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Abstract

Fetal alcohol spectrum disorder (FASD) is a leading cause of neurodevelopmental disability.

Individuals with FASD may exhibit a characteristic facial appearance that has diagnostic util-

ity. The mechanism by which alcohol disrupts craniofacial development is incompletely under-

stood, as are the genetic factors that can modify individual alcohol vulnerability. Using an

established avian model, we characterized the cranial transcriptome in response to alcohol

to inform the mechanism underlying these cells’ vulnerability. Gallus gallus embryos having

3–6 somites were exposed to 52 mM alcohol and the cranial transcriptomes were sequenced

thereafter. A total of 3422 genes had significantly differential expression. The KEGG path-

ways with the greatest enrichment of differentially expressed gene clusters were Ribosome

(P = 1.2 x 10−17, 67 genes), Oxidative Phosphorylation (P = 4.8 x 10−12, 60 genes), RNA Poly-

merase (P = 2.2 x 10−3, 15 genes) and Spliceosome (P = 2.6 x 10−2, 39 genes). The prepon-

derance of transcripts in these pathways were repressed in response to alcohol. These same

gene clusters also had the greatest altered representation in our previous comparison of neu-

ral crest populations having differential vulnerability to alcohol-induced apoptosis. Comparison

of differentially expressed genes in alcohol-exposed (3422) and untreated, alcohol-vulnerable

(1201) transcriptomes identified 525 overlapping genes of which 257 have the same direction

of transcriptional change. These included 36 ribosomal, 25 oxidative phosphorylation and 7

spliceosome genes. Using a functional approach in zebrafish, partial knockdown of ribosomal

proteins zrpl11, zrpl5a, and zrps3a individually heightened vulnerability to alcohol-induced

craniofacial deficits and increased apoptosis. In humans, haploinsufficiency of several of the

identified ribosomal proteins are causative in craniofacial dysmorphologies such as Treacher

Collins Syndrome and Diamond-Blackfan Anemia. This work suggests ribosome biogenesis

may be a novel target mediating alcohol’s damage to developing neural crest. Our findings

are consistent with observations that gene-environment interactions contribute to vulnerability

in FASD.
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Introduction

Fetal alcohol spectrum disorder (FASD) is a leading cause of permanent neurodevelopmental

disability [1]. Recent estimates for the U.S. suggest it affects 2.8% to 4.6% of school-aged chil-

dren [2] with higher rates in populations with substantial alcohol abuse [3]. Work in animal

models shows that prenatal alcohol exposure (PAE) disrupts neurodevelopmental events

including neuronal survival, proliferation, migration, and synaptogenesis [4]. Alcohol affects

cellular activity through its interactions with target proteins, wherein alcohol displaces water

from select binding sites to alter protein structure and activity [5]. Previously we and others

have reported that alcohol causes the apoptotic death of an early neuroprogenitor population

called the neural crest [6–8]. Disruptions in neural crest development contribute to a charac-

teristic craniofacial dysmorphology that can be diagnostic for some individuals who exhibit

FASD morphological characteristics [9,10]. Using an established chick embryo model of alco-

hol exposure, we showed that alcohol causes craniofacial structural changes consistent with

those of the human disorder [6,9]. We further showed that alcohol causes apoptosis within

neural crest progenitors because it elicits the phosphoinositide-mediated efflux of calcium

from intracellular stores [11]. The subsequent activation of CaMKII phosphorylates and desta-

bilizes transcriptionally active β-catenin, removing essential trophic support from these cells

[12,13].

Vulnerability to FASD varies greatly and can be influenced by pattern and dose of alcohol

consumption. Gene-environment interactions also shape alcohol vulnerability. Early studies

documented that allelic differences in maternal alcohol metabolism affect peak blood alcohol

concentrations and clearance rates, and thereby FASD risk [14]. Genes and signaling pathways

that govern cell survival and development also make significant contributions. For example,

loss-of-function mutations within the sonic hedgehog (shh) signaling pathway heighten the vul-

nerability of developing craniofacial and brain cell populations to alcohol [15,16], as do genes

encoding Vangl2, MARS, and PDGFRA [8,17]. Allelism in PDGFRA is also linked to alcohol

vulnerability in human FASD [8]. Additional candidates at the pathway level have been re-

vealed though systems-level comparisons of genetically-related strains having differential

vulnerability to alcohol-induced teratogenicity. For the headfold-stage mouse embryo, a devel-

opmental stage similar to that studied herein, comparisons of strains having differential alcohol

sensitivity identified multiple KEGG clusters having altered representation in response to alco-

hol including methylation, chromatin organization, pentose phosphate pathway, glycolysis /

gluconeogenesis, ribosome, mRNA splicing, and proteasome [18,19].

We recently performed a similar analysis upon experimentally-naïve, cranial headfolds iso-

lated from genetically-related chick strains that have a well-characterized differential vulnera-

bility to alcohol-induced apoptosis and calcium mobilization [20]. This transcriptome-level

analysis relied on high-throughput sequencing, due to the dynamic annotation of the chick

genome, and revealed significantly altered representation of gene families corresponding to

ribosome biogenesis, oxidative phosphorylation, and spliceosomal signaling pathways, as well

as candidate genes that directly mapped to the previously documented, calcium / β-catenin

apoptotic pathway. That several of these KEGG sets (ribosome, splicing, proteasome) were

conserved between chick and mouse suggested these pathways might also contribute to the

alcohol responses of other vertebrate species including human. Here, we extend that work and

characterize the transcriptome of these same headfold populations in direct response to alco-

hol challenge, hypothesizing that this unbiased approach would reveal novel mechanistic

insights into candidate pathways that could potentially mediate alcohol’s developmental toxic-

ity. We further hypothesized that comparison of this gene set against the previously described

transcriptome comparison of untreated headfolds might additionally reveal candidate genes
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that could potentially modify embryo vulnerability to alcohol. We find that gene clusters dis-

playing the greatest response to alcohol challenge are in the same pathways having the greatest

differential expression in the comparison of experimentally-naïve vulnerable and resistant cell

populations. Haploinsufficiencies in one such gene cluster, ribosome, increase embryo vulner-

ability to alcohol-induced apoptosis and cranial dysmorphology. This transcriptome compari-

son approach offers novel insights into the mechanisms that mediate both alcohol’s

neurotoxicity and genetic vulnerability to that cellular damage.

Methods

Embryo Generation and Ethanol Treatment

Fertile chicken eggs (Gallus gallus) from the commercial layer line Special Black were obtained

from Sunnyside Egg Farm (Beaver Dam, WI). This line was derived approximately 10 generations

ago by crossing Rhode Island Red females with Dekalb Black males. Embryos were incubated to

approximately Hamburger-Hamilton stage 8- to stage 8 (3–4 somites, 27 hr incubation), at which

time eggs were injected with 0.43 mmol USP grade ethanol or isotonic saline as described [21]

and reincubated. Embryos experience a peak alcohol concentration of 50–60 mM ethanol for 90

min, then levels decline rapidly thereafter to baseline (9mM) [22]. The neural folds anterior to

somite pair two were isolated six hours thereafter and flash-frozen. The preponderance of cranial

neural folds comprises neuroprogenitors including neural crest, with minor contributions from

mesendoderm, notochord, and the secondary heart fields.

cDNA Preparation and Sequencing

RNA isolation and quality assurance, as well as cDNA synthesis, purification, and quality assur-

ance, were performed exactly as described previously [20]. Paired-end reads (75 bp) were gener-

ated on an Illumina Genome Analyzer IIx (University of Wisconsin-Madison Biotechnology

Center) with each sample occupying an independent lane on the same flow cell. We sequenced

2 biological replicates for each treatment (two alcohol-treated, two saline-treated). Each sample

contained a pool of 23 individual neural folds and each treatment sequenced a total of 46 indi-

vidual neural folds. Samples were identically-matched with respect to developmental stage and

each contained 5 heads at stage 8+, 5 heads at stage 9-, 9 heads at stage 9, and 4 heads at stage 9

+. This precise distribution of developmental stage is identical to that used in our previous char-

acterization of candidate genes that modify alcohol vulnerability [20], and the careful control of

staging enabled direct comparison of the sequence data sets from these two studies. We showed

elsewhere that headfolds of embryos having 5–8 somites (stages 8+ through 9+) have equivalent

alcohol responses with respect to apoptosis and facial outcome [21,22] and their cranial neural

crest is poised at the onset of epithelial-mesenchymal transformation.

Data Analysis

Analysis of sequencing data was performed as described previously [20], with minimal modifi-

cation. In brief, RNA-Seq sequence reads were filtered through 4 trimming procedures that

removed: (i) reads failing to meet or exceed Illumina’s default chastity threshold of 0.6 over

the first 25 cycles; (ii) reads containing more than 2 contiguous or interspersed ambiguous

nucleotides; (iii) reads with quality scores<20 (Phred scale; 1 error per 100 nucleotides); and

(iv) reads that were shorter than the expected 75 bp. The RNA-Seq module in CLC Genomics

Workbench 5.5 (CLC Bio, Cambridge, MD) was used to map the filtered paired-end reads to

17,108 genes (known or predicted) derived from assembly 4.0 of the Gallus gallus genome

(Ensembl release 73; September 2013). Reads were mapped to the reference genome, individually
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requiring at least 90% of each read to exhibit 80% or greater alignment similarity. Only reads

that mapped uniquely to the reference were included in subsequent analyses. Raw counts of read

mappings were normalized to the reference genome using DESeq v1.10.1 [23] as described previ-

ously [20].

All p-values were adjusted with the Benjamin-Hochberg multiple testing correction to con-

trol the false discovery rate (FDR). Data were evaluated as mean normalized counts vs. disper-

sion, and as mean normalized counts vs. log2 fold change, plotting both empirical dispersion

and fitted values for the former. Because DESeq is generally considered to use a conservative

algorithm, genes were deemed differentially expressed if the adjusted level of significance was

below 0.10. Genes identified as differentially expressed (DE) were submitted to DAVID

[24,25] for GO term analysis. Using the Kyoto Encyclopedia of Genes and Genomes KEGG

[26], pathway analysis was also performed in DAVID v6.7 using the above parameters.

