
����������
�������

Citation: Suematsu, K.; Uchiyama,

A.; Watanabe, K.; Shimanoe, K.

Highly Sensitive Carbon Monoxide

Sensor Element with Wide-Range

Humidity Resistance by Loading Pd

Nanoparticles on SnO2 Surface.

Sensors 2022, 22, 2934. https://

doi.org/10.3390/s22082934

Academic Editor: Tae Geun Kim

Received: 28 February 2022

Accepted: 7 April 2022

Published: 11 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Highly Sensitive Carbon Monoxide Sensor Element with
Wide-Range Humidity Resistance by Loading Pd Nanoparticles
on SnO2 Surface
Koichi Suematsu 1 , Akihito Uchiyama 2, Ken Watanabe 1 and Kengo Shimanoe 1,*

1 Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences,
Kyushu University, Kasuga, Fukuoka 816-8580, Japan; suematsu.koichi.682@m.kyushu-u.ac.jp (K.S.);
watanabe.ken.331@m.kyushu-u.ac.jp (K.W.)

2 Department of Molecular and Material Science, Interdisciplinary Graduate School of Engineering Science,
Kyushu University, Kasuga, Fukuoka 816-8580, Japan; uchiyama.akihito.698@s.kyushu-u.ac.jp

* Correspondence: shimanoe.kengo.695@m.kyuhsu-u.ac.jp

Abstract: To develop a highly sensitive carbon monoxide (CO) sensor with a wide range of humidity
resistance, we focused on the Pd loading method on SnO2 nanoparticles and the thickness of the
sensing layer. The Pd nanoparticles were loaded on the SnO2 surface using the surface immobilization
method (SI-Pd/SnO2) and the colloidal protection method (CP-Pd/SnO2). The XPS analysis indicated
that the Pd nanoparticles were a composite of PdO and Pd, regardless of the loading method.
According to the evaluation of the electrical properties at 350 ◦C, the CO response in a humid
atmosphere and the resistance toward humidity change using CP-Pd/SnO2 were higher than those
using SI-Pd/SnO2, even though the Pd loading amount of SI-Pd/SnO2 was slightly larger than that
of CP-Pd/SnO2. In addition, Pd/SnO2 prepared via the CP method with a thinner sensing layer
showed a higher sensor response and greater stability to humidity changes at 300 ◦C, even though
the humidity change influenced the CO response at 250 and 350 ◦C. Thus, the overall design of the
surface Pd, including size, dispersity, and oxidation state, and the sensor fabrication, that is, the
thickness of the sensing layer, offer a high-performance semiconductor-type CO gas sensor with a
wide range of humidity resistance.

Keywords: SnO2; Pd loading; colloidal protection method; CO sensor; humidity resistance

1. Introduction

Carbon monoxide (CO) is widely emitted in the domestic and industrial fields, for
example, in heating systems and vehicle and power plant emissions, even though it is a
harmful gas because of its toxic activity. As a critical issue, poor combustion of the gas
heating system produces CO, which often causes CO poisoning in humans. Thus, rapid and
stable detection in the low-concentration range is in significant demand for CO-detection
devices. As one candidate, the tin dioxide (SnO2)-based semiconductor gas sensor has been
widely investigated because of its high sensitivity, long-term stability, and rapid detection
ability [1–7]. However, the semiconductor gas sensor has a fundamental issue in that it
degrades in the presence of humidity, and the sensor response is drastically influenced
by humidity changes in the atmosphere [8–13]. From another viewpoint, it is possible to
correct the sensor signal of the semiconductor gas sensor using the signal of a humidity
sensor. Due to the recent development of micro-electro mechanical systems (MEMS), both
semiconductor gas sensors and humidity sensors can be mounted in the small sensor
device. However, it is not the best way to apply a compact and low power-consumption
sensor device. Thus, the development of high-performance gas sensors with a wide range
of resistance to changes in humidity and a high sensor response to CO is necessary.

Generally, the electrical resistance of SnO2-based semiconductor gas sensors is at-
tributed to the quantity of the dissociative adsorbed oxygen, as O− and O2−, on the particle
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surface [6,14–18]. When combustible gases such as CO are present in the atmosphere, the
gas molecules react with the adsorbed oxygen, and the electrical resistance decreases. Such
a change in electrical resistance signals is necessary for the detection of gas molecules.
However, if humidity is present in the atmosphere, the hydroxyl groups cover the oxygen
adsorption site, resulting in hydroxyl poisoning [6,12,19,20]. As a result, the electrical
resistance and sensor response are reduced by the disturbed oxygen adsorption.

