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Abstract

Regionalization through the analysis of species groups offers important advantages in con-

servation biology, compared to the single taxon approach in areas of high species richness.

We use a systematic framework for biogeographic regionalization at a regional scale based

on species turnover and environmental drivers (climate variables and soil properties) mainly

of herbaceous plant species richness. To identify phytogeographic regions in the Balsas

Depression (BD), we use Asteraceae species, a family widely distributed in Seasonally Dry

Tropical Forest (SDTF) and the most diverse of the vascular plants in Mexico. Occurrence

records of 571 species were used to apply a quantitative analysis based on the species turn-

over, the rate of changes in their composition between sites (β-Simpson index) and the anal-

ysis of the identified environmental drivers. Also, the environmental predictors that influence

species richness in the SDTF were determined with a redundancy analysis. We identified

and named two phytogeographic districts within the SDTF of the BD (Upper Balsas and

Lower Balsas). According to the multi-response permutation procedure, floristic composition

of the two districts differs significantly, and the richness of exclusive species in Upper Balsas

was higher (292 species) than in the Lower Balsas (32 species). The proportion of Mg and

Ca in the soil and the precipitation of the driest three-month period were the environmental

factors with greatest positive influence on species richness. The division of geographic dis-

tricts subordinated to the province level, based on diverse families such as Asteraceae,

proved to be appropriate to set up strategies for the conservation of the regional flora, since

at this scale, variation in species richness is more evident. Our findings are consistent with a

growing body of biogeographic literature that indicates that the identification of smaller biotic

districts is more efficient for the conservation of biodiversity, particularly of endemic or rare

plants, whose distribution responds more to microhabitats variation.
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Introduction

The geographical distribution of biodiversity shows patterns that repeat in different taxa [1, 2].

These biogeographic patterns allow the recognition of biotic components, defined as sets of

spatio-temporally integrated taxa due to a common history, which characterize geographic

areas or biogeographic regions [2–4]. A biogeographic regionalization is a hierarchical system

that classifies geographic areas in terms of their endemic biota [2, 5, 6], allowing the definition

of homogeneous regions generated from sets of species and the identification of factors that

potentially influence their distribution [7]. Biogeographic regionalization is essential to under-

stand the spatial distribution of biodiversity [8], as well as to identify important areas for their

richness of species and endemisms, which allow to propose strategies for their conservation [9,

10]. Consequently, sets of species with the same distribution are the ideal model to recognize

biotic components, biogeographic regions, and provinces [11, 12].

At present, the availability of databases such as the Global Biodiversity Information Facility

(GBIF) or the National System of Information on Biodiversity (SNIB-CONABIO), has con-

tributed to improving both our understanding of the distribution of species and the analyzes

that allow classifying biogeographic patterns [13, 14]. These databases also allow the applica-

tion of other methods focused on evaluating species turnover, an equally important compo-

nent of biogeographic regionalization [6, 15]. Measures of similarity and differentiation of

especies are essential tools to assess the effects of isolation by distance or geographic barriers,

and to describe changes in species composition along environmental gradients [16]. Regionali-

zation derived from quantitative methods can result in the division of biogeographic districts

that other stakeholders can evaluate and replicate [17].

Regionalization through the analysis of species groups offers important advantages in con-

servation biology, compared to the single taxon approach, especially in areas rich in species,

such as tropical dry seasonal forests (SDTF) [18–22]. In these forests, the conservation of

threatened bioregions is more successful when the remaining fragments are protected rather

than individual species [19, 23]. In this sense, bioregions may act as Biodiversity Hotspots, a

concept based on species richness, endemicity and threat [24, 25].

In Mexico, several studies address biogeographic regionalizations using different groups of

species (e.g., [26–29]). Despite the interest in regionalization at global scales [13], little is

known about regionalization at the provincial level or even at the district or sector level (e.g.,

[30]). Recently, Morrone [31] in a Mexico’s regionalization analysis recognized two regions

(Nearctic and Neotropical) and 14 provinces, which allows a general perspective of how differ-

ent species have assembled in the different geological and climatic conditions. However, bio-

geographic regionalization, at levels lower than regions or provinces, using groups of

representative species, should be more efficient for the application of conservation strategies

[32].