Our previous comparison [20] of differential gene expression in the neural folds of experi-

mentally-naïve alcohol-vulnerable (Hy-Line W98S) and alcohol-resistant (Hy-Line W98D)

embryos used galgal3 release e70 (Ensembl, January 2013). Because gene annotation often

improves with new database releases, we re-analyzed those data by mapping the same RNA-

Seq reads to galgal4 release e73 (Ensembl, September 2013) as above, such that all data sets

would be consistent with the revised genome assembly in the galgal4 release. We then deter-

mined the sets of differentially expressed genes in both datasets. An enrichment analysis for

both GO terms and KEGG pathways was then performed on this set of differentially expressed

genes as described above. Finally, we determined the intersection of differentially expressed

genes in the vulnerable/responder sets and tested those genes for GO term and KEGG pathway

enrichment. All data utilized herein from study [20] thus represent a reanalysis using the

updated galgal4 release e73.

Zebrafish Morpholino Study

Translation-blocking morpholinos were designed and purchased from Gene Tools (Philomath,

OR). Sequences used in this study were (5’-TTTGCCGACTGCCATGTGAACAC-3’) for RPS3A

(MO1-rps3a) [27], (5’-ACCCATTTTGTGATCGTTTGTTCTC-3’) for RPL5A (MO1-rpl5a)

[27], and (5’-CTTCTTCTCGCTCTGGTCCGCCATG-3’) for RPL11 (MO1-rpl11) [27,28]. A

standardized nonsense morpholino (5’-CCTCTTACCTCAGTTACAATTTATA-3’)was used as

an irrelevant sequence control. Zebrafish (Danio rerio) eggs (outbred strain 5D, gift of R. Tan-

guay, Oregon State University) at the 1-cell or 2-cell stage were collected and sorted from an on-

site population of breeders. Zebrafish studies were reviewed and approved by the UW-Madison

IACUC under protocol #A005104. Approximately 5 nl of morpholino diluted in 1X Danieau

solution was injected into the yolk with a beveled 20 μM inner-diameter bore micropipette (Ori-

gio A/S, Denmark) that was connected to an ASI MPPI-3 pulse injector (Eugene, OR). The con-

centration of each morpholino injected was 30 μM (rps3a), 600 μM (rpl5a), 0.0625 μM (rpl11),

and 100 μM (control), and were defined empirically such that they did not cause appreciable

apoptosis or facial dysmorphology, minimizing risks for off-target effects [29]. At 70% epiboly,

chorionated embryos were exposed for 3 hrs to 241 mM ethanol (1.5%) in fish water, and this

dose produces an alcohol concentration within the embryo of 86 mM (0.5%) [30]. This dosage

and exposure window causes a calcium-dependent neural crest apoptosis and facial malforma-

tions in zebrafish embryos which parallel those of the chick model [30]. At four days post-fertili-

zation (dpf), embryos injected with either rps3a or rpl5a were euthanized and stained with

Alcian Blue following the protocol described in Carvan, et al., [31]. Injection into the embryo of

rpl11 morpholino at concentrations at greater than 0.25 μM were lethal or caused abnormal

development at 24 hpf. When the concentration of rpl11 morpholino was reduced to 0.0625 μM,
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embryos survived and were morphologically comparable with control embryos through 3 dpf, at

which time they were processed in the same manner as RPS3A and RPL5A.

The DeadEnd Fluorometric TUNEL System (Promega, WI) was used to visualize frag-

mented DNA in apoptotic cells. Zebrafish embryos were injected with rps3a, rpl5a, or rpl11
morpholino as described above. Embryos were enzymatically dechorionated with Pronase [32]

at 4hpf, and treated at 75% epiboly with 42 mM alcohol for three hours. The alcohol was then

washed away and the embryos were incubated an additional 2hr without alcohol and then

were fixed at 12hpf (~4–6 somites) and stained for TUNEL at 12hpf as previously described

[30]. Enumeration of TUNEL+ cells in 10–12 embryos per treatment was analyzed using a

one-way analysis of variance followed by pairwise multiple comparisons using the Holm-Sidak

method (SigmaPlot, San Jose CA).

Results

Differential Gene Expression in Response to Alcohol

Whole transcriptome sequencing of cranial neural folds treated with alcohol or isotonic saline

yielded 92.2 and 84.2 million reads, respectively, after trimming. The cumulative distribution of

read alignments across transcript targets was nearly identical in each dataset, with 80.84% and

81.90% mappable reads for alcohol and saline, respectively. Of those sequences that mapped to

an annotated region in assembly 4.0 of the Gallus gallus genome (Ensembl release 73; September

2013), 78.7% and 78.5% mapped uniquely and exhibited an average mismatch per base of 0.53%.

The number of reads mapping to two or more sites averaged 2.17% and 3.48%, respectively.

Because technical variation is generally accepted to be minimal in RNA-Seq platforms [33], the

magnitude of transcript count dispersion derives primarily from biological variation. A plot of

normalized expression vs. magnitude of dispersion in saline and alcohol treatments showed that

dispersion decreased as read counts increased (S1A Fig). However, many values below the fitted

values in the dispersion plot may underestimate the true biological dispersion. To be conserva-

tive, the DESeq algorithm moves all empirical dispersion values below the fitted estimate to that

estimate. All the other empirical values above the fitted line remain, even if some of these are

over-estimates of dispersion [23]. Thus, more dispersion between read counts in saline and alco-

hol treatments, due to true biological variation, is required for statistical significance. We found

3,422 genes were differentially expressed (BH corrected FDR at P< 0.10; S1 Table) between the

transcriptomes of neural folds treated with alcohol or isotonic saline; the preponderance (80.6%,

2849 genes) were below the FDR cut-off of<0.05. The plot of normalized expression versus log2

fold-change of transcript abundance (S1B Fig) shows more down-regulated (1,924) than up-reg-

ulated (1,498) transcripts in cells treated with alcohol.

GO term analysis of the 3,422 differentially expressed transcripts revealed that the func-

tional designations of genes with the most enriched transcript representation were Biological

Process (723 genes), Cellular Component (1182 genes), and Molecular Function (1780 genes)

(Table 1). The five most significant enrichments of GO terms within each category include

genes associated with ribosome biogenesis, oxidative phosphorylation processes, and protein

kinase activities. Importantly, these significant enrichments distributed among the three func-

tional designations were strikingly similar to those previously identified as having altered

expression in the experimentally-naïve alcohol-vulnerable cranial neural folds that were ana-

lyzed in the absence of alcohol exposure [20]. The gene distribution within these GO subcate-

gories is presented in S2 Fig.

The most statistically significant pathway identified by KEGG enrichment was Ribosome

(#03010; P = 1.2 x 10−17) with 53 (see below) genes having altered expression. Other signifi-

cantly enriched pathways in response to alcohol exposure included oxidative phosphorylation
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(#00190; 60 genes, P = 4.8 x 10−12), RNA polymerase (#03020; 15 genes, P = 2.2 x 10−03) and

spliceosome (#03040; 39 genes, P = 2.6 x 10−02). These gene lists are presented in Table 2.

Comparison of Alcohol-Responsive and Alcohol-Vulnerable Gene Sets

Three out of four of the KEGG gene pathways with significantly enriched gene representation 6

hr post-alcohol challenge (ribosome, oxidative phosphorylation, spliceosome) were the same

three KEGG pathways that had significantly altered representation in our previous comparison of

alcohol-vulnerable and alcohol-resistant cranial neural folds, which were analyzed in the absence

of alcohol exposure [20]. We hypothesized that the intersection of these two gene sets could repre-

sent candidate genes for modulating alcohol vulnerability. The original analysis of experimen-

tally-naïve, alcohol vulnerable/resistant neuroprogenitors utilized the Galgal3 e70 (January 2013)

genome assembly, and to facilitate the present comparison we first remapped those data onto Gal-

gal4 e73 (September 2013). Afterwards, the number of differentially expressed transcripts

increased from 363 [20] to 1201 (S2 Table), and 74.5% (895 genes) of these were below the FDR

cut-off of 0.05. Of the original 363 differentially expressed genes, 72% (N = 260) of Ensembl gen-

eIDs mapped to identical entries in Galgal4 e73. An additional 30 gene names present in e70, but

with different geneIDs, were also mapped to the e73 release. Nineteen gene names that were pres-

ent in galgal3 e70 were no longer identifiable in the galgal4 e73 release. Possible explanations for

their absence include annotation changes, elimination/archival of “novel” genes, and changes to

the reference sequence and/or assembly. Overall, 80% (N = 290) of the differentially expressed

genes mapping to the e70 release were present in the galgal4 e73 release. Of the 1201 differentially

expressed transcripts, 48% (N = 574) were down-regulated in the vulnerable embryos. The four

most significant KEGG pathway enrichments in the remapped data set were Ribosome (36 genes,

P = 1.3 x 10−17), Oxidative Phosphorylation (31 genes, P = 6.5 x 10−07), Cardiac Muscle Contrac-

tion (14 genes, P = 7.7 x 10−03), and Spliceosome (20 genes, P = 2.9 x 10−02). These enriched

Table 1. Gene Ontogeny Term Enrichments for Differentially Expressed Genes in Alcohol-Exposed Cranial Neural Folds.

# Genes % of Total BH-Corrected P-Value

Biological Processes (723 genes)

Translation 85 2.9 4.70 x 10−15

Phosphorus metabolic process 149 5.2 4.90 x 10−05

Phosphate metabolic process 149 5.2 4.90 x 10−05

Phosphorylation 127 4.4 2.00 x 10−04

Generation of precursor metabolites and energy 48 1.7 6.50 x 10−04

Cellular Component (1182 genes)

Ribosome 67 2.3 1.10 x 10−20

Ribonucleoprotein complex 87 3.0 2.30 x 10−18

Mitochondrion 105 3.6 2.20 x 10−109

Mitochondrial part 58 2.0 1.90 x 10−06

Mitochondrial membrane 46 1.6 1.50 x 10−05

Molecular Function (1780 genes)

Structural constituent of the ribosome 62 2.1 1.50 x 10−19

Protein serine/threonine kinase activity 71 2.5 2.80 x 10−03

Protein kinase activity 97 3.4 3.40 x 10−02

RNA binding 62 2.1 3.80 x 10−02

Nucleotide binding 290 10.0 3.10 x 10−02

doi:10.1371/journal.pone.0169351.t001
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KEGG pathways were identical to those identified in our previous study (S3 Table). The GO term

clustering also remained unchanged by the remapping.