Many studies have been previously conducted on the prevention of hydroxyl poi-
soning [21–27]. Additive secondary elements, such as oxides and metal particles, are an
effective way to restrict hydroxyl poisoning. For example, some additives, such as NiO [21],
CuO [22], Al [23], and Sb [24], act as hydroxyl absorbers and prevent the formation of
hydroxyl groups on the oxygen adsorption site. The addition of catalytic metal particles
such as Pd and Pt [24–27] is also an attractive way to restrict hydroxyl poisoning. For
example, we previously proposed that Pd on the SnO2 surface provides oxygen adsorption
sites and protects against hydroxyl poisoning [27]. On the other hand, Marikutsa et al.
reported two CO detection mechanisms on the Pd/SnO2 surface in a wet atmosphere [26].
One was that the oxidized Pd, PdO, on SnO2 surface preferentially reacts with CO. It
reduces the PdO, and decreases the electrical resistance of Pd/SnO2, which is based on the
conventional electronic sensitization model [28–30]. The other was that surface OH directly
reacts with CO, and produced H+ reacts with adsorbed oxygen, which is similar to the
water-gas-shift reaction between CO and H2O [31,32]. Hahn et al. proposed that CO reacts
with hydroxyls on the surface of SnO2 to produce the CO2 and H adsorbed on the oxygen,
and this H decreases the electrical resistance [33]. However, according to the report, the
ratio of the water-gas-shift reaction on Pd is lower than other novel metal catalysts [31,32].
Nevertheless, in either case, Pd loading on SnO2 surface enhances the CO response in a
wet atmosphere because of the activation of CO combustion.

Pd/SnO2 is an excellent candidate for a highly sensitive semiconductor CO sensor
with humidity resistance. Accordingly, Pd/SnO2 have been widely used for the commercial
gas sensor [1–3], and have been widely investigated for the development of further high-
performance sensing materials. Previously, we changed the characteristics of Pd by using
different starting materials and investigated the sensor performance in a wet atmosphere.
Accordingly, we reported that the particle size of Pd and the oxidized state are effective in
providing humidity resistance to the sensor performance owing to the catalytic combustion
of Pd [34,35]. In addition, we previously indicated that increasing the Pd loading amount
over 1 mol% with a small particle size and high dispersity improves the sensor response to
CO in a wet atmosphere [27]. Thus, in this study, we aimed to develop high-performance
Pd/SnO2 nanoparticles, focusing on the Pd loading method with small size and high
dispersity and the thickness of the sensing layer as an overall sensor element design.
According to the results, we finally achieved a high sensor response to CO with high
stability to changes in humidity by combining the selection of the Pd loading method and
the fabrication of a thinner sensing layer at the optimum operating temperature.

2. Materials and Methods
2.1. Synthesis of SnO2 and Pd/SnO2 Nanoparticles and Sensor Fabrication

Bare-SnO2 nanoparticles were synthesized starting from SnCl4·5H2O (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan). The SnCl4 solution (1 M) was placed in an
NH4HCO3 (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) solution in a drop-
wise manner, and a white precipitate, a stannic acid gel, was obtained after 12 h. The
obtained gel was dried at 120 ◦C for 12 h and calcined at 600 ◦C for 3 h to obtain SnO2
nanoparticles after washing by centrifugation using deionized water. Pd nanoparticles
were loaded onto the SnO2 nanoparticles using two different processes. A flow chart of the
SnO2 synthesis process and the two types of Pd loading processes are shown in Figure 1.
Pd was loaded from Pd acetate (Pd(CH3COO)2, Tokyo Chemical Industry Co., Ltd., Tokyo,
Japan) via two different procedures. One was based on the surface immobilization method
(SI method), in which SnO2 powder was added to a solution of Pd acetate in ethanol with
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stirring. Pd/SnO2 powder was obtained by drying and calcining at 580 ◦C for 3 h after
filtering the SnO2 powder with colloidal Pd particles. The obtained Pd/SnO2 is referred to
as SI-Pd/SnO2. In another loading method, polyvinylpyrrolidone (PVP; FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan) was dissolved in an ethanol and water mixture
(the volume ratio of ethanol in the ethanol–water mixture was 70%) at 60 ◦C, and then
Pd acetate and SnO2 powder were sequentially added to the solution. Colloidal PVP-Pd
particles were produced by heating at 120 ◦C for 3 h. The obtained SnO2 with PVP-Pd
colloidal particles was collected by centrifugation after cooling, drying, and calcining at
580 ◦C for 3 h to obtain Pd/SnO2 nanoparticles. In this process, colloidal Pd nanoparticles
were protected by PVP [36]. Herein, Pd/SnO2 is referred to as CP-Pd/SnO2. The molar
ratio of Pd was set to 3 mol% for each Pd loading method.
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Figure 1. Flow chart of (a) the SnO2 preparation process, and Pd loading procedures based on the
(b) surface immobilization and (c) colloidal protection methods.