The Balsas Depression (BD), in central western Mexico, is one of the provinces character-

ized by the dominance of the seasonally dry tropical forest (SDTF; 65%) and constitutes a cen-

ter of diversification and endemism, as well as the biogeographic transition between the

Neotropical and Nearctic regions [11, 28]. The complex environmental and biogeographic his-

tory of the SDTF conceives it as a heterogeneous biome and difficult to circumscribe [33]. In

México, the SDTF is distributed mainly in the Pacific slope from southern Sonora and south-

western Chihuahua to Chiapas and on the gulf slope from Tamaulipas to the Yucatán Penin-

sula [34]. Different studies carried out in the SDTFs at local scales, have shown that the

patterns of plant species diversity and richness are driven by the water availability and the soil

properties [35–38]. However, currently few studies (e.g., [39–42]) have focused on the study of

the richness’ drivers of the SDTF at regional or global scales.
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An ideal group for regionalization studies in Mexico is the Asteraceae family, worldwide

recognized for its high species diversity [43] and found also among more diverse families in

the neotropical SDTF [43]. In Mexico, it is among the most diverse and comprehensively stud-

ied families of Angiosperms [44] with 3,057 species [45]. In addition, its species show a signifi-

cant correlation with the total floristic richness. Therefore, it can be considered as a good

biodiversity’ surrogate in Mexico [46]. These characteristics also place it as a good surrogate

for defining biogeographic subregions in areas poorly explored floristically, such as the SDTF

in the BD.

Considering that in the BD the most representative biome is the SDTF, in which the Astera-

ceae are widely distributed, our objectives were: 1) to determine a biogeographic regionaliza-

tion of the SDTF in the BD, based on the Asteraceae’ species turnover, 2) identify the

environmental predictors that determine the Asteraceae’ species richness in the SDTF and, 3)

analyze the relationship between turnover species patterns with environmental predictors. It is

known that the changes in the environmental conditions of each region explain the patterns of

species turnover [47]. Therefore, we hypothesize that an environmental differentiation will

occur in the SDTF of the BD, which will cause the species turnover of the Asteraceae and will

allow us to identify biogeographic regions. The regionalization in the BD will make it possible

to understand the distribution patterns of the Asteraceae, improve the understanding of their

spatial distribution and identify areas with greater relevance due to their species richness, this

information will be useful for future conservation studies.

Materials and methods

Study area

The BD is one of the 17 provinces proposed by Rzedowski [28], located in central Mexico,

with an area of 115,005 km2; it includes part of the states of Guerrero, Jalisco, Mexico, Michoa-

cán, Morelos, Puebla, and Oaxaca. The BD stands out for its species richness and endemism,

the flora comprises 4,442 to 6,800 species of vascular plants, of which 337 are endemic [28, 48,

49]. The biome characteristic in the province is the SDTF [11], with a surface area of 74,753

km2 (65% of the total surface of BD). In Mexico, the SDTF is considered one of the most dis-

tinctive and diverse biomes with more than 6,000 species of plants, 45% endemic [34, 50].

Taxonomic study group

The Asteraceae family stands out worldwide for its species richness; with more than 23,000

species, ranks among the most diverse of flowering plants [43]. In Mexico, Asteraceae is found

in practically all terrestrial ecosystems, which is due to its great species richness and its wide

range of altitudinal distribution (from sea level to high mountain moorlands). Most of the

Asteraceae species are herbaceous, and this life form is the richest in species in the SDTF [51].

However, most of the ecological studies in SDTF have focused on tree species [41, 52]. There-

fore, evaluating the herbaceous life form would provide new information on the environmen-

tal factors that drive species richness and plant composition in the SDTF. This bias must be

eliminated since herbs constitute the growth form with the highest species richness in this

biome [51].