The intersection of the alcohol-treated (3422 genes) and experimentally-naïve alcohol-vul-

nerable (1201 genes) data sets contained 525 genes (S4 Table). KEGG pathway analysis of the

525 genes again revealed that the most prevalent enrichments were for Ribosome (36 genes,

P = 6.8 x 10−30), Oxidative Phosphorylation (25 genes, P = 1.8 x 10−10), Spliceosome (7 genes,

P = 8.6 x 10−01), and Cardiac Muscle Contraction (10 genes, P = 2.5 x 10−03) (Table 3). Within

Table 2. KEGG Pathway Enrichments in Alcohol-Exposed Cranial Neural Folds.

KEGG Pathway #

Genes*
BH-CorrectedSignificance Gene Name

Ribosome 53 (67) 1.2 x 10−17 RPL3, RPL4, RPL5, RPL6, RPL7, RPL7A, RPL8, PRL9**, RPL10A, RPL10L**,

RPL11/TCEB3**, RPL12, RPL13, RPL14, RPL15, RPL17L, RPL18A, RPL19,

RPL21**, RPL22, RPL22L1**, RPL23, RPL23A, RPL24, RPL26, RPL27, RPL27A,

RPL29**, RPL30, RPL31, RPL32**, RPL35, RPL35A, RPL36, RPL37, RPL37A,

RPL38, RPL39, RPLP0, RPLP1, RPLP2, RPS2**, RPS3, RPS3A, RPS4, RPS6,

RPS6KA3**, RPS6KA6**, RPS6KB2**, RPS8, RPS10**, RPS11, RPS12, RPS13,

RPS14, RPS15, RPS15A, RPS16**, RPS17**, RPS19BP1**, RPS20, RPS23**,

RPS24, RPS25, RPS26**, RPS27A, RPS28, RPS29, RPSA

Oxidative

Phosphorylation

60 4.8 x 10−12 SDHB, NDUFA2, UQCR11, ATP5G1, NDUFA8, ATP5F1, ATP5A1W, NDUFB6,

ATP6V1G3, UQCRC2, NDUF55, PPA1, NDUFB10, NDUFB8, COX4I1, UQCRC1,

NDUFAB1, ATP5C1, ATP6V1G1, COX6A1, COX15, SDHD, ATP5H, UQCR10,

NDUFS3, NDUFB3, NDUFA1, NDUFB5, ATP6V0C, ATP5G3, ATXN3, NDUFS6,

COX8A, COX5A, NDUFV2, ATP6V1A, RBF, ATP5J, COX7A2, ATP5O**, NDUFB9,

UQCRH, NDUFS8, MT-CYB, MT-ND5, MT-ND4, MT-ND3, MT-CO3. ATP6, gga-mir-

3527, MT-CO1, MT-ND2, MT-ND1, ATP6V0E2, NDUFA11**, ND4L, ATP5B

RNA Polymerase 15 2.2 x 10−03 POLR2C, RASA4**, POLR2D, POLR2E, POLR3A, POLR2L, POLR1D, POLR2H,

POLR3F; POLR1C, POLR3H, RPB6, POLR2I, POLR1A, POLR3K

Spliceosome 39 2.6 x 10−02 SNRPE, HNRNPM, LSM7, SNRNP40, ZMAT2, SF3A3, BCAS2, SNRPC, LSM4,

BUD31, PPIH, CCDC12, SNRPD3, SNRPA1, ALYREF, SNRPB, EIF4A3, PRPF4,

NAA38, HNRNPA3, AQR, PRPF38A, MAGOH, SNRPF, HSP70, SNRPD1, NHP2L1,

PPIE, SYF2, SRSF7, FAM136A, SNRNP27, PRPF19, PUF60, THOC1, U2AF1,

SF3B14, CWC15, THOC3

Cardiac

MuscleContraction

20 2.2 x 10−01 TNNT2, UQCR11, TNNC1, UQCRC2, ATP1B3, COX4I1, UQCRC1, COX6A1,

LOC771947**, UQCR10, CACNA2D1, ACTC1, ACTA1, COX8A, COX5A, COX7A2,

UQCRH, MT-CYB, MT-CO3, gga-mir-3527, MT-CO1

* The number of genes reflects e73 annotation (Sept 2013), but gene names may have since been assigned in e78 (Dec 2014). Thus, the number of gene

names may exceed the total number of genes.

** For genes that were left blank or listed as Novel in e73, we used the most recent annotation, e78.

doi:10.1371/journal.pone.0169351.t002

Table 3. Comparison of KEGG Pathway Enrichments and Gene Overlap between Alcohol-Exposed and Experimentally-Naïve Alcohol-Vulnerable

Gene Sets.

KEGG pathway Alcohol

Exposed

BH-FDR

Significance*
Alcohol

Vulnerable

BH-FDR

Significance

Gene

Overlap

BH-FDR

Significance

Ribosome 53 (67) 1.2 x 10−17 36 1.3 x 10−17 36 6.8 x 10−30

Oxidative

Phosphorylation

60 4.8 x 10−12 31 6.5 x 10−07 25 1.8 x 10−10

RNA Polymerase 15 2.2 x 10−03 4 9.7 x 10−01 4 5.9 x 10−01

Spliceosome 39 2.6 x 10−02 20 1.0 x 10−03 7 8.6 x 10−01

Cardiac Muscle

Contraction

20 2.2 x 10−01 14 2.0 x 10−04 10 2.5 x 10−03

* Benjamin-Hochberg False Discovery Rate

doi:10.1371/journal.pone.0169351.t003

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 7 / 19



this common set of 525 genes, we then identified the subset of genes that shared the same direc-

tional change in transcriptional abundance in vulnerable/resistant and alcohol-treated neural

folds (Table 4). We hypothesized that this subset may contain candidate genes that, when exposed

to alcohol, exhibit transcriptional changes in a manner even more pronounced than that observed

in vulnerable progenitor cells. The number of overlapping genes in these two sets that concor-

dantly increased or decreased transcript expression was 26 and 243, respectively (S5 Table). The

remaining 256 genes had discordant transcript expression.

Alcohol-Responsive KEGG Pathways

The high concordance in several gene sets between alcohol-treated and experimentally-naïve

alcohol-vulnerable cranial neural folds suggested that these gene clusters might inform mecha-

nisms of alcohol’s action. Based on the analysis of alcohol-treated gene set, we identified five

statistically significant KEGG pathways.

Ribosomal Proteins. The most significantly overrepresented KEGG pathway in alcohol-

treated cells contained 53 genes (P = 1.2 x 10−17) that encoded small (RPS) and large (RPL)

nuclear ribosomal proteins. Because gene annotation in David is not updated regularly, we

also searched for terms in the Ensembl gene description matching the specific KEGG pathway

(e.g. ribosome, spliceosome, oxidative phosphorylation). We also cross-referenced Ensembl

geneIDs to the gene/product names listed in the Gene Ontogeny (GO) database for similar

matches, and this identified twelve additional genes encoding RPS and RPL. Furthermore, the

annotation for the gene names RPL11 and RPL9 changed to TCEB3 (ENSGALG00000003971)

and GGA.41946 (ENSGALG00000000150) respectively. Adding these two genes to the RPL/S

Table 4. Differentially-Expressed Genes Having the Same Directional Change in Alcohol-Exposed and Experimentally-Naïve Alcohol-Vulnerable

Cranial Neural Folds, Grouped by Function.

Decreased Expression Increased

Expression

General Function #

Genes

Gene Names #

Genes

Gene

Names

All Overlapping Genes 243 See S4 Table 26 See S4

Table

Ribosome 29 RPL7, RPL10A, RPL12, RPL17L, RPL18A, RPL19, RPL21, RPL22, RPL23, RPL23A,

RPL24, RPL26, RPL27, RPL29, RPL35, RPL35A, RPL36, RPL37, RPL37A, RPL38,

RPL39, RPLP0, RPS11, RPS4, RPS8, RPS17, RPS23, RPL11/TCEB3, RPL30

0

Ribosome-Related Genes 18 AURKAIP1, DOHH, EBNA1BP2, EIF1, EIF1AY, EIF3D, EIF3K, EIF4E2, GNB2L1,

MRPL9, MRPS34, MRTO4, NOL12, NOP56, POLR1D, POLR3K, TMA7

Oxidative Phosphorylation 17 ATP5A1W, ATP5B, ATP5G1, COX8A, GGA.42010, MT-CO1, MT-CYB, ND4L,

NDUFB6, NDUFB8, NDUFB9, NDUFS5, NDUFS7, NDUFS8, SDHC, UQCR10,

UQCR11

Oxidative Phosphorylation-

Related Genes

5 ALDOC, GAPDH, IDH2, NFU1, PGAM1

Cardiac Muscle Contraction 12 ACTC1, DES, GATA6, MYL2, NKX2-5, PNKD, POPDC2, RBM24, TNNT2, TPM4,

TRIM55, TTN

2 MTM1,

TEAD1

Spliceosome 17 ALYREF, ARL6IP4, BUD31, HNRNPA0, HNRNPA3, HNRNPAB, HNRNPD, HNRNPH3,

LSM1, LSMD1, LUC7L2, MAGOH, NONO, NSRP1, SNRPD3, SNRPF, YBX1

Developmental 9 CHURC1, CRABP2, DKK-1, GGMOXR1, GSK3B, HOXA1, PYGO2, TBX5, WNT4

DNA Methylation 2 DNMT3A, HDAC8

Actin Turnover 9 ACTB, ACTG1, CAPG, CAPZB, DBN1, DSTN, SH3BGRL3, TAGLN 1 TNS3

Microtubules 4 DYNLRB1, TUBG1, TUBB2B, MID1

N-Glycan Synthesis 5 MPI, CALR, PFDN2, SEC13, MVD 1 TNS3

RNA Pol III 7 BTF3, C1QBP, PAF1, POLR2I, SUPT5H, TCEA2, TCEB3,

doi:10.1371/journal.pone.0169351.t004
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gene set gave a grand total of 67 differentially expressed ribosomal protein genes. With the sole

exceptions of two kinases, RPS6KA3 (ENSGALG00000016406) and RPS6KA6 (ENSGALG00

000007097), all the differentially expressed transcripts had reduced expression in response to

alcohol treatment. In addition to reducing transcripts encoding 67 nuclear ribosomal proteins,

alcohol treatment also reduced expression of 35 mitochondrial ribosomal proteins. Alcohol’s

impact extended to other components in protein translation. This included fifteen aminoacyl-

tRNA synthases and two peptidyl-tRNA hydrolases, which provide and recycle charged tRNAs

for protein synthesis, and all these had reduced expression.

