
Impaired Distal Thermoregulation in
Diabetes and Diabetic Polyneuropathy
SEWARD B. RUTKOVE, MD

1

ARISTIDIS VEVES, MD
2

THEOPHANO MITSA, PHD
3

RUI NIE
1

PATRICIA M. FOGERSON
1

LINDSAY P. GARMIRIAN
1

RACHEL A. NARDIN, MD
1

OBJECTIVE — To determine how thermoregulation of the feet is affected by diabetes and
diabetic polyneuropathy in both wakefulness and sleep.

RESEARCH DESIGN AND METHODS — Normal subjects, diabetic subjects without
neuropathy, diabetic subjects with small-fiber diabetic polyneuropathy, and those with ad-
vanced diabetic polyneuropathy were categorized based on neurological examination, nerve
conduction studies, and quantitative sensory testing. Subjects underwent foot temperature mon-
itoring using an iButton device attached to the foot and a second iButton for recording of ambient
temperature. Socks and footwear were standardized, and subjects maintained an activity diary.
Data were collected over a 32-h period and analyzed.

RESULTS — A total of 39 normal subjects, 28 patients with diabetes but without diabetic
polyneuropathy, 14 patients with isolated small-fiber diabetic polyneuropathy, and 27 patients
with more advanced diabetic polyneuropathy participated. No consistent differences in foot
temperature regulation between the four groups were identified during wakefulness. During
sleep, however, multiple metrics revealed significant abnormalities in the diabetic patients.
These included reduced mean foot temperature (P � 0.001), reduced maximal temperature (P �
0.001), increased rate of cooling (P � 0.001), as well as increased frequency of variation (P �
0.005), supporting that patients with diabetic polyneuropathy and even those with only diabetes
but no diabetic polyneuropathy have impaired nocturnal thermoregulation.

CONCLUSIONS — Nocturnal foot thermoregulation is impaired in patients with diabetes
and diabetic polyneuropathy. Because neurons are highly temperature sensitive and because foot
warming is part of the normal biology of sleep onset and maintenance, these findings suggest new
potentially treatable mechanisms of diabetes-associated nocturnal pain and sleep disturbance.
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Thermoregulation is impaired in dia-
betes and diabetic polyneuropathy
(1,2). Distal sudomotor (3,4) and

microvascular dysfunction (5,6) are be-
lieved to contribute to this impairment,
mainly through neuropathic mecha-
nisms. Because the feet are affected early
in diabetic polyneuropathy, they are
therefore likely to exhibit early thermo-
regulatory abnormalities. Characterizing

these changes may be of particular impor-
tance for two reasons. First, it could pro-
vide a novel approach for the detection of
early neuropathy, since small unmyeli-
nated fibers specifically play an important
role in thermoregulation (7,8) and are of-
ten the earliest nerve fibers affected in di-
abetic polyneuropathy (9). In addition,
disruptions in normal temperature con-
trol may be central to the development of

neuropathic pain and sleep disturbance,
because neuronal activity itself is highly
temperature sensitive (10) and distal ex-
tremity warming is critical to sleep onset
and maintenance (11–13).

Over the past several years, we have
adopted a novel approach to the study of
real-time changes in foot temperature
during daily activity, using a small tem-
perature-measuring and recording device
that can be affixed directly to the foot
(14,15). Our initial work demonstrated
what appeared to be differences in tem-
perature control in patients with neuro-
pathic processes versus normal subjects,
but the data were limited to only a small
cohort of individuals with heterogeneous
disorders (14). Thus, in this study, we
characterize changes in foot thermoregu-
lation during daily activity and during
sleep in patients with isolated small-fiber
diabetic polyneuropathy and more ad-
vanced diabetic polyneuropathy by com-
paring their results with data from healthy
individuals and from patients with diabe-
tes but no neuropathy, hypothesizing that
diabetic polyneuropathy patients would
demonstrate evidence of impaired
thermoregulation.