Spatial data

All records of the Asteraceae family reported for the BD were extracted from the SNIB-REMIB

and MEXU-UNIBIO databases. A total of 60,005 records were obtained from this search,

which were systematically cured following the recommendations of Castillo et al. [53] and
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Chapman [54]: as 1) the records that did not have coordinates were georeferenced in Google

Earth (https://www.google.com/earth/), using locality name and description of the herbarium

specimen, 2) exclude the records that were outside the limits of the BD, and 3) eliminate the

records that could not be georeferenced. We reviewed and corrected spatial errors, such as the

coordinates of erroneously georeferenced locations, using the ArcGis 10.2 program [55]. After

the curatorial evaluation, the BD final database consisted of 21,501 Asteraceae records, corre-

sponding to 789 species. From these records, only 7,479 belong to the tropical portion or

SDTF and the others to the temperate zone; they record 571 species, of which 15% are trees,

27% shrubs, and 58% herbs.

Spatial analysis

The process for the biogeographic regionalization of the SDTF of the BD consisted of a series

of analyzes that are detailed in the following sections. Fig 1 shows the workflow for the differ-

ent analyzes carried out that resulted in regionalization and the relationship of the groups

identified with environmental predictors.

Cluster analysis

With the use of the Biodiverse v.2.1 program [56], we identified floristic districts within the

tropical portion of the BD [56]. This program is a tool for the spatial analysis of diversity that

uses indices based on taxonomic relationships. The refined database, including the geographic

coordinates and the taxonomic identification of each record, registered in a set of grid-cells of

0.25˚ × 0.25˚ size was imported into Biodiverse.

We calculated a species turnover matrix for all cell pair combinations, using the β-Simpson
(βSim) dissimilarity index [57]. This index reduces the effect of the species richness imbalance

among the grid-cells, calculated through the following expression:

bSimi;j ¼ 1 �
a

aþmin ðb; cÞ

Where a is the number of common species shared in cells i and j, b is the number found in i
but not in j, and c is the number found in j but not in i. A value close to 0 for βSim indicates

that high proportion of taxa are shared (low turnover), while a high value (>0.8) means a low

proportion of shared taxa (high turnover) between two cells.

Grid cells containing fewer than five records were excluded from the analysis, as small

sample sizes can potentially cause considerable distortions in dissimilarity analyzes [58,

59]. We integrated the data from the excluded grid cells into their neighboring ones; these

exclusion criteria reduced the number form 159 (original subdivision) to only 122 grid

cells (Fig 2).

The dissimilarity matrix was used (βSim) for cluster analysis, using WPGMA clustering

method (weighted pairing groups method using arithmetic mean) by means of the Biodiverse

program. Results of cluster analysis made it possible to identify groups of cells with sets of sim-

ilar species, used to subdivide the SDTF in the BD. The WPGMA algorithm evaluates the con-

tributions of the clusters by the number of terminal nodes (grid cells of the data set) they

contain, ensuring that each cell contributes equally to each fused group of which it is part [60].

We reassigned the unrepresented grid cells to those groups with higher representation. We

evaluated statistically the resulting groups by the Multi-response Permutation Procedure

(MRPP) analysis [61]. This analysis allowed determining if the floristic composition of the

regions differed significantly within the SDTF.
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Ordination analysis

Ordination using non-metric multidimensional scaling (NMDS) is a widely used technique to

obtain low-dimensional projections of multivariate data, by organizing objects (in this case, a

set of grid cells) along the reduced axes according to the taxonomic composition [60]. We car-

ried out the NMDS analysis using the ’metaMDS’ function from the Vegan package in R statis-

tical software. Pairwise distances were calculated using βSim. Among the statistics provided by

the analysis is a stress value, which reflects the amount of error in the correlation between pair-

wise distances in the original matrix and a matrix calculated with the NMDS. Stress values

of� 0.1 indicate excellent representation in reduced dimensions,� 0.2 good and values� 0.3

Fig 1. Schematic workflow of the proposed framework for biogeographic regionalization and spatial analysis at the regional level. Each panel shows the analysis

carried out and the inputs used.

https://doi.org/10.1371/journal.pone.0253152.g001
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provide a poor representation [62]. We extracted and projected on a map in ArcGIS the values

of each cell of the first and second axis of the NMDS.