Comparison of the Ribosome gene set between alcohol-treated (67 genes) and experimen-

tally-naïve alcohol-vulnerable cranial neural folds (36 genes) confirmed the presence of 36

ribosome-associated proteins shared in both gene sets (Table 3). Within this common gene

set, 28 shared the same directional change in both alcohol-treated and alcohol-vulnerable cells

as compared with their respective controls, and all 28 were decreased. We discovered an addi-

tional 18 genes from the overlapping set that were ribosome-related targets, and these included

several mitochondrial ribosome proteins, eukaryotic translation initiation factors, and proteins

that process rRNA (Table 4). The magnitude of differential expression was consistently greater

in alcohol-treated than for alcohol-vulnerable comparisons.

Oxidative Phosphorylation. The second most significantly over-represented KEGG path-

way in alcohol-treated cells was Oxidative Phosphorylation (P = 4.8 x 10−12), which contained a

cluster of 60 gene entries (Table 3). Of these, nearly all (57) exhibited decreased transcript levels

following alcohol challenge, the exceptions being ATP6V1G3 and ATP6V1A, which contribute

to V-type ATPase, and the deubiquitinating enzyme ATXN3. Of these 60 genes, 25 also mapped

to the experimentally-naïve alcohol-vulnerable gene set and 17 shared the same directional

change, all repressed in both alcohol-treated and alcohol-vulnerable cells as compared with their

respective controls (Table 4). This intersecting set included genes encoding components of the

electron transport chain including the NADH dehydrogenase (ND4L, NDUFB6, NDUFB8,

NDUFB9, NDUFS5, NDUFS8, GGA.42010/NDUFV1), ubiquinone-cytochrome C oxidoreduc-

tase (MT-CYB, UQCR10, UQCR11), cytochrome oxidase (MT-CO1, COX8A), and F1F0ATP

synthase (ATP5A1W, ATP5B, ATP5G1). Several genes within glycolysis, the TCA cycle, and

iron-sulfur cluster biogenesis were also repressed in both cell populations.

RNA Polymerase. The KEGG pathway RNA Polymerase was also significantly over-rep-

resented with 15 differentially expressed genes in response to alcohol exposure and all but one

(PolR1A) were repressed by alcohol (Table 3). Of these, 7 comprise RNA polymerase II, which

synthesizes mRNA, and 7 comprise RNA polymerases I and III, responsible for rRNA and

tRNA synthesis for use in protein translation (Table 4). Four genes involved in RNA Polymer-

ase were also differentially expressed in alcohol-vulnerable cells, but this was not a sufficient

quantity to achieve KEGG pathway significance. Additional genes in the shared data set con-

tribute to the regulation and activity of Pol II.

Spliceosome. Of the 39 differentially expressed spliceosome pathway genes present in the

alcohol-exposed cells, all but two (AQR, HSP70) had reduced expression in response to alcohol

exposure (Tables 3 and 4). Statistically enriched for this pathway (P = 2.6 x 10−2), 7 spliceosome

genes were common to both alcohol-vulnerable and alcohol-treated cells, and of these, peptidyl-

prolyl isomerase H (Cyclophilin H, PPIH) and CCDC12 were reduced in both data sets.

Cardiac muscle contraction. Our previous analysis of experimentally-naïve alcohol-vul-

nerable cells identified the cardiac muscle contraction KEGG pathway as differentially repre-

sented [20]. This finding was replicated in the galgal4 remapped gene analysis (Table 3).

Although this pathway did not have statistically significant altered representation in response

to alcohol (20 genes, P = 2.2 x 10−1), 14 genes in this pathway overlapped between the two

comparisons, omitting those that already were listed in the oxidative phosphorylation pathway.
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These 14 genes encoded multiple proteins within the contractile apparatus (troponin, α-cardiac

actin, titin, desmin, tropomyosin) and transcription factors critical for cardiac specification

(NKX2.5, GATA-6, SRF) and differentiation (MEF2C), and most were reduced in response to

alcohol, whereas the regulatory effectors TEF1 (TEAD1) and myotubularin-1 (MTM1) were

increased.

Validation of Ribosomal Gene Candidates for Alcohol Vulnerability

We hypothesized that gene transcripts that shared common expression differences between alco-

hol-vulnerable and alcohol-exposed cells may be candidate genes contributing to alcohol sensi-

tivity. Using an approach established by Swartz et al. [17], we asked if repression of a candidate

gene would increase vulnerability to alcohol-induced facial deficits and cellular apoptosis as seen

in FASD models. We tested candidate genes in zebrafish, which is amenable to genetic manipu-

lation, has proven utility to evaluate alcohol-sensitive genetic loci [8,17], and undergoes the same

calcium/CaMKII-dependent apoptosis as the chick embryo at comparable developmental stages

[12]. We focused on ribosomal protein genes because they were the most significantly overrepre-

sented KEGG pathway (Table 2), and they contribute to neural crest development [34]. We

selected three ribosomal proteins having significantly reduced expression in alcohol-exposed

cells and that are linked to facial deficits in Diamond-Blackfan anemia (RPL5; zrpl5a, RPL11/

TCEB3; zrpl11) [34] or are known to affect facial development (RPS3A; zrps3a) [27]; the zrpl3a
and zrpl11 morphants recapitulate their transgenic insertional or CRISPR mutation [35–37]. To

test for gene-alcohol interactions, we employed concentrations of morpholinos and alcohol that,

when administered individually, had no or modest effects on craniofacial development.

At four dpf, control zebrafish exhibited normally developed cartilaginous head skeletons

that included the Meckel’s, basihyal, hyosymplectic, and ceratobranchial cartilages of the lower

jaw, and the upper jaw cartilages of the ethmoid plate and trabecula (Fig 1A). Alcohol exposure

reduced the embryo’s overall size and caused modest hypotelorism, cranial skeletal asymme-

tries, and ocular size (Fig 1F). Mandibular cartilage elements were also smaller, and the eth-

moid plate was narrowed, compressed, and shortened, observations consistent with prior

work [17,30,31]. Because morpholinos can have off-target effects, we tested at equivalent con-

centrations a negative control morpholino, and this did not adversely affect craniofacial devel-

opment of nonsense (NS, Fig 1B) or alcohol-treated embryos (Fig 1G). Morpholino repression

of zrps3a (Fig 1C) did not induce appreciable anomalies of the cartilaginous head skeleton,

whereas the addition of alcohol to the zrps3a morphants produced profound facial dys-

morphologies that ablated most cartilaginous elements of the mandible and neurocranium.

Cardiac edema and reduced ocular size were also frequent (Fig 1H). Similar results were

obtained with morpholino zrpl5a (Fig 1D and 1I), which is one of two gene duplications

encoding the paralog of rpl5. Again, the control low-dose embryonic injection of zrpl5a mor-

pholino did not affect cranial morphogenesis (Fig 1D). When treated with alcohol, these same

embryos had ablated cranial elements including the mandible and neurocranium, and marked

hypotelorism (Fig 1I). The zrpl11 morphants were slightly smaller and had normal cartilagi-

nous head skeleton (Fig 1E). Upon addition of alcohol, the most pronounced morphological

change was a considerably foreshortened Meckel’s cartilage with less curvature (Fig 1J), hypo-

telorism, and pronounced cardiac edema. Overall, alcohol administration caused substantial

craniofacial cartilage reductions and losses in the ribosomal protein hypomorphs (Fig 1H–1J)

as compared with the untreated hypomorphs (Fig 1C–1E), or as compared with alcohol treat-

ment of wild-type or nonsense-treated embryos (Fig 1F and 1G).

The craniofacial malformations of the alcohol-exposed, ribosomal protein hypomorphs

were accompanied by an increased occurrence of cellular apoptosis. At 12 hpf (4–6 somites),
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untreated zebrafish embryos exhibited only a few TUNEL+ apoptotic cells in the cranial (Fig

2A, yellow arrow; Fig 2K) and caudal regions (clockwise from arrow). Addition of low-dose

Fig 1. zrps3a, zrpl5a or zrpl11 knockdown heightens vulnerability to alcohol-induced craniofacial deficits in zebrafish embryos. (A-E) Untreated

embryos (A) had normal development of cranial cartilage elements, and these were largely unaffected by treatment with a nonsense morpholino (B) or

morpholinos directed against zrps3a (C), zrpl5a (D), or zrpl11 (E). (F-J) Alcohol treatment modestly reduced the size and shape of cranial cartilage elements

in otherwise normal embryos. Treatment with a nonsense morpholino (G) did not further worsen cranial development. However, the combination of alcohol

with morpholino directed against zrps3a (H), zrpl5a (I), or zrpl11 (J) resulted in ablation of many cranial cartilage elements and reduced ocular size. Embryos

are either 4 dpf (A-D, F-I) or 3 dpf (E, J). All views are ventral with equivalent magnification. Abbreviations used: c, cardiac edema; cb, ceratobranchial; ch,

ceratohyal; ep, ethmoid plate; m, Meckel’s cartilage.

doi:10.1371/journal.pone.0169351.g001

Fig 2. zrps3a, zrpl5a, or zrpl11 Knockdown Heightens Vulnerability to Alcohol-Induced Apoptosis in 12 hpf Zebrafish Embryos. (A-E)

Untreated embryos (A) had few TUNEL+ cells in the cranial region (arrow). Treatment with a nonsense morpholino (B) caused a modest increase in

TUNEL+ cells within the cranial region (arrow), as did morpholinos directed against zrps3a (C), zrpl5a (D), or zrpl11 (E). (F-J) Alcohol treatment (F)

caused appreciable apoptosis within both cranial and somatic regions. The addition of nonsense morpholino treatment (G) did not further increase

TUNEL+ cell numbers in alcohol-treated embryos. However, the combination of alcohol with morpholino directed against zrps3a (H), zrpl5a (I), or

zrpl11 (J) resulted in higher levels of apoptosis within the cranial region as compared with embryos that received the same morpholino and no

alcohol (C-E), or alcohol and no morpholino (F). All views are lateral at equivalent magnification, with rostral at the top and the embryo ‘looking’ left.