RESEARCH DESIGN AND
METHODS — All patients and normal
subjects were recruited either through ad-
vertisement or by approaching the patient
in the clinic or the electromyography
(EMG) laboratory. All patients were reim-
bursed for their participation, and the
study was approved by the Beth Israel
Deaconess Medical Center institutional
review board.

Patients were prescreened to identify
their eligibility for the study. Inclusion
criteria included the following: Either
healthy subjects or subjects with estab-
lished type 1 or type 2 diabetes (age
18–80 years). Exclusion criteria included
the following: 1) Inability to refrain from
smoking during a 32-h time period; 2)
known peripheral vascular disease or
findings suggestive of peripheral vascular
disease on examination (reduced or un-
obtainable pulses in the feet or a reduced
popliteal blood pressure relative to that of
the arm); 3) presence of a medical disor-
der or drug therapy known to be associ-
ated with neuropathy; and 4) being
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wheelchair bound or otherwise severely
physically disabled.

On the day of the study, after signing
the informed consent, all patients under-
went an additional brief review of their
medical history, including their diabetes
history; any patients who were now iden-
tified as meeting one of the exclusion cri-
teria were excluded. Unless the patient
expressed a preference or there was a his-
tory of trauma or other potential con-
founding, the side to be studied was
chosen arbitrarily.

Physical examination
All patients underwent examination of
distal strength and muscle bulk, deep ten-
don reflexes, and lower-extremity sensory
perception (including pinprick, light
touch, and joint position sense). Standard
10-g monofilament testing was also per-
formed. Peripheral pulses (dorsalis pedis
and posterior tibial) were assessed. Both
brachial and popliteal blood pressures
were measured.

Nerve conduction studies
All patients had a unilateral peroneal mo-
tor conduction study and F responses and
bilateral sural sensory studies at a limb
temperature of at least 32°C, with a Med-
elec Synergy T2–EMG Monitoring System
or Medelec Synergy N2–EMG Monitoring
System (Oxford Instruments Medical,
Surrey, U.K.). Motor and sensory ampli-
tudes, conduction velocities, and laten-
cies were recorded. Determination of
normality was made by comparing the re-
sults obtained for individual patients to
the established Beth Israel Deaconess
Electromyography Laboratory reference
values.

Quantitative sensory testing
Quantitative sensory testing (QST) was
performed with a TSA-II NeuroSensory
Analyzer (Medoc, Durham, NC) on the
same side as the peroneal motor study.
Sensory thresholds were measured using
cold and warm stimuli and compared
with an age-matched normal population
value. Vibration testing on the foot was
also performed.

Neuropathy scales
The Michigan Neuropathy Screening In-
strument (16) and Utah Early Neuropa-
thy Scale (17) were completed.

Group assignment
Based on these data, patients were as-
signed to one of four groups. Any normal

subjects found to have abnormalities on
examination were excluded from the
study; otherwise, they were included in
the normal subject category. Subjects
with diabetes who were found to be nor-
mal on all the above measures were
placed in the diabetic normal category.
Subjects with diabetes found to have ab-
normalities involving only small fibers—
reduced pin prick on examination or
reduced heat and cold thresholds on QST,
but normal large-fiber function, based on
normal examination of vibration (by both
examination and QST), reflexes, and nor-
mal nerve conduction studies—were
placed in the small-fiber diabetic poly-
neuropathy category. Subjects with
diabetes with evidence of large-fiber in-
volvement on one or more of these tests,
including on nerve conduction studies,
were placed in the large-fiber diabetic
polyneuropathy category.

Ambulatory temperature
measurement
Temperature measurement was per-
formed using iButton Temperature
monitors (Maxim Integrated Products,
Sunnyvale, CA). Two separate iButtons
were used. Model no. DS1921H-F5, with
a range of 15– 46°C and resolution of
0.125°C, was used to measure foot tem-
perature. Model no. DS1921G-F5, with a
range of �40 to �85°C and a resolution
of �0.5°C from �30 to �70°C, was used
to measure ambient temperature. During
this study, a third device with higher res-
olution and greater memory also became
available (model no. DS1922L-F50) and
was used instead for both sets of measure-
ments; however, to maintain consistent
data analysis, we kept the parameters of
recording identical for this additional de-
vice. Studies were conducted for a mini-
mum of 32 h.