Selection of SDTF environmental predictors

First, we considered a set of 58 environmental variables at a resolution of 1 km2: 26 climatic

[63], 9 edaphic, 9 topographic, and 14 that include remote sensing data [64]. Subsequently, we

performed a Pearson correlation analysis to rule out variables with high collinearity values.

Once selected the uncorrelated variables, we extracted the values of each 1 km2 pixel using

ArcGis 10.2. These environmental values were added to a 0.25˚ × 0.25˚ grid cell (122 cells in

total), using the average values of each cell.

We identified the environmental predictors with the highest explanatory value of the spe-

cies richness of the SDTF in the BD. This method allows extracting and summarizing the

Fig 2. Location of the Floristic Province of Balsas Depression in Mexico (dark grey area). Distribution of seasonally dry tropical forest (yellow area) in this floristic

province, divided in squares of 0.25˚ × 0.25˚ arc-min.

https://doi.org/10.1371/journal.pone.0253152.g002
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variation in a set of response variables that can account the set of explanatory variables [65].

For this analysis, we used both an incidence matrix of 571 Asteraceae species and another with

environmental data of 32 uncorrelated variables (S1 Table). The data were standardized to z-

values, based on the mean and standard deviation [66], which is used to standardize values to

the same scale. We performed a Redundancy analysis (RDA) using the “rda” function of the

Vegan package [67] in the statistical software R 3.6.3 [68]. Finally, we selected the most parsi-

monious model and the variables with the greatest significance (p<0.001, 999 permutations).

Relative environmental turnover. To calculate the relationship between environmental

predictors and species turnover, we applied the relative environmental turnover (RET)

method. For this, we adjusted the NMDS results with the matrix of previously selected envi-

ronmental predictors, using the vector adjustment of the envfit function of the Vegan package

in the statistical software R. The significantly related environmental predictors to the turnover

patterns (p<0.001, 999 permutations) were shown as vectors in the NMDS plot.

Results

Cluster analysis

Although the clustering identified eight groups in the BD (Fig 3A), two are the main floristic

groups considering the number of squares that encompassed, named Upper Balsas and Lower

Balsas (groups three and four, respectively). The spatial patterns of the species characterizing

each group showed a significant correlation between them. The Lower Balsas had a greater dis-

similarity in its species composition, allowing recognition of other four poorly differentiated

groups (groups 5–8, Fig 3B). The differentiated groups shown in the dendrogram (Fig 3A) are

represented by species exclusive to these groups (S2 Table).

According to the results of the MRPP, the floristic composition was statistically different (p
<0.001) between the two consensuses, which from now on we will refer to as Upper Balsas

and Lower Balsas districts or biogeographic districts (Fig 4). The exclusivity of the species

within the districts is greater in the first (δ = 16.66, N = 292 restricted species) than in the last

one (δ = 11.75, N = 32 restricted species).

The biogeographic tracks (collecting points linked by a minimum spanning tree) of the

exclusive species of each biogeographic districts support the subdivision obtained by the classi-

fication methods (Fig 4). Each identified biogeographic districts meets environmental and oro-

graphic conditions that have allowed the differentiation in its species composition. For

example, the species exclusive to the Lower Balsas district (western biogeographic track; Fig 4)

show a preference for geographical areas at lower altitude (<750 m). The opposite situation

occurs with the species that make up the eastern biogeographic track in the Upper Balsas dis-

rict, because these species prefer higher altitudes (>750 m).

Ordination analysis

The NMDS analysis provides two dimensions, where the first axis (NMDS1; Fig 5) indicates a

geographic break that differentiates the BD in two geographic areas (Fig 5A); both areas coin-

cide relatively well with the pattern obtained in the classification method. The second axis

(NMDS2) shows an abrupt turnover in the Lower part of BD (Fig 5B), distinguishing a differ-

ent area at the east-central part.

SDTF environmental predictors

The redundancy analysis allowed selecting the most important variables that influence the

Asteraceae species richness in BD. The most parsimonious model provided nine variables that

PLOS ONE Biogeographic regionalization by spatial and environmental components

PLOS ONE | https://doi.org/10.1371/journal.pone.0253152 June 15, 2021 7 / 19

https://doi.org/10.1371/journal.pone.0253152


explained 39.65% (p = 0.05) of total accumulated variance, while the combination of the vari-

ables with greatest significance explained 28.01% (p = 0.001).