The sensing film was fabricated using the screen-printing technique on an alumina
substrate (9 × 13 × 0.38 mm, Japan Fine Ceramics Company, Ltd., Miyagi, Japan) printed
with a comb-type gold electrode (distance between the lines: 90 µm, area of the sens-
ing layer: 64 mm2). The synthesized powders were mixed with α-terpineol (FUJIFILM
Wako Pure Chemical Corporation, Osaka, Japan) to prepare the sensor paste, which was
screen-printed on the substrate. The thickness of the sensing layer was controlled to ap-
proximately 14 and 30 µm by the ratio of the powders and α-terpineol. Here, ratios of
the powder and α-terpineol were approximately 0.1 g to 240 µL and 0.1 g to 60 µL for
thicknesses of 14 and 30 µm, respectively. The sensor element was attached to the electrical
resistance measurement system with a gas mixture and then sintered at 550 ◦C to prepare
the sensor element.

2.2. Materials and Sensor Evaluation

Pd loading amount on the SnO2 surface was evaluated using wavelength-dispersive
X-ray fluorescence spectroscopy (WDX; Rigaku, ZSX Primus II, Yamanashi, Japan). The
Pd loading amount was determined by the calibration curve method using Pd/SnO2 for
calibration curves with known concentrations. SnO2 and Pd nanoparticles were observed
by using a high-resolution transmission electron microscope (TEM; JEM-ARM200F, JEOL
Ltd., Tokyo, Japan) at 200 kV. The crystal structures of the powders were evaluated by X-ray
diffraction (XRD; Miniflex, Rigaku, Yamanashi, Japan) with CuKα radiation. Specific sur-
face area and pore distribution were analyzed through nitrogen gas adsorption/desorption
using a specific surface area and pore size distribution analyzer (BELSORP-mini II, Micro-
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tracBEL, Osaka, Japan). The oxidation state of the Pd nanoparticles was evaluated using
X-ray photoelectron spectroscopy (XPS; KRATOS ESCA 3400, Kyoto, Shimadzu). The bind-
ing energy was calibrated using the C1s peak (285.0 eV), and a Shirley-type background
correction was applied for assignment.

The electrical properties of the sensor element were measured using the apparatus
equipped with a gas mixing system, humidity introduction systems with a volume of
approximately 163 cm3, sensor measurement chamber with a volume of approximately
39.7 cm3, and a humidity sensor, as schematically described in Figure 2b. The humidity was
introduced by blowing deionized water using the synthetic air gas, and humidity was con-
trolled by mixing of dry and wet gases. The humidity of the measured gas was monitored
using a capacitance-type commercial humidity gas sensor (TR-77Ui; T&D Corporation,
Matsumoto, Japan). The total gas flow rate was adjusted to 100 cm3/min with mass flow
controllers (SEC-series; HORIBA STEC, Kyoto, Japan). The sample gases containing CO
and humidity in air were prepared by diluting the parent gas with purified synthetic air
(air). The sensor element was connected to a standard resistance and voltage across the
standard resistance was measured under an applied voltage (4 V) to estimate the electrical
resistance of the sensor, and the electrical resistance of the sensor was acquired with an
electrometer (Model 2701; Keithley Instruments, Ohio, USA). The sensor response was
defined as Ra/Rg, where Ra and Rg are the electrical resistance in air and CO including
air, respectively.
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Figure 2. (a) Schematic image and photographs of the sensor element and (b) schematic image of
measurement apparatus.

