (516 μm2) with 
the values of the glial-lineage transcription factor Olig2 
(Figure 4a–e). This interesting spatial relationship would 
have likely gone unappreciated without matching (r = 0.32, 
Figure 4f). Importantly, the specific case used to highlight 
this relationship was largely all tumor tissue and could not 
be explained solely based on region-to-region variation in 
tumor burden (Figure 4g and h). If it is indeed a reoccurring 
pattern in glioblastoma, this observation could have im-
portant implications for emerging clinical trials using Olig2 
inhibitors, as it suggests this class of compounds may not 
effectively reach slowly dividing/quiescent tumor cells 
that already elude traditional treatment approaches.23,24 
Together, these analyses highlight how this WSI alignment 
approach can also serve as a discovery tool by objectively 
and systematically assessing histomorphologic and mo-
lecular relationships across multiple studies.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac001#supplementary-data
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Discussion

Molecular medicine continues to nominate new bio-
markers and concepts of inter- and intra-patient heteroge-
neity for personalized care. These additional parameters 
however introduce a higher level of complexity for both 
routine disease subclassification, research investigation, 
and discovery. Here we develop an automated image reg-
istration workflow that can handle the large sizes and color 
variability of WSIs. We couple this approach with contem-
porary deep learning tools to highlight applications in 
molecular subclassification of glioma and resolution of 
various aspects of intra-tumor heterogeneity. Importantly, 
this approach can be carried out in less than 1 s and does 
not require any additional training or manual steps making 
it particularly generalizable for WSI comparisons and diag-
nostic workup across other neoplastic and nonneoplastic 
tissue types. Furthermore, the automated nature of this 
workflow can serve as an important discovery platform 
through large-scale, objective, and systematic analysis of 
complex histopathological and molecular patterns of neo-
plastic diseases. Excitingly, this slide alignment approach 
did not require any site-specific validation steps and in 
theory should be generalize well to other centers. However, 
future studies to formally evaluate the performance of this 
approach across laboratories are required given differ-
ences in slide generation protocols across different clinical 
centers (eg slide scanners, staining methods, tissue thick-
ness).25,26 Furthermore, we note that in some cases these 
alignments could occur even in the presence of tissue folds 
and tears in tissue provided that a sufficient number of 
good matches could be secured in other areas of the slide 
(Supplementary Fig 2). It is likely that larger tissue sections 
with more distinctive tissue patterns may be more robust 
to tissue folds and artifacts when compared to smaller and 
less heterogeneous tissue fragments (eg uniform circular 
and rectangular tissue shapes). Such parameters could be 
further explored in future studies to further refine metrics 
in which this workflow is most robust and reliable.

Overall, we expect that efficient approaches to WSI reg-
istration, such as the workflow presented here, to be an 
essential step for advanced data integration across mul-
tiple histopathologic and molecular studies. We believe 
our simple and fully automated approach therefore pro-
vides an important blueprint toward adoption and transla-
tion of computational pathology in the modern molecular 
era.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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