Arrow indicates the cranial region. (K) Enumeration of TUNEL+ cranial cells in alcohol- and morpholino-treated embryos. Values are mean ± S.D.

with 10–12 embryos per treatment. * Alcohol group differs from no-alcohol control within a treatment at P<0.05. † Morpholino-treated differs from its

irrelevant-morpholino control at P<0.05. Abbreviation used: Alc, alcohol; C, control; MO, morpholino; y, yolk.

doi:10.1371/journal.pone.0169351.g002
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nonsense morpholino increased slightly the number of TUNEL+ cells (Fig 2B). Morpholino

concentrations not affecting facial outcome (Fig 1C–1E) caused a modest rise in apoptosis for

zrps3a (Fig 2C; P<0.05) and zrpl11 (Fig 2E; P<0.05) but not zrpl5a (Fig 2D). As expected, alco-

hol exposure increased the number of TUNEL+ cells within cranial and more caudal regions

(arrows, Fig 2F and 2K; P<0.05), and the combination of alcohol with zrps3a, zrpl5a, or zrpl11
morpholino, greatly expanded the number of TUNEL+ cells within cranial regions, and to a

lesser extent more caudally (Fig 2H–2J; P<0.05). However, this was not observed with the

nonsense morpholino treated embryos (Fig 2G).

Discussion

Comparative transcriptome profiling has identified pathways and genes that are altered within

6hr of alcohol exposure, providing insights into mechanisms underlying alcohol’s teratogenic-

ity. Pathways of gene clusters having the greatest responsivity included Ribosome, Oxidative

Phosphorylation, RNA Polymerase, and Spliceosome. The preponderance of transcripts within

those clusters had reduced expression in response to alcohol. These pathways mediate nuclear

information flow and comprise a significant portion of the cellular energy budget, particularly

for the rapidly proliferating cells that comprise the early embryo.

Ribosome Biogenesis and Craniofacial Morphogenesis

The significant dysregulation and suppressed transcription within the ribosome protein path-

way offers a novel insight into the mechanism underlying neural crest vulnerability and the

craniofacial deficits caused by PAE. Alcohol broadly impacted this pathway, with significant

reductions in both nuclear and mitochondrial ribosomal proteins, aminoacyl-tRNA synthases

and hydrolases, and components of RNA polymerase I and III. Microarray approaches in

mouse embryos of comparable stage similarly flagged decreased ribosome transcripts as differ-

entiating the alcohol response, although they were suppressed in the alcohol-vulnerable strain

in one study (B6J vs. DBA/J [18]) and in the alcohol-resistant strain in another (B6N vs. B6J

[19]); the discrepancy may reflect differences in dose, exposure route, or analytical platforms.

The consistent repression of this gene cluster across models implicates ribosomes in modifying

alcohol vulnerability. Mechanistic insight is provided by demonstrations that hypomorphs in

several ribosome protein pathway participants in zebrafish (zrps3a, zrpl5a, zrpl11, mars; [17]

and herein) have greater vulnerability to alcohol-induced apoptosis and craniofacial malfor-

mations. Genetic loss-of-function in ribosome biogenesis is also causative in several syn-

dromes that feature craniofacial dysmorphology [34]. In Diamond-Blackfan Anemia, loss-of-

function in RPL5, L11 or L26, or RPS7, S17, S19, or S26 is associated with Cathie facies, short

stature, and upper limb, heart, and urogenital anomalies [38]. Impaired ribosome biogenesis is

also causative in the neurocristopathy Treacher-Collins Syndrome [39]. The responsible gene,

TCOF1, encodes the nucleolar protein treacle essential for rRNA transcription [40]. Impor-

tantly, TCOF1 loss-of-function causes neural crest apoptosis and hypoplasia at the same devel-

opmental stages that are vulnerable to alcohol [41]. A similar role for the RNA polymerase

subunit POLR1C was recently described [42]. The striking parallels between ribosome dysbio-

genesis and alcohol exposure with respect to neural crest survival and facial outcome, and its

significant suppression in response to alcohol, propose the ribosome pathway as a candidate

for causality in FASD facial dysmorphology.

The loss of ribosome production significantly affects neural crest vulnerability to alcohol.

One explanation for this sensitivity is these cells’ exceptional proliferative rate (60%-80%)

[43,44], as ribosome biogenesis occupies a substantive fraction of cellular resources and is there-

fore tightly coordinated with nutrient availability [45]. Insight comes from demonstrations that
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p53 inactivation or loss-of-function prevents neural crest apoptosis and normalizes facial out-

come in animal models of ribosome dysbiogenesis [46–48]. Because of its high energy demand,

dysfunction in ribosome biogenesis acts as a signal of nucleolar stress [49,50]. Under such con-

ditions, components of the ribosome complex become limiting and free ribosome proteins exit

the nucleolus to bind and inactivate murine double minute-2 (MDM2), an ubiquitinase and

repressor of p53. Their interaction stabilizes and activates p53, which then initiates cell cycle

arrest and apoptosis. p53 is elevated in alcohol-treated neural crest [51] and small molecule p53

inhibitors prevented these cells’ apoptosis (Flentke, Garic, Berres, and Smith, submitted). The

increased cranial apoptosis and skeletal deficits in response to alcohol and hypomorphic ribo-

some protein content is compatible with such a mechanism.

The mechanism by which alcohol may induce nucleolar stress is unknown. One possibility

is that transcriptional losses in electron transport genes contribute to an increased cellular

energy deficit. Alcohol suppresses mitochondrial energy generation in diverse cell types, in

part through reduced mitochondrial ribogenesis and protein synthesis [52]. The significant

repression of transcripts encoding mitochondrial ribosomal proteins and oxidative phosphor-

ylation components is consistent with such a mechanism, and preliminary data suggest that

these embryos undergo a sharp reduction in oxygen consumption after exposure to alcohol

(Garic, Berres, and Smith, unpublished data). Ribosome biogenesis is additionally linked to

cellular energy flux through the actions of mTORC1, which promotes ribosome biogenesis

through phosphorylation of RPS6K and RPS6 under anabolic conditions and is suppressed by

AMPK when ATP is limiting [53]. Activation of mTOR by L-leucine in pdgfra loss-of-function

mutants mitigates craniofacial defects in a zebrafish model of FASD (8), implicating suppres-

sion of this pathway in alcohol’s mechanism of action. Reduced energy flux through oxidative

phosphorylation could be a means to precipitate a loss in ribosome biogenesis and a nucleolar

stress condition in response to alcohol exposure.

Mechanisms of Teratogenesis in PAE

Alcohol impairs multiple events of neural crest development including specification, migra-

tion, survival, and differentiation [9]. Alcohol exposure prior to neurulation reduces the pre-

chordal plate [54,55] through its suppression of sonic hedgehog signaling, and thereby reduces

both brain size and neural crest cell numbers [55,56]. The midline deficits in the brain and

face that partly characterize FAS are linked through this shared developmental origin [57]. The

observed reductions in the midline signals SHH and PTCH2, as well as brain segment specifi-

cation factors such as HOXA1, HOXA2, HOXB5, EN1, DBX1, BMP4, and CRABPI and II, are

consistent with this mechanism of alcohol action. Surprisingly, although the alcohol exposure

window targeted events of neural crest induction, there were no expression-level changes in

genes that govern neural crest induction including SNAI1, SNAI2, FOXD3, WNT6, and

WNT1. This suggests that the neural crest reductions that occur in response to alcohol involves

mechanisms distinct from fate determination.

Cardiac abnormalities are among the most common birth defects and affect 0.7% of live

births [58]. The transcriptional data also offer insights into the mechanisms by which PAE

produces heart defects [59]. Although the heart tube was excised prior to analysis, the cranial

tissue also includes cells of the secondary heart field, which resides in the lateral plate meso-

derm immediately adjacent to the neural folds and forms the distal outflow tract myocardium

and smooth muscle of the arterial trunks [60]. At this developmental stage, these early cardio-

myocytes begin to differentiate [61]. The reduced expression of numerous contractile proteins

suggests that alcohol impaired this differentiation process [61]. This interpretation is sup-

ported by significantly reduced expression of regulatory factors that drive formation of the
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primary and secondary heart fields, including MEF2C, NKX2.5, GATA6, HAND1, TBX5,

SRF, and HES1. This may reflect the accompanying reductions in pro-cardiogenic signals such

as BMP4, SHH, and WNT3A [61]. Even transient reductions in contractile protein expression

may reduce cardiac output and thereby cause looping and valvuloseptal malformations [62].

Because 10.2% of pregnant women in the U.S. report any alcohol use and 3.1% report binge

drinking [63], these findings suggest that alcohol abuse may be a greater contributor to cardiac

deficits than generally appreciated.