Relative environmental turnover (RET)

The RET analyses suggests an acceptable fit of the evironmental data, with a stress value of

1.18, in relation to the species turnover in the NMDS’ ordination (Fig 6). The results suggest

that precipitation availability and soil properties (Mg and Ca nutrients) play an important role

in the Asteraceae richness of SDTF in the BD (Table 1). The species composition of each dis-

trict was influenced by the availability of Ca and Mg in the soil. The most diverse district

(Upper Balsas) registered a higher Ca concentration (mean 0.93 mg, sd ± 0.49) than the Lower

Balsas (0.40 mg ± 0.16). In contrast, Mg is slightly higher in the Lower Balsas (0.32 mg ± 0.07)

than in the Upper (0.29 mg ± 0.08).

Fig 3. Cluster analysis (β-Simpson dissimilarity coefficient) showing the floristic dissimilarity of the grid squares with the Asteraceae species from the seasonally

dry tropical forest in the Balsas Depression, Mexico. (a) Dendrogram showing floristic dissimilarity. (b) Balsas Depression where the colors correspond to the groups

shown in the dendrogram.

https://doi.org/10.1371/journal.pone.0253152.g003
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Discussion

Our results agree with previous biogeographic studies developed in the BD, using the Bursera
(Burseraceae) trees [28, 41, 52], which recognize two districts. The difference with these stud-

ies, except for Gámez et al. [41], is that they do not provide a geographic delimitation that cir-

cumscribes these two phytogeographic districts. Gámez et al. [41] identified three areas of

endemism for Bursera, two of them including part of BD (sensu [69]): i) the Balsas Occidental

and ii) the Balsas Oriental-Tehuacán /Cuicatlán-Tehuantepec. Despite the discrepancy in the

geographic boundaries and the names of the districts with the work of Gámez et al. [41], the

district located in the East of the BD, is the region with the highest number of species.

Some studies have shown that precipitation and soil properties affect current patterns of

species diversity in the tropical dry forest (e.g., [35, 70, 71]); in this sense, our results also indi-

cate that precipitation seasonality is the most important variable for explaining species

Fig 4. Phytogeographic subdivision of the seasonally dry tropical forest in the Balsas Depression, Mexico. The purple biogeographic track links by means of a

minimum spanning tree the collecting points of the species exclusive to the Lower Balsas and the blue line those of the Upper Balsas.

https://doi.org/10.1371/journal.pone.0253152.g004
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Fig 5. Asteraceae species turnover measured with the non-metric multidimensional scaling method (NMDS) for (a) axis 1

(NMDS1) and (b) axis 2 (NMDS2). The colors mark the two turnover ordering classes.

https://doi.org/10.1371/journal.pone.0253152.g005
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Fig 6. NMDS ordination and environmental predictors (vectors) as predictors of environmental turnover, calculated for 122 grid cells, distributed along the

Balsas Depression, Mexico. The vectors shown include only the variables with a significant effect (p<0.001) on the NMDS ranking. BIO_15: Precipitation Seasonality

(coefficient of variation in %); BIO_17: Precipitation of the driest four-month period; MEXMG: Magnesium content; MEXCA: Calcium content. The circles correspond

to the grid cells of the Upper Balsas and the triangles to the cells of the Lower Balsas.

https://doi.org/10.1371/journal.pone.0253152.g006
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richness in the SDTF. Therefore, the highest Asteraceae richness values concentrate in rela-

tively high and stable humidity conditions, such as those found in the Upper Balsas district.

The precipitation of the driest quarter showed a negative correlation with the Asteraceae spe-

cies richness, suggesting that precipitation stability in the driest months is an important factor

determining species richness. These results are similar with those found by Zhang et al. [72],

who found a positive correlation between rainfall and the richness of woody plant species in

China.