3. Results and Discussion
3.1. Effect of Pd Loading Method on Materials and Electrical Characteristics

A TEM image of the bare-SnO2 nanoparticles is shown in Figure 3a, and the estimated
particle size of SnO2 was approximately 15 nm. There was a difference in the Pd nanopar-
ticles after the preparation of Pd using the SI and CP methods without SnO2 addition.
Figure 3b,c show TEM images of dried Pd nanoparticles using the SI and CP methods,
respectively, and the particle size distributions were estimated as shown in Figure 3d,e,
respectively. According to the particle size distributions, the average particle sizes of SI-Pd
and CP-Pd were 1.9 and 5.8 nm, respectively. This large difference in the average particle
size was probably caused by the PVP protection layer on the Pd nanoparticles of CP-Pd.
Thus, the Pd particle sizes in each loading process were clearly smaller than those of SnO2,
and the Pd nanoparticles obtained via the CP method were successfully coated with PVP.
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Figure 3. TEM images of (a) SnO2 nanoparticles, and Pd nanoparticles after the drying process
using the (b) SI and (c) CP methods without SnO2 nanoparticles. Particle size distributions of the Pd
nanoparticles using the (d) SI and (e) CP methods.

The Pd content in the Pd/SnO2 nanoparticles estimated by WDX was 1.3 and 1.0 mol%
for SI-Pd/SnO2 and CP-Pd/SnO2, respectively. This reduction in the Pd content was proba-
bly due to the weak bonding between the Pd colloidal particles or PVP and SnO2 surfaces.
Therefore, a large portion of Pd was lost during filtration and centrifugation. Figure 4a
shows the XRD patterns of the bare-SnO2, SI-Pd/SnO2, and CP-Pd/SnO2. The peak patterns
were well-matched with the rutile-type tetragonal phase of SnO2 (JCPDS 41-1445), and
additional peaks attributed to Pd due to low Pd concentration and other impurities were
not observed. In addition, no clear shift in the SnO2 peaks was observed, which indicates
that Pd was not incorporated into the SnO2 lattice. The pore diameter distributions are
shown in Figure 4b. The peak pore diameters of bare-SnO2 and SI-Pd/SnO2 were the same,
whereas those of CP-Pd/SnO2 were slightly smaller. The specific surface areas of bare-SnO2,
SI-Pd/SnO2, and CP-Pd/SnO2 were 23.9, 24.5, and 25.3 m2·g−1, respectively. The specific
surface areas were slightly increased by Pd loading. In addition, the specific surface area of
CP-Pd/SnO2 was slightly larger than that of SI-Pd/SnO2, even though the Pd loading of
CP-Pd/SnO2 was smaller. This indicates that the Pd nanoparticles of CP-Pd/SnO2 were
smaller in size and more dispersed than those of SI-Pd/SnO2. The PVP protection layer may
restrict the growth and aggregation of Pd nanoparticles during calcination.
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XPS analysis was performed to evaluate the oxidation state of the Pd on the SnO2
surface. The XPS spectra of Pd3d using SI-Pd/SnO2 and CP-Pd/SnO2 are shown in Figure 5,
and the two peaks obtained consisted of Pd3d5/2 and Pd3d3/2. Based on the peak analysis,
each peak can be separated into two peaks. According to the literature, Pd3d can be
separated into two types of Pd states: Pd0 as a metallic state and Pd2+ as an oxidized state,
and the peak of Pd2+ appears at a high binding energy [26,37]. Thus, both SI-Pd/SnO2 and
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CP-Pd/SnO2 have metallic Pd and PdO phases. According to the literature, the surface of
Pd nanoparticles appears to be in the oxidized phase, and the inside of the Pd nanoparticles
appears to be Pd [28,30].
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Figure 5. XPS spectrum of Pd3d using SI-Pd/SnO2 and CP-Pd/SnO2.