Conservation of Transcriptional Responses to Alcohol

Many of the observed gene expression changes were also reported in studies of early mouse

neurogenesis, suggesting these responses to alcohol are common and conserved. A microarray

study of mouse head folds (E8) 3hr after maternal alcohol exposure [19] identified 577 tran-

scriptional changes, of which 143 (24.8%) also had altered representation in our RNA-Seq data

set, including genes encoding ribosome proteins, proteasomes, splicing, and energy produc-

tion. Downing et al. [18] also found significant ribosomal and mRNA splicing enrichments in

the comparison of vulnerable and resistant mouse strains 3hr after maternal alcohol exposure

at E9.3. Comparisons at the individual gene level were not meaningful due to differences in

analytical platforms and the dynamic annotation of these gene sets. Although other functional

enrichments were not present in our study, this can be explained by differences in analytical

platforms, alcohol dose and timing, model organism, and the incomplete gene annotation.

The shared detection of ribosome and splicing enrichments in these models do suggest con-

served responses to alcohol during early organogenesis.

Alcohol-Responsive Genes Predict Genes that Confer Alcohol

Vulnerability

Gene clusters having the greatest altered representation between control and alcohol-treated

cells–ribosomal proteins, oxidative phosphorylation, and spliceosome–were the same gene

clusters having the greatest differential representation between experimentally-naïve alcohol-

vulnerable and alcohol-resistant cells [20]. These same gene clusters also emerged in the origi-

nal mapping of differential vulnerability and thus the remapping did not alter that study’s cen-

tral conclusions [20]; rather, it further enhanced its data quality. In nearly all differentially

expressed genes encoding ribosomes and oxidative phosphorylation, expression was reduced

in response to alcohol, thus suggesting that alcohol vulnerability may have been conferred by

reduced expression of these genes. Our functional assays in zebrafish support this hypothesis

with respect to ribosomal proteins. Reductions in three ribosomal protein genes sensitized the

embryos to alcohol-induced apoptosis, facial malformations, and cardiac irregularities.

Although the use of morpholinos for gene knockdown is a limitation of this work due to a

potential for off-target effects [29], we observed this gene-environment interaction at hypo-

morphic morpholino concentrations that in themselves caused only modest facial alterations

[27,35–37]. Identification of the ribosome protein enrichment pathway is also consistent with

a recent genetic screen that identified methionine tRNA synthase (MARS) loss-of-function as

enhancing alcohol vulnerability [17]. In the current study, alcohol significantly reduced the

expression of fifteen aminoacyl tRNA synthases including MARS and more broadly implicates

tRNA metabolism in alcohol vulnerability. Transfer RNA metabolism may have a mechanistic

role because a ready supply of aminoacyl-tRNA is necessary for ribosome biogenesis and

translation activity [64]. Additional alcohol vulnerability candidates held in common with the

zebrafish model include FOXI2 (0.763-fold), VANGL1 (1.806-fold), and PDGFRB (1.976-fold)
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[8,17]; SNPs within PDGFRB and PDGFRA are associated with altered facial outcome in indi-

viduals with PAE [8].

In summary, our results highlight this approach’s efficacy to formulate new, mechanistic

hypotheses regarding alcohol’s developmental damage. Ribosome biogenesis may be a novel

and primary target modulating alcohol’s damage to developing neural crest populations, and its

linkage is consistent with the known effects of ribosome dysbiogenesis on this cell population.

This work validates that gene-environment interactions contribute to vulnerability in FASD.

Supporting Information

S1 Fig. Quality Analysis for High-Throughput Sequencing of Alcohol-Treated and Alco-

hol-Untreated Cranial Neural Folds. (A, B) (A) Plot of normalized expression vs. magnitude

of dispersion for control and alcohol treatments. Black dots indicate the empirical dispersion.

Line of best fit is indicated in red. (B) Plot of normalized expression versus log2 fold-change

(mean expression alcohol/control) in transcript abundance. Transcripts with significantly dif-

ferent abundance following alcohol treatment are shown in red.

(PDF)

S2 Fig. Gene Ontologies (GO) Having Significant Differential Expression in Alcohol-

Exposed Cranial Neural Folds. (A-C) For each ontology, the number of represented gene

transcripts for each term is indicated. For each term category, the percentage of transcripts is

indicated. (A) Biological Processes. (B) Cellular Component. (C) Molecular Function.

(PDF)

S1 Table. List of 3422 Genes Having Differential Expression in Alcohol-Exposed Cranial

Neural Folds. Red boxes indicate genes having differential annotation entries.

(XLSX)

S2 Table. List of 1201 Differentially-Expressed Transcripts in Experimentally-Naïve, Alco-

hol-Vulnerable versus Alcohol-Resistant Cranial Neural Foldsas Mapped onto the Galgal4

e73 Assembly. Red boxes indicate genes having different annotation entries. This table repre-

sents a reanalysis, using new annotations, of the sequencing data originally described in [18].

(XLSX)

S3 Table. Comparison of Differentially Represented KEGG Pathways in Alcohol-Vulnerable

Versus Alcohol-Resistant Cranial Neural Folds in Galgal3 (e70) and Galgal4 (e73). Galgal3

e70 data were obtained from Garic et al., 2014 [18]. The two parenthetical values reflect additional

genes in the KEGG pathway between the two releases with different geneID or name entries.

(DOCX)

S4 Table. List of 525 Differentially Expressed Genes Held in Common between Alcohol-

Exposed and Alcohol-Vulnerable Cranial Neural Folds.

(XLSX)

S5 Table. Expression-Level Comparisons of 525 Differentially Expressed Genes Held in

Common between Alcohol-Exposed and Experimentally-Naïve, Alcohol-Vulnerable Cra-

nial Neural Folds.

(XLSX)

Acknowledgments

We thank Chris Downing for generously providing the gene list file from Ref [18], and Mark

Wilke from Sunnyside Farms for providing the Special Black eggs.

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 15 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0169351.s007


Author Contributions

Conceptualization: SMS MEB GRF.

Data curation: MEB.

Formal analysis: AG GRF MEB SMS.

Funding acquisition: SMS.

Investigation: AG GRF MEB.

Methodology: AG GRF MEB SMS.

Project administration: SMS.

Resources: AG GRF MEB SMS.

Software: MEB.

Supervision: SMS.

Validation: AG GRF MEB SMS.

Visualization: GRF MEB SMS.

Writing – original draft: AG MEB SMS.

Writing – review & editing: AG GRF MEB SMS.

References
1. Mattson SN, Roesch SC, Glass L, Deweese BN, Coles CD, Kable JA, et al. Further development of a

neurobehavioral profile of fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2013; 37(3):517–28.

doi: 10.1111/j.1530-0277.2012.01952.x PMID: 22974253

2. May PA, Baete A, Russo J, Elliott AJ, Blankenship J, Kalberg WO, et al. Prevalence and characteristics

of fetal alcohol spectrum disorders. Pediatrics. 2014; 134(5):855–66. doi: 10.1542/peds.2013-3319

PMID: 25349310

3. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, et al. Prevalence and epide-

miologic characteristics of FASD from various research methods with an emphasis on recent in-school

studies. Dev Disabil Res Rev. 2009; 15(3):176–92. doi: 10.1002/ddrr.68 PMID: 19731384

4. Miller MW. Brain development: normal processes and the effects of alcohol and nicotine. Miller MW,

editor. New York: Oxford University Press; 2006. xv, 404 pp.

5. Mihic SJ, Ye Q, Wick MJ, Koltchine VV, Krasowski MD, Finn SE, et al. Sites of alcohol and volatile

anaesthetic action on GABA(A) and glycine receptors. Nature. 1997; 389(6649):385–9. doi: 10.1038/

38738 PMID: 9311780

6. Cartwright MM, Tessmer LL, Smith SM. Ethanol-induced neural crest apoptosis is coincident with their

endogenous death, but is mechanistically distinct. Alcohol Clin Exp Res. 1998; 22(1):142–9. PMID:

9514299

7. Dunty WC Jr., Chen SY, Zucker RM, Dehart DB, Sulik KK. Selective vulnerability of embryonic cell pop-

ulations to ethanol-induced apoptosis: implications for alcohol-related birth defects and neurodevelop-

mental disorder. Alcohol Clin Exp Res. 2001; 25(10):1523–35. PMID: 11696674

8. McCarthy N, Wetherill L, Lovely CB, Swartz ME, Foroud TM, Eberhart JK. Pdgfra protects against etha-

nol-induced craniofacial defects in a zebrafish model of FASD. Development. 2013; 140(15):3254–65.

doi: 10.1242/dev.094938 PMID: 23861062

9. Smith SM, Garic A, Flentke GR, Berres ME. Neural crest development in fetal alcohol syndrome. Birth

Defects Res C Embryo Today. 2014; 102(3):210–20. doi: 10.1002/bdrc.21078 PMID: 25219761

10. Klingenberg CP, Wetherill L, Rogers J, Moore E, Ward R, Autti-Ramo I, et al. Prenatal alcohol exposure

alters the patterns of facial asymmetry. Alcohol. 2010; 44(7–8):649–57. doi: 10.1016/j.alcohol.2009.10.