The foot iButton was affixed to the
web space between the first and second
toes (Fig. 1) using medical-grade adhesive
tape (3M Transpore Surgical Tape, no.
1527-1, 3M Health Care, St. Paul, MN).
The ambient iButton was affixed via a key
ring apparatus (Fig. 1) to external cloth-
ing. Subjects were instructed to keep the
device attached to the foot throughout the
study period, except while bathing. Dur-
ing sleep, we requested that the ambient
temperature device be placed by the bed.

Footwear
We provided individuals with identical
socks (Banda Men’s/Women’s No-Elastic
Acrylic Crew Socks, #99158, FootSmart,

Norcross, GA) and requested that during
the study they wear simple noninsulated
footwear, while going about their normal
daily activities. Subjects were instructed
to wear the socks to bed as well.

Monitoring foot movement
We also monitored foot movement to de-
termine how foot activity affected ther-
moregulation and as an additional marker
for sleep onset and activity level. We used
a commercially available actigraphy mon-
itor (Actiwatch 16, #198-0101-02, Mini
Mitter/Respironics, Bend, OR). The de-
vice was loosely affixed to the ankle (Fig.
1). The internal chronometer on the ac-
tigraphy device was synchronized with
the two iButtons.

Diaries
In addition to wearing the measurement
devices, subjects were requested to main-
tain simple paper diaries for the entire
32-h period. Subjects recorded the date,
general activity, start and end time of the
activity, and whether they were outside,
inside, or both during the particular ac-
tivity. Subjects also marked down the ex-
act times the devices were removed for
bathing and replaced.

Data analysis
The data from both iButtons and from
the actigraph were downloaded into a
spreadsheet program. Data points from
before and after the device was affixed to
the foot were removed, as were those
points associated with removal of the
iButton from the foot, for example, during
bathing. Sleep and wakefulness were also
identified on the tracings. The sleep and
waking data were analyzed separately.

Because the findings in our earlier
study suggested obvious differences be-
tween patients with and without polyneu-
ropathy, our goal here was to find a
quantifiable property for detecting differ-
ences that could discriminate between
subject groups. Also, because nocturnal
ambient temperature measurements did
not accurately reflect the temperature
experienced by the foot at night, we an-
alyzed the sleep data by looking at foot
temperature in isolation. For waking
measurements, however, we assessed
foot temperature accounting for ambi-
ent temperature.

A variety of statistically appropriate
analyses were performed, from simple
(e.g., mean and SD) to complex (e.g., frac-
tal dimension [18], slopewise compari-
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sons [19], and other signal analysis
paradigms). These are described individ-
ually in RESULTS. Appropriate multiple
group tests (one-way ANOVA and
Kruskal-Wallis) were used to compare the
four groups to determine if there was a
difference between them and, if positive, a
Tukey’s honestly significance difference
test or individual Mann-Whitney U tests
with Bonferroni’s correction were used to
determine where the difference lay, de-
pending on the normality of the data.
Outlying values (defined nonparametri-
cally as any value �1.5 times the inter-
quartile range from the nearest quartile
boundary) were excluded for all calcula-
tions (this generally amounted to no more
than two to three subjects’ data across all
four groups). Significance was set at P �
0.05, two-tailed for all analyses. Values

are provided as means � SD, except
where otherwise specified.