The electrical properties of the bare-SnO2, SI-Pd/SnO2, and CP-Pd/SnO2 with a 30 µm
sensing layer were evaluated at 350 ◦C under various humidity conditions. Figure 6a shows
the H2O concentration dependence of the electrical resistance in air atmosphere. First,
the electrical resistance in dry air increased with Pd loading, and the resistance was not
strongly affected by the loading method. The reason for this increase in electrical resistance
is the p-n junction between SnO2 and PdO [28–30]. Subsequently, the electrical resistance
decreased significantly with the increasing H2O concentration owing to hydroxyl poisoning.
To observe more closely the effect of hydroxyl poisoning, the ratio of the electrical resistance
in dry air (Rdry, air) to that in wet air (Rwet, air) as a function of H2O concentration is plotted
in Figure 6b. It is clear that the ratio of the electrical resistance increased with the H2O
concentration, and the value of Pd/SnO2 was clearly lower than that of bare-SnO2. This
indicates that Pd effectively protected the Pd/SnO2 surface from hydroxyl poisoning.
Pavelko et al. reported that Pd loading on SnO2 showed desorption of H2O at less than
145 ◦C, and thereby almost no hydroxyl groups were formed at higher temperatures [20].
In addition, the ratio of CP-Pd/SnO2 was lower than that of SI-Pd/SnO2, especially at high
H2O concentrations, even though the Pd loading amount was smaller and the nanostructure
was comparable. Thus, the influence of the humidity change on the electrical resistance
was inhibited by Pd loading via the CP method.
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Next, we demonstrate the sensor response to 200 ppm CO under various humidity
conditions. Figure 6c shows the H2O concentration dependence of the sensor response
to 200 ppm of CO at 350 ◦C. In a dry atmosphere, the sensor response to CO using bare-
SnO2 was significantly higher than that of Pd/SnO2. The optimum temperature for the
sensor response generally depends on the gas combustion activity and gas diffusivity in
the sensing layer [5,38,39]. More precisely, the sensor response increases with heating
because the gas combustion activity is enhanced with the temperature. However, the gas
diffusion into the sensing layer tends to be disturbed if the combustion activity is very
high; that is, there is a high temperature, because the combustion is complete on the surface
of the sensing layer, and the byproducts are outgoing from the sensing layer. Thus, the
catalytic loading shifts the optimum sensing temperature downward, and it reduces the
sensor response in the high-temperature range of 350 ◦C. The sensor response to CO was
drastically decreased by introducing H2O owing to hydroxyl poisoning using bare-SnO2.
In contrast, the reduction of the sensor response by H2O was weakened in the case of SI-
Pd/SnO2, and no significant change in the response was observed by the change in the H2O
concentration over 0.5 vol%. Moreover, the sensor response using CP-Pd/SnO2 showed an
increasing tendency over the entire H2O range, including under a dry atmosphere. In other
words, no significant influence of hydroxyl poisoning was observed for the CP-Pd/SnO2
catalyst. Based on previous research, we proposed that the Pd nanoparticle size determines
the humidity dependence of the CO response [34]. To be exact, the sensor response to CO
using Pd/SnO2 with a smaller Pd size (2.3 nm) showed a decreasing tendency toward the
H2O concentration as SI-Pd/SnO2 in Figure 6c, while that with a larger Pd size (5.3 nm)
showed an increasing tendency toward the H2O concentration as CP-Pd/SnO2 in Figure 6c.
However, this does not match the BET analysis in this work. Unfortunately, it is unclear
the reason why the behaviors of the sensor response were different between Pd loading
methods. The sensor response to CO using CP-Pd/SnO2 was higher than that using SI-
Pd/SnO2. When the PdO surface is the active reaction site of CO, the smaller PdO size and
greater dispersion cause the high sensor response to CO in a wet atmosphere because of the
expanding PdO surface. In this case, hydroxyls on the SnO2 probably do not disturb the
CO detection reaction. Hence, the sensor response to CO of CP-Pd/SnO2 should be higher
than that of SI-Pd/SnO2. On the other hand, when the hydroxyls on the Pd/SnO2 surface
determine the sensor response to CO, the SI-Pd/SnO2 should show a higher CO response
than CP-Pd/SnO2, because the ratio of the electrical resistance in dry air to that in wet air
of SI-Pd/SnO2 is greater than that of CP-Pd/SnO2. Thus, an increase in the sensor response
to CO in a wet atmosphere using Pd/SnO2 was probably determined by the electronic
sensitization effect of PdO on the SnO2 surface. Therefore, CP-Pd/SnO2 seems to be better
for expanding the humidity resistance range while maintaining a high sensor response.