The SDTF plants are subject to a marked rainfall seasonality that varies between years and

imposes an important abiotic restriction for secondary stem growth and phenology, especially

in the arboreal component [73]. In the case of Asteraceae, the effect of the precipitation sea-

sonality could also be of great relevance; 58.5% of the SDTF Asteraceae species are herbaceous,

thus the rainy season must regulate several aspects of their life cycle, for example reproductive

phenology [74, 75]. In SDTF, precipitation pulses trigger the biological cycle of many herba-

ceous taxa, especially the annual species that germinate and reproduce in short periods in syn-

chronization with the climatic patterns [76, 77].

At a global level, different studies carried out in the Neotropics highlight the importance of

precipitation in the SDTF’s dynamics (e.g., [20, 78, 79]). In Mexico, the studies focused on

evaluating the effect of precipitation on the distribution patterns of SDTF species at regional

scales [39–42, 70], have also highlighted its importance, results that coincide with what was

found in this study.

Some eco-physiological traits of Asteraceae species, such as the development of under-

ground water storage systems, are related to the appearance of secretory tissues efficient in

maintaining individuals during droughts. For example, Ageratina adenophora develops rhi-

zomes that allow to store water, while Pittocaulon praecox and Roldana lobata, show abscission

of the leaves during the driest season and the accumulation of mucilage and perennial struc-

tures that allow regrowth [80]. In this way, the combination of mesomorphic foliar traits and

vegetative propagation provide resistance to extreme climatic variation [80, 81], as occurs in

the SDTF [77].

It has been observed that most of the Asteraceae species, for example some members of the

Eupatorieae tribe forming part of group three (Fig 3), especially distributed in the BD’s eastern

portion, show a high growth rate, due to its ability to absorb nutrients [80]. This attribute gives

them a competitive advantage [80, 82], but there is no information about the fuctional

Table 1. Variables that constitute the most parsimonious model of redundancy analysis.

Df AIC F

MEXMG 1 621.35 9.8698��

MEXCA 1 620.48 8.9947��

BIO_17 1 614.96 3.6486��

BIO_15 1 614.32 3.0444��

BIO_02 1 613.7 2.4598�

MEXPH 1 613.69 2.4462�

MODISDIC 1 613.66 2.4148�

EVAANUAL 1 613.21 2.0007.

MEXDEM 1 612.76 1.5746.

MEXMG: Magnesium, MEXCA: Calcium, BIO_17: Precipitation of driest quarter, BIO_15: Precipitation seasonality,

BIO_02: Mean diurnal range, MEXPH: pH, MODISDIC: Normalized vegetation index December, EVANUAL:

Annual real evapotranspiration, MEXDEM: Elevation digital model.

https://doi.org/10.1371/journal.pone.0253152.t001
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strategies of Asteraceae species in tropical-dry environments. Nevertheless, the approaches

made for other taxonomic groups with predominantly arboreal growth forms [76, 83] may be

useful to explain the patterns observed in the species members of group 4 whose distribution is

restricted to Lower Balsas. These Asteraceae species have developed mechanisms for survival

to drought that may include deep rooting, loss of leaves during the dry season or face this last

unfavorable season for their survival in the seed bank.

Another relevant factor accounting for the spatial distribution of Asteraceae species rich-

ness of the SDTF in BD were the soil components, although their importance was less than of

precipitation. However, it has been documented that the abundance and different functional

aspects of the SDTF species correlate with the chemical composition of soil [37, 38]. Werden

et al. [38] found that distribution of 94% of the tree species in the SDTF of Costa Rica responds

to the chemical characteristics of the soil. Richness and diversity of rare species in warmer soils

of tropical forests in Hainan Island, China, correlate significatively with Ca and Mg content

[84]. Therefore, in addition to the precipitation regime, Ca and Mg in the soil should influence

the floristic differentiation of the Asteraceae family in BD, which is represented mainly by her-

baceous species (58%) that are typical indicators of these elements [85]. In summary, there

seems to be some correlation between the SDTF phytogeographic areas, and some soil proper-

ties, especially at the Upper Balsas, which concentrates the higher proportion of species.