RESULTS

General overview
Using our screening testing and categori-
zation methods, we identified 39 normal
subjects (43.5 � 14.8 years of age), 28
diabetic normal subjects (46.8 � 14.6
years of age), 14 diabetic small-fiber dia-
betic polyneuropathy patients (55.9 �
11.0 years of age), and 27 with more se-
vere diabetic polyneuropathy with large-
fiber involvement (61.4 � 9.8 years of
age), on whom we also obtained at least
32 h of reliable iButton data. The Utah
Early Neuropathy Scale scores, specifi-
cally designed to discriminate between
large- and small-fiber diabetic polyneu-

ropathy, perhaps best summarize the
success of our categorization. Diabetic
normal subjects all scored 0, small-fiber
diabetic polyneuropathy patients had a
score of 4.0 � 2.0, and large-fiber dia-
betic polyneuropathy patients had a score
of 8.0 � 6.5 (median � interquartile dif-
ference). The relatively limited number of
small-fiber diabetic polyneuropathy pa-
tients was because a number of individu-
als who by history and examination
seemed likely to have small-fiber neurop-
athy were found to have large-fiber im-
pairment as well on additional testing
(most often on nerve conduction studies).
Despite our efforts at age-matching sub-
jects, age did vary significantly between
groups (P � 0.011). Thus, in each of the
analyses below, age was treated as a co-
variate where possible.

Additionally, A1C values (when
available within 3 months of participation
of the study) were similar among all three
groups of diabetic patients (7.8 � 0.8%
for diabetic normal subjects, 7.0 � 0.6%
for small-fiber neuropathy patients, and
7.1 � 1.3% for large-fiber patients).
Eighty-four percent of diabetic normal
subjects were treated with an oral hypo-
glycemic or insulin, compared with 86%
of patients with small-fiber diabetic poly-
neuropathy and 96% of patients with
large-fiber diabetic polyneuropathy.

Waking data analysis
Our next goal was to determine whether
foot movement affected the waking foot
temperature data in any consistent
fashion. Fortunately, foot temperature
showed only a very weak and nonsignifi-
cant relationship with foot actigraphy in
any of the four groups, with Spearmen’s �
�0.10 and nonsignificant for each of the
four groups (P � 0.152); thus, this poten-
tial covariate was effectively eliminated.

A number of comparative summary
analytical metrics were then assessed on
the foot temperature traces for each pa-
tient, including mean foot temperature,
maximum and minimum foot tempera-
ture, within-subject SD of foot tempera-
ture, positive and negative rates of change
in foot temperature, and the correlation
between foot and ambient temperature.
All of these were negative, except for the
negative rate of change that showed a sig-
nificant difference (P � 0.013), an effect
due to the difference in values for the di-
abetic non-neuropathy group and the
normal subject group. In addition, no sig-
nificant differences between subjects
were identified using a variety of more

Figure 1—Setup for measuring ambulatory foot temperature. One iButton is attached to the foot;
the other is attached to a key ring apparatus that can be affixed to external clothing. The actigraphy
monitor is attached to the ankle as well.
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sophisticated approaches to time series
analysis, either looking at the foot temper-
ature in isolation or in relation to the am-
bient temperature. These included
Euclidean distance (19), slopewise com-
parisons (19), fractal dimension (18),
wavelet analysis (20), and several mea-
surements of entropy (21).

Asleep data analysis
Unlike the waking data analysis, all of the
metrics used to analyze the sleeping data
showed significant differences between
the four groups (Table 1 provides the ba-
sic comparisons and Table 2 the post hoc
analyses). Mean foot temperature was re-
duced for all three diabetic groups, in-
cluding the diabetic normal subjects,
compared with the normal subjects. This
tendency toward cooling, or the presence
of impaired warming and reduced ther-
moregulatory control, was supported by
several other metrics. For example, we
determined the highest and lowest tem-
peratures attained and held for at least
two consecutive time points by each sub-
ject. This constraint was imposed to en-
sure that the maximum value attained was
sustained for a minimum of 2 min and
unlikely to be the result of noise. Like the
mean foot temperature, the maximum
temperature was reduced in the diabetes
patients, both those with and those with-
out neuropathy. However, the positive
and negative rates of change also were
found to be different between the groups
(P � 0.041 positive, P � 0.0011 nega-
tive). The negative rate of change was
most impressive and was considerably
larger for the advanced diabetic polyneu-
ropathy group versus the other groups,
supporting that in this group, feet tended
to cool rapidly. Similarly, the SD of sleep-
ing foot temperatures revealed a differ-
ence between groups (P � 0.006), with

the largest disparity occurring between
the nondiabetic normal and large-fiber di-
abetic groups (P � 0.046), again support-
ing an increased tendency for foot
temperature variability in the diabetic
polyneuropathy patients.