3.2. Improving the Sensor Response in a Humid Atmosphere

Collaboration between wide-range humidity resistance and a high sensor response is
crucial for designing the sensor. The sensor response of CP-Pd/SnO2 was not sufficiently
high, with a value of approximately 4–5 for the entire humidity measurement range. Thus,
there remains a second question on how to improve the sensor response while maintaining
humidity resistance. First, the approach of increasing the Pd loading amount was attempted,
which reduced hydroxyl poisoning and enhanced CO combustion. Pd loading was carried
out using the CP method, and the Pd content was increased by adjusting the total amount of
the ethanol and water mixture. Even though the preparation amount of Pd acetate was the
same (3 mol%), decreasing the total amount of the ethanol–water mixture to half increased
the final Pd content in the Pd/SnO2 powder. The Pd content was estimated to be 2.4 mol%
by WDX, and thereby 2.4 and 1.0 mol% CP-Pd/SnO2 were described as CP-2.4Pd/SnO2
and CP-1.0Pd/SnO2, respectively. Unfortunately, it is still unclear why the Pd loading
amount was increased with decreasing the amount of the ethanol–water mixture. The
specific surface area of CP-2.4Pd/SnO2 was approximately 22.4 m2·g−1, which was smaller
than that of CP-1.0 Pd/SnO2 and bare-SnO2. The pore diameter distributions of both
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CP-Pd/SnO2 catalysts are shown in Figure 7a. The number of pores smaller than 25 nm
clearly decreased with the increase in Pd loading. Accordingly, increasing the Pd loading
probably led to the aggregation of Pd particles and filling of the small pores. The XPS
spectrum of Pd3d using CP-2.4Pd/SnO2 is shown in Figure 7b. The XPS spectra of 3d5/2
and 3d3/2 were clearly separated into two peaks, which were attributed to metallic Pd (Pd0)
and oxidized Pd (Pd2+). Hence, the PdO phase was also formed in CP-2.4Pd/SnO2 as in
CP-1.0Pd/SnO2.
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Figure 7. (a) Pore distribution of CP-1.0Pd/SnO2 and CP-2.4Pd/SnO2. (b) XPS spectrum of Pd3d
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The electrical resistance and sensor response to 200 ppm CO were evaluated using
CP-2.4Pd/SnO2 and CP-1.0Pd/SnO2 with a 30 µm sensing layer. Figure 8a,b show the tem-
perature dependence of the electrical resistance in air under dry and wet (80% RH at 25 ◦C)
atmospheres, respectively. As a semiconductor material, the electrical resistance increases
with the decreasing temperature, and the increasing trend of the electrical resistance with
cooling in wet conditions is smaller than that in dry conditions. The ratio of the electrical
resistance in dry to wet conditions as a function of the operating temperature is shown in
Figure 8c. The ratio increases with cooling. This is because the lower the temperature, the
larger the amount of humidity adsorbed on the surface [14]. In addition, increasing the Pd
loading reduced the ratio for the entire measurement temperature range. This indicates that
Pd acts as a humidity-resistant additive. The sensor responses to 200 ppm CO as a function
of the operating temperature in dry and wet (80% RH at 25 ◦C) atmospheres are shown
in Figure 8d,e, respectively. In a dry atmosphere, the effect of the operating temperature
on the sensor response was small for both Pd/SnO2 catalysts. It is likely that the high CO
combustion activity of the Pd nanoparticles restricts the diffusion of CO into the sensing
layer; that is, the utilization efficiency of the sensing layer is very low. In contrast, in a
wet atmosphere, the sensor response clearly increased with cooling, and the positive effect
of the Pd loading amount appeared only at 250 ◦C. The CO combustion activity of Pd is
generally high at high operating temperatures, and therefore a large Pd loading amount
significantly disturbs the CO diffusion into the sensing layer, even in a wet atmosphere.
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Figure 8. Temperature dependence of the electrical resistance in (a) dry air and (b) wet air, and
(c) ratio of the electrical resistance in these atmospheres, and temperature dependence of the sensor
response to 200 ppm CO in (d) dry and (e) wet atmospheres. The demonstration was carried out
using CP-1.0Pd/SnO2 and CP-2.4Pd/SnO2. The humidity of the wet atmosphere was approximately
80% RH at 25 ◦C.