016 PMID: 20060678

11. Garic-Stankovic A, Hernandez MR, Chiang PJ, Debelak-Kragtorp KA, Flentke GR, Armant DR, et al.

Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin-sensitive G

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 16 / 19

http://dx.doi.org/10.1111/j.1530-0277.2012.01952.x
http://www.ncbi.nlm.nih.gov/pubmed/22974253
http://dx.doi.org/10.1542/peds.2013-3319
http://www.ncbi.nlm.nih.gov/pubmed/25349310
http://dx.doi.org/10.1002/ddrr.68
http://www.ncbi.nlm.nih.gov/pubmed/19731384
http://dx.doi.org/10.1038/38738
http://dx.doi.org/10.1038/38738
http://www.ncbi.nlm.nih.gov/pubmed/9311780
http://www.ncbi.nlm.nih.gov/pubmed/9514299
http://www.ncbi.nlm.nih.gov/pubmed/11696674
http://dx.doi.org/10.1242/dev.094938
http://www.ncbi.nlm.nih.gov/pubmed/23861062
http://dx.doi.org/10.1002/bdrc.21078
http://www.ncbi.nlm.nih.gov/pubmed/25219761
http://dx.doi.org/10.1016/j.alcohol.2009.10.016
http://dx.doi.org/10.1016/j.alcohol.2009.10.016
http://www.ncbi.nlm.nih.gov/pubmed/20060678


protein and a phospholipase Cbeta-dependent Ca2+ transient. Alcohol Clin Exp Res. 2005; 29

(7):1237–46. PMID: 16046880

12. Flentke GR, Garic A, Amberger E, Hernandez M, Smith SM. Calcium-mediated repression of beta-cate-

nin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol

syndrome. Birth Defects Res A Clin Mol Teratol. 2011; 91(7):591–602. doi: 10.1002/bdra.20833 PMID:

21630427

13. Flentke GR, Garic A, Hernandez M, Smith SM. CaMKII represses transcriptionally active beta-catenin

to mediate acute ethanol neurodegeneration and can phosphorylate beta-catenin. J Neurochem. 2014;

128(4):523–35. doi: 10.1111/jnc.12464 PMID: 24117889

14. McCarver DG, Thomasson HR, Martier SS, Sokol RJ, Li T. Alcohol dehydrogenase-2*3 allele protects

against alcohol-related birth defects among African Americans. J Pharmacol Exp Ther. 1997; 283

(3):1095–101. PMID: 9399981

15. Hong M, Krauss RS. Cdon mutation and fetal ethanol exposure synergize to produce midline signaling

defects and holoprosencephaly spectrum disorders in mice. PLoS Genet. 2012; 8(10):e1002999. doi:

10.1371/journal.pgen.1002999 PMID: 23071453

16. Kietzman HW, Everson JL, Sulik KK, Lipinski RJ. The teratogenic effects of prenatal ethanol exposure

are exacerbated by Sonic Hedgehog or GLI2 haploinsufficiency in the mouse. PLoS One. 2014; 9(2):

e89448. doi: 10.1371/journal.pone.0089448 PMID: 24586787

17. Swartz ME, Wells MB, Griffin M, McCarthy N, Lovely CB, McGurk P, et al. A screen of zebrafish mutants

identifies ethanol-sensitive genetic loci. Alcohol Clin Exp Res. 2014; 38(3):694–703. doi: 10.1111/acer.

12286 PMID: 24164477

18. Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ. Gene expression

changes in C57BL/6J and DBA/2J mice following prenatal alcohol exposure. Alcohol Clin Exp Res.

2012; 36(9):1519–29. doi: 10.1111/j.1530-0277.2012.01757.x PMID: 22530671

19. Green ML, Singh AV, Zhang Y, Nemeth KA, Sulik KK, Knudsen TB. Reprogramming of genetic net-

works during initiation of the Fetal Alcohol Syndrome. Dev Dyn. 2007; 236(2):613–31. doi: 10.1002/

dvdy.21048 PMID: 17200951

20. Garic A, Berres ME, Smith SM. High-throughput transcriptome sequencing identifies candidate genetic

modifiers of vulnerability to fetal alcohol spectrum disorders. Alcohol Clin Exp Res. 2014; 38(7):1874–

82. doi: 10.1111/acer.12457 PMID: 24962712

21. Cartwright MM, Smith SM. Stage-dependent effects of ethanol on cranial neural crest cell development:

partial basis for the phenotypic variations observed in fetal alcohol syndrome. Alcohol Clin Exp Res.

1995; 19(6):1454–62. PMID: 8749810

22. Debelak KA, Smith SM. Avian genetic background modulates the neural crest apoptosis induced by eth-

anol exposure. Alcohol Clin Exp Res. 2000; 24(3):307–14. PMID: 10776667

23. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11

(10):R106. doi: 10.1186/gb-2010-11-10-r106 PMID: 20979621

24. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using

DAVID bioinformatics resources. Nat Protoc. 2009; 4(1):44–57. doi: 10.1038/nprot.2008.211 PMID:

19131956

25. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources:

expanded annotation database and novel algorithms to better extract biology from large gene lists.

Nucleic Acids Res. 2007; 35(Web Server issue):W169–75. doi: 10.1093/nar/gkm415 PMID: 17576678

26. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28

(1):27–30. PMID: 10592173

27. Uechi T, Nakajima Y, Nakao A, Torihara H, Chakraborty A, Inoue K, et al. Ribosomal protein gene

knockdown causes developmental defects in zebrafish. PLoS One. 2006; 1:e37. doi: 10.1371/journal.

pone.0000037 PMID: 17183665

28. Chakraborty A, Uechi T, Higa S, Torihara H, Kenmochi N. Loss of ribosomal protein L11 affects zebra-

fish embryonic development through a p53-dependent apoptotic response. PLoS One. 2009; 4(1):

e4152. doi: 10.1371/journal.pone.0004152 PMID: 19129914

29. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals

poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015; 32

(1):97–108. doi: 10.1016/j.devcel.2014.11.018 PMID: 25533206

30. Flentke GR, Klingler RH, Tanguay RL, Carvan MJ 3rd, Smith SM. An evolutionarily conserved mecha-

nism of calcium-dependent neurotoxicity in a zebrafish model of fetal alcohol spectrum disorders. Alco-

hol Clin Exp Res. 2014; 38(5):1255–65. doi: 10.1111/acer.12360 PMID: 24512079

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 17 / 19

http://www.ncbi.nlm.nih.gov/pubmed/16046880
http://dx.doi.org/10.1002/bdra.20833
http://www.ncbi.nlm.nih.gov/pubmed/21630427
http://dx.doi.org/10.1111/jnc.12464
http://www.ncbi.nlm.nih.gov/pubmed/24117889
http://www.ncbi.nlm.nih.gov/pubmed/9399981
http://dx.doi.org/10.1371/journal.pgen.1002999
http://www.ncbi.nlm.nih.gov/pubmed/23071453
http://dx.doi.org/10.1371/journal.pone.0089448
http://www.ncbi.nlm.nih.gov/pubmed/24586787
http://dx.doi.org/10.1111/acer.12286
http://dx.doi.org/10.1111/acer.12286
http://www.ncbi.nlm.nih.gov/pubmed/24164477
http://dx.doi.org/10.1111/j.1530-0277.2012.01757.x
http://www.ncbi.nlm.nih.gov/pubmed/22530671
http://dx.doi.org/10.1002/dvdy.21048
http://dx.doi.org/10.1002/dvdy.21048
http://www.ncbi.nlm.nih.gov/pubmed/17200951
http://dx.doi.org/10.1111/acer.12457
http://www.ncbi.nlm.nih.gov/pubmed/24962712
http://www.ncbi.nlm.nih.gov/pubmed/8749810
http://www.ncbi.nlm.nih.gov/pubmed/10776667
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
http://dx.doi.org/10.1038/nprot.2008.211
http://www.ncbi.nlm.nih.gov/pubmed/19131956
http://dx.doi.org/10.1093/nar/gkm415
http://www.ncbi.nlm.nih.gov/pubmed/17576678
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://dx.doi.org/10.1371/journal.pone.0000037
http://dx.doi.org/10.1371/journal.pone.0000037
http://www.ncbi.nlm.nih.gov/pubmed/17183665
http://dx.doi.org/10.1371/journal.pone.0004152
http://www.ncbi.nlm.nih.gov/pubmed/19129914
http://dx.doi.org/10.1016/j.devcel.2014.11.018
http://www.ncbi.nlm.nih.gov/pubmed/25533206
http://dx.doi.org/10.1111/acer.12360
http://www.ncbi.nlm.nih.gov/pubmed/24512079


31. Carvan MJ 3rd, Loucks E, Weber DN, Williams FE. Ethanol effects on the developing zebrafish: neuro-

behavior and skeletal morphogenesis. Neurotoxicol Teratol. 2004; 26(6):757–68. doi: 10.1016/j.ntt.

2004.06.016 PMID: 15451040

32. Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, et al. Automated zebrafish chorion

removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity

screens. J Lab Autom. 2012; 17(1):66–74. doi: 10.1177/2211068211432197 PMID: 22357610

33. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical repro-

ducibility and comparison with gene expression arrays. Genome Res. 2008; 18(9):1509–17. doi: 10.

1101/gr.079558.108 PMID: 18550803

34. Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development. Front

Physiol. 2014; 5:26. doi: 10.3389/fphys.2014.00026 PMID: 24550838

35. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N. Identification of 315 genes

essential for early zebrafish development. Proc Natl Acad Sci U S A. 2004; 101(35):12792–7. doi: 10.

1073/pnas.0403929101 PMID: 15256591

36. Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, et al. The role of the DNA dam-

age response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech. 2014; 7

(7):895–905. doi: 10.1242/dmm.015495 PMID: 24812435

37. Liu D, Wang Z, Xiao A, Zhang Y, Li W, Zu Y, et al. Efficient gene targeting in zebrafish mediated by a

zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics. 2014; 41

(1):43–6. doi: 10.1016/j.jgg.2013.11.004 PMID: 24480746

38. Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, et al. Diagnosing and treating Diamond

Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol. 2008; 142

(6):859–76. doi: 10.1111/j.1365-2141.2008.07269.x PMID: 18671700

39. Trainor PA. Craniofacial birth defects: The role of neural crest cells in the etiology and pathogenesis of

Treacher Collins syndrome and the potential for prevention. Am J Med Genet A. 2010; 152A(12):2984–

94. doi: 10.1002/ajmg.a.33454 PMID: 20734335

40. Valdez BC, Henning D, So RB, Dixon J, Dixon MJ. The Treacher Collins syndrome (TCOF1) gene prod-

uct is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc

Natl Acad Sci U S A. 2004; 101(29):10709–14. doi: 10.1073/pnas.0402492101 PMID: 15249688

41. Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, et al. Tcof1/Treacle is required for

neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl

Acad Sci U S A. 2006; 103(36):13403–8. doi: 10.1073/pnas.0603730103 PMID: 16938878

42. Lau MC, Kwong EM, Lai KP, Li JW, Ho JC, Chan TF, et al. Pathogenesis of POLR1C-dependent Type

3 Treacher Collins Syndrome revealed by a zebrafish model. Biochim Biophys Acta. 2016; 1862

(6):1147–58. doi: 10.1016/j.bbadis.2016.03.005 PMID: 26972049

43. Burstyn-Cohen T, Kalcheim C. Association between the cell cycle and neural crest delamination

through specific regulation of G1/S transition. Dev Cell. 2002; 3(3):383–95. PMID: 12361601

44. Rinon A, Molchadsky A, Nathan E, Yovel G, Rotter V, Sarig R, et al. p53 coordinates cranial neural

crest cell growth and epithelial-mesenchymal transition/delamination processes. Development. 2011;

138(9):1827–38. doi: 10.1242/dev.053645 PMID: 21447558

45. Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999; 24(11):437–

40. PMID: 10542411

46. Danilova N, Sakamoto KM, Lin S. Ribosomal protein S19 deficiency in zebrafish leads to developmental

abnormalities and defective erythropoiesis through activation of p53 protein family. Blood. 2008; 112

(13):5228–37. doi: 10.1182/blood-2008-01-132290 PMID: 18515656

47. Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, et al. Prevention of the neurocristopathy

Treacher Collins syndrome through inhibition of p53 function. Nat Med. 2008; 14(2):125–33. doi: 10.