Previous research suggests that other soil components, such as P, Cu, N, and Al, also con-

tribute significantly to soil fertility in the SDTF of Neotropics [34, 36, 37, 86]. However, in our

results these elements were not relevant to explain the Asteraceae species richness. One possi-

ble explanation lies in the study group (herbaceous versus trees), since nutrients as P and N are

known to be key elements for the growth and reproduction of many tropical trees [38, 84], but

in high concentrations they can inhibit these physiological functions, especially in species with

herbaceous growth form [87].

Both NMDS and clustering analyses proved to be efficient tools to identify floristic assem-

blages of the SDTF in BD. The analyzes carried out in this study support the hypothesis that

species turnover patterns are driven by changes in environmental conditions [47] and that the

mechanisms causing the dissimilarity pattern may differ between biogeographic districts. In

this research, each biogeographic district showed both climatic (precipitation) and edaphic

characteristics, which can explain the differentiation in species composition. In particular, the

Lower Balsas shows greater climatic variation (temperature) than the Upper Balsas, which is

more stable.

This study applied quantitative and correlative methods that increasingly provide better

guides to identify the geographic limits of areas that combine different assemblages of species

of the Asteraceae family in the BD. On the other hand, the relevance of this contribution lies in

the fact that the applied methods can be replicable with other groups of species and biogeo-

graphic regions. In this way, future studies will be able to integrate various groups of biological

interest, to know in a more comprehensive way their influence on the formation of phytogro-

graphic regions.

The SDTF is one of the most important biomes due to its high degree of endemism, but

also the one most threatened by human activities such as land use change and climate change

[88, 89]. Therefore, this approach can be the starting point for the analysis of the effect of envi-

ronmental predictors on the species, such as the soils of biogeographic districts.

Conclusion

The use of environmental predictors and representative taxa of biodiversity improves the defi-

nition of biogeographic regions. Both the classification and ordination methods used for
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regionalization within the BD coincide in the identification of two different floristic district

(Upper Balsas and Lower Balsas). On the other hand, the SDTF climatic variation influences

the grouping of species and promotes the high diversity of Asteraceae species of the SDTF in

the BD. Mapping the geographic patterns of species richness and identifying the relationship

between richness and environmental factors is essential to help conserve biodiversity in highly

threatened and highly species-diverse environments, such as SDTF. The species richness parti-

tioning into smaller biogeographic districts will allow planning more efficient conservation

strategies, for example, focusing on those areas with greater species richness or endemism.

Finally, this approach to the study of the spatial patterns that use plants with different growth

forms are complementary and probably reflect different evolutionary processes and ecological

relationships that have not been fully explored.
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biodiversidad. Conabio; 2008.

12. Morrone JJ. Biogeographical regionalisation of the world: a reappraisal. Australian Systematic Botany,

2015; 28(3): 81–90. https://doi.org/10.1071/sb14042.

13. Kreft H, Jetz WA. A framework for delineating biogeographical regions based on species distributions.

Journal of Biogeography. 2010; 37(11): 2029–2053. https://doi.org/10.1111/j.1365-2699.2010.02375.

x.

14. Ribeiro GC, Santos CMD, Olivieri LT, Santos D, Berbert JM, Eterovic A. The world’s biogeographical

regions revisited: global patterns of endemism in Tipulidae (Diptera). Zootaxa. 2014 3847(2): 241–258.

https://doi.org/10.11646/zootaxa.3847.2.4 PMID: 25112336

15. Di Virgilio G, Laffan SW, Ebach MC. Fine-scale quantification of floral and faunal breaks and their geo-

graphic correlates, with an example from south-eastern Australia. Journal of Biogeography. 2012; 39:

1862–1876. https://doi.org/10.1111/j.1365-2699.2012.02739.x.

16. Jost L, Chao A, Chazdon RL. Compositional similarity and beta diversity. In: Biological diversity: fron-

tiers in measurement and assessment, Magurran AE, McGill BJ. (eds), Oxford University Press; 2011.