The thickness of the sensing layer is a crucial factor for improving the sensor response
because of the utilization efficiency of the sensing layer [40]. Accordingly, we controlled
the thickness of the sensing layer by adjusting the ratio between the Pd/SnO2 powder and
α-terpineol. The thickness was controlled to approximately 30 µm, which is the sensor
thickness discussed above, and 14 µm. Figure 9 shows the H2O concentration dependence
of the sensor response to 200 ppm CO at 350, 300, and 250 ◦C using CP-1.0Pd/SnO2 and CP-
2.4Pd/SnO2. It is clear that the sensor response using the 14 µm sensing layer is higher than
that at 30 µm, except for the dry atmosphere at 350 ◦C. Thus, the utilization efficiency of the
sensing layer affects the sensor response; that is, the CO combustion activity of Pd restricts
the diffusion of CO into the sensing layer. According to the results, the sensor responses to
CO at 300 and 350 ◦C as a function of H2O concentration exhibited an increasing tendency,
regardless of the Pd loading amount and thickness of the sensing layer. The results show
that strong increasing trends in the sensor response to H2O concentration were obtained in
the thinner sensing layer. In contrast, when the temperature was lowered to 250 ◦C, the
sensor response decreased with the increasing H2O concentration. This may have been
due to hydroxyl poisoning. Moreover, it is noteworthy that the sensor response using
CP-1.0Pd/SnO2 at 300 ◦C with a 14 µm sensing layer exhibited wide-range independence
toward the change in the H2O concentration with a high sensor response of over 10, as
shown in Figure 9b. Thus, the balance of the Pd loading method, Pd amount, and thickness
of the sensing layer accomplishes the collaboration of wide-range humidity resistance
and a high sensor response. According to the best of our knowledge, a lot of researchers
approached to enhance the humidity resistance using catalytic additives on metal oxide
surfaces such as SnO2 and In2O3 [24–27,41–46]. Almost all of them were focused on the
metallic property using Pd, Au, Pt, their composites, and alloys, while our study only used
Pd as an additive and we adjusted the characteristics of Pd by the loading method. The
obtained humidity resistance of this study was comparable with the high-performance
gas sensing material using a complex alloy, even though we used simple Pd/SnO2. Thus,
designs of the Pd/SnO2 from the Pd loading method, Pd loading amount, operating
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temperature, and thickness of the sensing layer are attractive parameters to provide the
humidity resistance as choosing the additives.
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(b,e) 300 ◦C, and (c,f) 250 ◦C using (a–c) CP-1.0Pd/SnO2 and (d–f) CP-2.4Pd/SnO2 with different
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4. Conclusions

In this study, a semiconductor-type CO gas sensor with wide-range humidity resis-
tance and high sensitivity was developed using the Pd loading method as the material
design and the thickness of the sensing layer as the sensor element design. Two types
of Pd loading methods were applied, starting from Pd acetate: one was based on the SI
method, and the other was based on the CP method using PVP. The specific surface area of
CP-Pd/SnO2 with 1.0 mol% Pd was slightly larger than that of SI-Pd/SnO2 with 1.3 mol%
Pd. According to XPS analysis, Pd nanoparticles of Pd/SnO2 were constructed by the
oxidized PdO and metallic Pd phases. The electrical resistance demonstration showed
that Pd loading restricted the significant decrease in the electrical resistance and CO sen-
sor response by hydroxyl poisoning at 350 ◦C. It was probably caused by the electronic
sensitization of Pd on the SnO2 surface. In addition, the CO response of CP-Pd/SnO2
was higher than that of SI-Pd/SnO2. Furthermore, we achieved a wide-range humidity
resistance and high CO response value by thinning the sensing layer to half and lower-
ing the sensor working temperature to 300 ◦C. Therefore, we can say that the balance of
the Pd loading method, thickness of the sensing layer, and sensor working temperature
accomplishes the collaboration of wide-range stability toward humidity change and a
high sensor response. Unfortunately, we still have not determined the quantitative design
of the Pd characteristics such as size, oxidation state, and dispersity on SnO2. We will
clarify the relationship between characteristics of Pd and the loading method in the near
future. Moreover, long-term stability and rapid detection ability are important factors for
the practical semiconductor gas sensors, and these parameters are certainly strengthened
by optimal Pd loading. Therefore, we will establish the overall design of the materials
and sensing layer to develop highly stable, sensitive, and rapid detective semiconductor
gas sensors.
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