Advanced metrics
As with the waking temperature data, we
tested a variety of other metrics that might
be sensitive to time-dependent changes in
temperature, including measures of en-
tropy, fractal dimension, and wavelet
analysis. Although the first two measures
did not reveal significant differences be-
tween the groups, wavelet analysis, a sig-
nal processing technique used to estimate
the amount of energy occurring at differ-
ent frequency bands, did show a signifi-
cant difference. Differences were again
most substantial between the large-fiber
and normal subject groups (P � 0.007) at
high frequencies, with the diabetic poly-
neuropathy patients showing an elevation
in these components, indicating that their
foot temperature fluctuated more rapidly.

CONCLUSIONS — These data show
that foot temperature regulation during
sleep in patients with diabetes is different
from that of normal subjects. For exam-
ple, diabetic subjects with and without
diabetic polyneuropathy had lower mean
and maximum foot temperatures than
normal subjects. They also differed from
normal subjects in that they had more
rapid variation in foot temperature than
normal; this was reflected in differences in
the SD of foot temperature, the rate of
change in the foot temperature, as well as
in a more complex measure of embedded
frequencies, the wavelet analysis. These
findings are consistent with our hypothe-
sis that diabetes and diabetic polyneurop-

athy impair vasomotor control in the feet
and therefore foot thermoregulation.

Our initial reason for undertaking
this study was to identify whether differ-
ences in ambulatory foot temperature reg-
ulation could serve as a novel noninvasive
test for small-fiber diabetic polyneurop-
athy. Unfortunately, we were not able to
identify a parameter of foot temperature
regulation that discriminated diabetic pa-
tients with small-fiber diabetic polyneu-
ropathy from diabetic patients with no
diabetic polyneuropathy or from normal
control subjects. The fact that thermo-
regulatory differences were most con-
sistently found in patients with large-
fiber diabetic polyneuropathy but not
purely small-fiber diabetic polyneurop-
athy likely reflects the greater severity of
diabetic polyneuropathy in the former
group rather than necessarily suggest-
ing that large fibers are more important
for thermoregulation.

Our finding that even the diabetic pa-
tients without evidence of polyneurop-
athy had reduced foot temperature
during sleep compared with normal sub-
jects was somewhat unexpected. Indeed,
a receiver operating characteristic curve
analysis revealed that by selecting a cutoff
mean temperature of 34.2°C, the mean
foot temperature during sleep alone
would have a 87% sensitivity and a 72%
specificity for the diagnosis of diabetes,
with an overall accuracy of 81%. In con-
trast, a similar analysis comparing the
small-fiber diabetic polyneuropathy sub-
jects to the diabetic normal subjects re-
vealed an accuracy of only 60%, or little
better than chance. This reduction in foot
temperature while sleeping may reflect an
impaired ability to vasodilate peripher-
ally, as normally occurs in sleep (11–13).
Although impaired vasodilation might be
anticipated in early diabetic polyneurop-

Table 1—Asleep data statistics

Normal Diabetic normal
Small fiber diabetic

polyneuropathy
Advanced diabetic
polyneuropathy Significance

n 25 18 14 25
Average foot temperature* 34.8 � 0.75 33.6 � 0.60 33.2 � 0.89 33.9 � 1.11 <0.001
Maximum foot temperature* 35.9 � 0.31 35.1 � 0.38 34.8 � 0.53 35.2 � 0.34 <0.001
Minimum foot temperature* 32.1 � 1.78 31.4 � 2.94 31.2 � 1.31 29.5 � 2.53 0.025
SD of foot temperature 0.89 � 0.45 1.02 � 0.65 0.86 � 0.21 1.27 � 0.66 0.006
Positive rate of change 0.06 � 0.03 0.08 � 0.04 0.07 � 0.03 0.08 � 0.04 0.041
Negative rate of change �0.21 � 0.05 �0.25 � 0.07 �0.22 � 0.06 �0.28 � 0.07 0.001
Wavelet energy* 0.38 � 0.22 0.60 � 0.55 0.54 � 0.41 0.75 � 0.59 0.005