1038/nm1725 PMID: 18246078

48. Zhao C, Andreeva V, Gibert Y, LaBonty M, Lattanzi V, Prabhudesai S, et al. Tissue specific roles for the

ribosome biogenesis factor Wdr43 in zebrafish development. PLoS Genet. 2014; 10(1):e1004074. doi:

10.1371/journal.pgen.1004074 PMID: 24497835

49. Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis

and nucleolar stress. Cell Rep. 2013; 5(1):237–47. doi: 10.1016/j.celrep.2013.08.049 PMID: 24120868

50. Deisenroth C, Zhang Y. Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53

pathway. Oncogene. 2010; 29(30):4253–60. doi: 10.1038/onc.2010.189 PMID: 20498634

51. Chen X, Liu J, Feng WK, Wu X, Chen SY. MiR-125b protects against ethanol-induced apoptosis in neu-

ral crest cells and mouse embryos by targeting Bak 1 and PUMA. Exp Neurol. 2015; 271:104–11. doi:

10.1016/j.expneurol.2015.04.026 PMID: 26024858

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 18 / 19

http://dx.doi.org/10.1016/j.ntt.2004.06.016
http://dx.doi.org/10.1016/j.ntt.2004.06.016
http://www.ncbi.nlm.nih.gov/pubmed/15451040
http://dx.doi.org/10.1177/2211068211432197
http://www.ncbi.nlm.nih.gov/pubmed/22357610
http://dx.doi.org/10.1101/gr.079558.108
http://dx.doi.org/10.1101/gr.079558.108
http://www.ncbi.nlm.nih.gov/pubmed/18550803
http://dx.doi.org/10.3389/fphys.2014.00026
http://www.ncbi.nlm.nih.gov/pubmed/24550838
http://dx.doi.org/10.1073/pnas.0403929101
http://dx.doi.org/10.1073/pnas.0403929101
http://www.ncbi.nlm.nih.gov/pubmed/15256591
http://dx.doi.org/10.1242/dmm.015495
http://www.ncbi.nlm.nih.gov/pubmed/24812435
http://dx.doi.org/10.1016/j.jgg.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24480746
http://dx.doi.org/10.1111/j.1365-2141.2008.07269.x
http://www.ncbi.nlm.nih.gov/pubmed/18671700
http://dx.doi.org/10.1002/ajmg.a.33454
http://www.ncbi.nlm.nih.gov/pubmed/20734335
http://dx.doi.org/10.1073/pnas.0402492101
http://www.ncbi.nlm.nih.gov/pubmed/15249688
http://dx.doi.org/10.1073/pnas.0603730103
http://www.ncbi.nlm.nih.gov/pubmed/16938878
http://dx.doi.org/10.1016/j.bbadis.2016.03.005
http://www.ncbi.nlm.nih.gov/pubmed/26972049
http://www.ncbi.nlm.nih.gov/pubmed/12361601
http://dx.doi.org/10.1242/dev.053645
http://www.ncbi.nlm.nih.gov/pubmed/21447558
http://www.ncbi.nlm.nih.gov/pubmed/10542411
http://dx.doi.org/10.1182/blood-2008-01-132290
http://www.ncbi.nlm.nih.gov/pubmed/18515656
http://dx.doi.org/10.1038/nm1725
http://dx.doi.org/10.1038/nm1725
http://www.ncbi.nlm.nih.gov/pubmed/18246078
http://dx.doi.org/10.1371/journal.pgen.1004074
http://www.ncbi.nlm.nih.gov/pubmed/24497835
http://dx.doi.org/10.1016/j.celrep.2013.08.049
http://www.ncbi.nlm.nih.gov/pubmed/24120868
http://dx.doi.org/10.1038/onc.2010.189
http://www.ncbi.nlm.nih.gov/pubmed/20498634
http://dx.doi.org/10.1016/j.expneurol.2015.04.026
http://www.ncbi.nlm.nih.gov/pubmed/26024858


52. Cunningham CC, Bailey SM. Ethanol consumption and liver mitochondria function. Biol Signals Recept.

2001; 10(3–4):271–82. PMID: 11351133

53. Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signaling cross-

talk. Nat Rev Mol Cell Biol 2014; 15:155–162. doi: 10.1038/nrm3757 PMID: 24556838

54. Blader P, Strahle U. Ethanol impairs migration of the prechordal plate in the zebrafish embryo. Dev Biol.

1998; 201(2):185–201. doi: 10.1006/dbio.1998.8995 PMID: 9740658

55. Aoto K, Shikata Y, Higashiyama D, Shiota K, Motoyama J. Fetal ethanol exposure activates protein

kinase A and impairs Shh expression in prechordal mesendoderm cells in the pathogenesis of holopro-

sencephaly. Birth Defects Res A Clin Mol Teratol. 2008; 82(4):224–31. doi: 10.1002/bdra.20447 PMID:

18338389

56. Sulik KK. Critical periods for alcohol teratogenesis in mice, with special reference to the gastrulation

stage of embryogenesis. Ciba Found Symp. 1984; 105:124–41. PMID: 6563984

57. Lipinski RJ, Hammond P, O’Leary-Moore SK, Ament JJ, Pecevich SJ, Jiang Y, et al. Ethanol-induced

face-brain dysmorphology patterns are correlative and exposure-stage dependent. PLoS One. 2012; 7

(8):e43067. doi: 10.1371/journal.pone.0043067 PMID: 22937012

58. Bjornard K, Riehle-Colarusso T, Gilboa SM, Correa A. Patterns in the prevalence of congenital heart

defects, metropolitan Atlanta, 1978 to 2005. Birth Defects Res A Clin Mol Teratol. 2013; 97(2):87–94.

doi: 10.1002/bdra.23111 PMID: 23404870

59. Burd L, Deal E, Rios R, Adickes E, Wynne J, Klug MG. Congenital heart defects and fetal alcohol spec-

trum disorders. Congenit Heart Dis. 2007; 2(4):250–5. doi: 10.1111/j.1747-0803.2007.00105.x PMID:

18377476

60. Dyer LA, Kirby ML. The role of secondary heart field in cardiac development. Dev Biol. 2009; 336

(2):137–144. doi: 10.1016/j.ydbio.2009.10.009 PMID: 19835857

61. Paige SL, Plonowska K, Xu A, Wu SM. Molecular regulation of cardiomyocyte differentiation. Circ Res.

2015; 116(2):341–53. doi: 10.1161/CIRCRESAHA.116.302752 PMID: 25593278

62. McCormick ME, Tzima E. Pulling on my heartstrings: mechanotransduction in cardiac development and

function. Curr Opin Hematol. 2016; 23(3):235–42. doi: 10.1097/MOH.0000000000000240 PMID:

26906028

63. Tan CH, Denny CH, Cheal NE, Sniezek JE, Kanny D. Alcohol use and binge drinking among women of

childbearing age—United States, 2011–2013. MMWR Morb Mortal Wkly Rep. 2015; 64(37):1042–6.

doi: 10.15585/mmwr.mm6437a3 PMID: 26401713

64. Abbott JA, Francklyn CS, Robey-Bond SM. Transfer RNA and human disease. Front Genet. 2014;

5:158. doi: 10.3389/fgene.2014.00158 PMID: 24917879

Ribosome Proteins and Alcohol Vulnerability

PLOS ONE | DOI:10.1371/journal.pone.0169351 January 3, 2017 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/11351133
http://dx.doi.org/10.1038/nrm3757
http://www.ncbi.nlm.nih.gov/pubmed/24556838
http://dx.doi.org/10.1006/dbio.1998.8995
http://www.ncbi.nlm.nih.gov/pubmed/9740658
http://dx.doi.org/10.1002/bdra.20447
http://www.ncbi.nlm.nih.gov/pubmed/18338389
http://www.ncbi.nlm.nih.gov/pubmed/6563984
http://dx.doi.org/10.1371/journal.pone.0043067
http://www.ncbi.nlm.nih.gov/pubmed/22937012
http://dx.doi.org/10.1002/bdra.23111
http://www.ncbi.nlm.nih.gov/pubmed/23404870
http://dx.doi.org/10.1111/j.1747-0803.2007.00105.x
http://www.ncbi.nlm.nih.gov/pubmed/18377476
http://dx.doi.org/10.1016/j.ydbio.2009.10.009
http://www.ncbi.nlm.nih.gov/pubmed/19835857
http://dx.doi.org/10.1161/CIRCRESAHA.116.302752
http://www.ncbi.nlm.nih.gov/pubmed/25593278
http://dx.doi.org/10.1097/MOH.0000000000000240
http://www.ncbi.nlm.nih.gov/pubmed/26906028
http://dx.doi.org/10.15585/mmwr.mm6437a3
http://www.ncbi.nlm.nih.gov/pubmed/26401713
http://dx.doi.org/10.3389/fgene.2014.00158
http://www.ncbi.nlm.nih.gov/pubmed/24917879

