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Purpose. To investigate the levels of transforming growth factor-β (TGF-β) in human aqueous humor (AH) and plasma (PL) of
patients with myopia, and verify whether there is an association between these levels and their association with axial length
(AL). Methods. Thirty-eight myopic patients who received intraocular collamer lens (ICL) implantation were enrolled in this
cross-sectional study. Patients were divided into three groups based on AL with cut-off points of 26 and 28mm. AH and PL
samples were obtained during ICL implantation surgery. The levels of TGF-β1, TGF-β2, and TGF-β3 in the AH and PL
samples were measured using Luminex xMAP Technology kits (Milliplex xMAP kits). The protein levels of TGF-βs in both AH
and PL samples and their relationships with AL were analyzed. Results. In all, 38 patients (59 eyes) were enrolled and divided
into the three groups: group A contained 7 people (10 eyes), group B contained 22 people (37 eyes), and group C contained 9
people (12 eyes). In the AH group, we detected TGF-β1 (P50: 19.97 pg/mL), TGF-β2 (2446.00 pg/mL), and TGF-β3
(26.33 pg/mL); in PL, these concentrations were 8984.00, 523.44, and 210.47 pg/mL, respectively. The levels of TGF-β1 and
TGF-β3 in AH were positively associated with AL. None of the three isoforms in PL were related to those in AH or to AL.
Conclusions. The levels of TGF-β1 and TGF-β3 in AH were more strongly associated with the severity of myopia than the types
of TGF-β in PL.

1. Introduction

According to a recent epidemiological study, the prevalence
of myopia in the global population has increased to 50% over
the past 40 years, and 10% of the world population were pre-
dicted to have high myopia [1]. Hence, its prevention is an
important global issue [1]. Myopia involves scleral remodel-
ing and excessive axial length (AL) elongation [2], which can
lead to posterior staphyloma, choroidal neovascularization,
and tractional maculopathy [3]. This can result in pathologic
myopia complications such as glaucoma, retinal detachment,
chorioretinal atrophy, and macular hole, which can lead to
impaired vision and even blindness [4].

The mechanism governing the development of myopia is
complicated, but there are two prevailing theories: the active
sclera remodeling theory [5] and the local retinal region con-
trol theory [6]. The scleral extracellular matrix (ECM) is
hypothesized to be altered by the signaling cascade initiated
by the blurring of the retinal image [7]. Scleral remodeling
is accompanied by decreased ECM secretion and increased
ECM degradation [8, 9], which ultimately leads to axial elon-
gation. Among a number of candidate cytokines that regulate
ECM remodeling [10], the multifunctional transforming
growth factor-beta (TGF-β) plays a crucial role [11].

In mammals, TGF-β has three isoforms: TGF-β1, TGF-
β2, and TGF-β3 [12, 13]. TGF-βs are part of a large family
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of polypeptides, playing important roles in cell growth and
differentiation, wound healing, immune regulation [14],
and the formation of ECM [15]. The TGF-β signaling path-
way is closely associated with myopia in animal models
[16]. For example, in form-deprivation myopia (FDM), the
mouse TGF-β pathway is enriched in the eyes [17]. Seko
et al. [18] observed that, in FDM chicks, TGF-β2 expression
significantly increased in both the retina and the sclera.
Jobling et al. [19] found that, in the sclera of tree shrews with
induced myopia, the levels of the three isoforms of TGF-β
decreased with axial elongation. Our previous studies have
shown that the level of TGF-β2 in aqueous humor (AH) is
positively correlated with both AL [20] and tissue inhibitors
of metalloproteinase- (TIMP-) 1 and TIMP-3 [21].

Although the blood-aqueous barrier and the blood-
retinal barrier make the eye a relatively isolated organ, some
studies on systematic metabolism disorder have shown that
changes in the levels of TGF-βs in plasma (PL) are related
to some ocular disorders [22, 23]. For example, the level of
TGF-β2 in PL increases with a high prevalence of congenital
ectopia lentis in patients with the Marfan syndrome [22].
Guo et al. reported that a mutation in SLC39A5 that can
induce the downregulation of the TGF-β Smad1 pathway
was associated with familial high myopia [24]. Yet the rela-
tionships between the levels of TGF-βs in PL andmyopia for-
mation have not been completely characterized.

Therefore, in this study, we measured the levels of TGF-
βs in PL and AH concurrently to determine whether there
are relationships among their concentrations in myopic
patients and between TGF-βs and AL.