Data are means � SD. *Given the nonparametric distribution of these data, significance was computed via individual Mann-Whitney U tests with Bonferroni’s
correction; differences are presented as median values rather than means. Boldface represents statistical significance.
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athy due to dysfunction of normal ther-
moregulatory pathways (4), it may appear
surprising that this was also identified in
the patients without clinical diabetic
polyneuropathy. One simple explanation
for this is that at least some of these pa-
tients may have had very mild diabetic
polyneuropathy that was otherwise unde-
tectable with our standard assessment
tools. Work has shown, however, that
even diabetic individuals without any ev-
idence of polyneuropathy have cutaneous
blood flow patterns that differ from
healthy control subjects (5). Such differ-
ences in cutaneous blood flow could af-
fect their thermoregulatory function and
may offer a reasonable explanation for our
findings.

Although we identified foot tempera-
ture dysregulation in diabetic patients
during sleep, we were unable to do so
while awake. It is likely that any differ-
ence in foot temperature during wakeful-
ness between the groups was so slight as
to be completely obscured by the varia-
tions in ambient temperature. In contrast,
the relatively static environment of the
foot during sleep allowed subtle differ-
ences in the intrinsic thermoregulatory
mechanisms to become apparent.

One limitation of this study is the rel-
atively restricted number of small-fiber
diabetic polyneuropathy patients. Unfor-
tunately, this group was especially diffi-
cult to recruit, since many individuals
with apparent isolated involvement of
the small fibers on screening also had
evidence for large-fiber dysfunction on
examination or by nerve conduction
studies. In addition, the iButton devices
themselves were limited by their temper-
ature sensitivity. Although a second more
sensitive device became available during
the study, the data obtained with those
devices needed to be reduced to that ob-
tained from the earlier device so as to
avoid inconsistencies in the analysis. It is
possible that a more sensitive device
would have revealed additional thermo-
regulatory differences. Third, we did not
obtain skin biopsies on these patients,
which would have helped solidify our di-
agnosis of small-fiber diabetic polyneu-
ropathy; when the study was first
planned, however, this test was not
readily available and thus was not in-
cluded. Nonetheless, we believe our clin-
ical criteria were likely sufficient to
adequately diagnose small-fiber involve-
ment. Finally, as with any home-
monitoring technique, compliance is
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uncertain, although this technique does
require relatively little effort on the pa-
tient’s part, outside of wearing the socks
and iButtons as indicated and recording
diary entries accurately.

In conclusion, using iButton technol-
ogy, we have demonstrated in an ambu-
latory setting that there are consistent
differences in distal thermoregulation
during sleep in diabetic patients com-
pared with nondiabetic control subjects,
with diabetic subjects exhibiting consis-
tently cooler foot temperatures. Diabetic
patients with large-fiber polyneuropathy
also show an increased variability and
more rapid changes in foot temperature,
suggesting that intact peripheral nerve
function is important for distal thermo-
regulation. Although ambulatory foot
temperature monitoring may not provide
a practical way of diagnosing early small-
fiber diabetic polyneuropathy, our data
document interesting and previously un-
reported findings that may have direct
clinical implications. For example, re-
duced foot temperature decreases the ex-
citability of neurons, potentially resulting
in discomfort via gating mechanisms
(22). In addition, the ability to autoregu-
late and effectively warm the feet is part of
the normal biology of sleep onset and
maintenance (11–13). Therefore, impair-
ment of normal foot thermoregulation
could play an important role in diabetic
polyneuropathy-associated sleep distur-
bance. Indeed, some have even advocated
the potential value of external warming to
help treat insomnia (23,24). Our findings
suggest that such an approach may be es-
pecially worthy of further study in dia-
betic patients with sleep difficulties.
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