17. Huang C, Ebach MC, Ahyong ST. Bioregionalisation of the freshwater zoogeographical areas of main-

land China. Zootaxa. 2020; 4742(2): 271–298. https://doi.org/10.11646/zootaxa.4742.2.3 PMID:

32230377

18. DRYFLOR. Plant diversity patterns in neotropical dry forests and their conservation implications. Sci-

ence. 2016; 353: 1383–1387. https://doi.org/10.1126/science.aaf5080 PMID: 27708031

19. Sánchez-Azofeifa A, Powers JS, Fernandes GW, Quesada M. Tropical Dry Forests in the Americas:

Ecology, Conservation, and Management. CRC Press, Boca Raton, FL; 2013.

20. Singh JS, Chaturvedi R. Tropical Dry Deciduous Forest: Research Trends and Emerging Features.

Springer Nature Singapore Pte Ltd; 2017. https://doi.org/10.1007/978-981-10-7260-4.

PLOS ONE Biogeographic regionalization by spatial and environmental components

PLOS ONE | https://doi.org/10.1371/journal.pone.0253152 June 15, 2021 15 / 19

https://doi.org/10.1038/s41559-017-0114
http://www.ncbi.nlm.nih.gov/pubmed/28812664
https://doi.org/10.11646/zootaxa.4532.2.10
http://www.ncbi.nlm.nih.gov/pubmed/30647371
https://doi.org/10.1111/bij.12898
https://doi.org/10.1111/bij.12898
https://doi.org/10.1371/journal.pone.0092558
https://doi.org/10.1007/s10441-017-9310-y
http://www.ncbi.nlm.nih.gov/pubmed/28493088
https://doi.org/10.1038/ncomms7848
http://www.ncbi.nlm.nih.gov/pubmed/25907961
https://doi.org/10.1111/mam.12036
https://doi.org/10.1126/science.1228282
https://doi.org/10.1126/science.1228282
http://www.ncbi.nlm.nih.gov/pubmed/23258408
https://doi.org/10.1111/j.14610248.2004.00678.x
https://doi.org/10.1111/j.14610248.2004.00678.x
https://doi.org/10.1111/2041-210X.12513
https://doi.org/10.1071/sb14042
https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.11646/zootaxa.3847.2.4
http://www.ncbi.nlm.nih.gov/pubmed/25112336
https://doi.org/10.1111/j.1365-2699.2012.02739.x
https://doi.org/10.11646/zootaxa.4742.2.3
http://www.ncbi.nlm.nih.gov/pubmed/32230377
https://doi.org/10.1126/science.aaf5080
http://www.ncbi.nlm.nih.gov/pubmed/27708031
https://doi.org/10.1007/978-981-10-7260-4
https://doi.org/10.1371/journal.pone.0253152


21. Thornhill AH, Baldwin BG, Freyman WA, Nosratinia S, Kling MM, Morueta-Holme N, et al. Spatial phylo-

genetics of the native Californiaflora. BMC Biology. 2017; 15(1): 96. https://doi.org/10.1186/s12915-

017-0435-x PMID: 29073895

22. Trejo I, Dirzo R. Floristic diversity of Mexican seasonally dry tropical forests. Biodiversity and Conserva-

tion. 2002; 11(1): 2063–2084. https://doi.org/10.1023/A:1020876316013.

23. Quesada M, Sanchez-Azofeifa GA, Alvarez-Añorve M, Stoner KE, Avila-Cabadilla L, Calvo-Alvarado J,

et al. Succession and Management of Tropical Dry Forests in the Americas: Review and New Perspec-

tives. Forest Ecology and Management. 2009; 258(6): 1014–24. https://doi.org/10.1016/j.foreco.2009.

06.023.

24. Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. Global Biodiversity Conservation: The

Critical Role of Hotspots. In: Zachos F., Habel J. (eds) Biodiversity Hotspots. Springer, Berlin, Heidel-

berg; 2011.

25. Myers N. Threatened biotas: "Hot spots" in tropical forests. Environmentalist. 1988; 8(3): 187–208.

https://doi.org/10.1007/BF02240252 PMID: 12322582
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México. Taller de la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO);

1997.
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ı́stico de la cuenca del rı́o Balsas. México. Polibotánica. 1998; 9: 1–151.
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