2. Methods

2.1. Patients and Inclusion Criteria. This study was a cross-
sectional study. In this study, 38 patients who underwent
ICL implantation surgery from January 2018 to October
2018 were included. The inclusion criteria were as follows:
aged between 18 and 45 years; normal intraocular pressure
(IOP), spherical equivalent refraction (SER) between
-6.00D and -27.0D, and AL > 24:0mm. The exclusion cri-
teria were systemic and metabolic diseases (e.g., diabetes,
cancer, allergy, HBP, hepatitis, and hematological diseases),
severe eye diseases (e.g., maculopathy and glaucoma), and
ocular surgical history.

All patients received a comprehensive ocular examina-
tion, including slit lamp and dilated fundus exams. SER was
examined using an open-field autorefractor (SRW500;
Shin-Nippon Ophthalmic Instrument, Tokyo, Japan). AL
was measured using a Zeiss IOL Master laser interferometer
(Optical Biometry, IOL Master; Carl Zeiss Meditec AG, Jena,
Germany).

The 38 patients were divided into three groups based on
AL: group A (AL ≤ 26mm), group B (26mm < AL ≤ 28mm
), and group C (AL > 28mm). All patients were sufficiently
informed and signed informed consent forms, and the proce-
dures were approved by the Ethics Committee of Shanghai
Ninth People’s Hospital affiliated to Shanghai Jiao Tong Uni-
versity School of Medicine (application number: SH9H-

2018-T10-1). This study adhered to the tenets of the Declara-
tion of Helsinki.

2.2. Sample Collection and Measurement of TGF-β Levels.
Human blood and AH samples were acquired during ICL
implantation surgery. The AH samples (0.1–0.2mL) were
aspirated from a central anterior chamber by paracentesis
using a 26-gauge needle. The blood samples (3–4mL) were
collected 5–10min before the surgery. All of the samples
were immediately transferred to the laboratory in an iced
box. Blood samples were transferred to 2.0mL Eppendorf
tubes for centrifugation at 4°C at 1000 g for 10min to retrieve
the PL samples. AH and PL samples were stored at -80°C
until their measurements were processed.

A Luminex system (Luminex xMap Technology from
Bio-Rad) with commercially available Milliplex xMAP kits
(Millipore Corporation, Billerica, MA, USA) was used to
measure the levels of each type of TGF-β in the samples. This
technology uses multiplexed microsphere-based immunoas-
says, applying flow cytometric resolution to spectrally mea-
sure distinct microspheres coupled with capture molecules
and reporter fluorochromes bound to detection antibodies.
All assays were performed following the manufacturer’s
guidelines.

Human TGF-β Panel 2 Multiplex Assay (cat. No.
TGFBMAG-64K) was used to measure each sample. The
amount of TGF-β (pg/mL) was calculated from the standard
curves for each TGF-β sample, according to the manufac-
turer’s instructions.

2.3. Statistics. Statistical analyses were performed with SPSS
24.0 (SPSS, Chicago, Illinois, USA). All of the variables and
samples were subjected to Shapiro-Wilk’s tests to determine
whether they were normally distributed. AL was the only
normally distributed continuous variable; thus, its values
are presented as the mean and standard deviation (SD), while
the other continuous variables were not normally distributed
and are presented in quartiles (percentile (P):P25, P50, P75).

As we collected samples from both eyes of one patient, we
applied the generalized estimated equation (GEE) adjusted
by age and sex to examine the correlations among the levels
of different TGF-βs in AH/PL and other variables. The differ-
ences between the three groups, in terms of TGF-β levels,
were compared using nonparametric tests (the Kruskal-
Wallis test). The sex distributions of the three groups were
compared using a chi-square test. Age, AL, and SER were
compared among the three groups based on a one-way anal-
ysis of variance (ANOVA).

3. Results

3.1. Characteristic Information.We analyzed 59 eyes from 38
patients (11 males and 27 females) with an average age of
25:79 ± 6:97 years (range: 19–45 years) who underwent ICL
implantation. The mean AL was 27:11 ± 1:27mm (range:
24.30–30.37mm). Overall, 10 eyes with AL ≤ 26mm were
included in group A, 37 eyes with 26mm < AL ≤ 28mmwere
included in group B, and 12 eyes with AL > 28mm were
included in group C (Table 1). The median of SER was
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-9.75D. No significant differences in age or sex were detected
among groups (P > 0:05).

3.2. Levels of TGF-β1, TGF-β2, and TGF-β3 in AH and Their
Relationships with AL. The median levels in AH were
19.97 pg/mL (range: 4.8–115.48 pg/mL) TGF-β1,
2446.00 pg/mL (range: 734.96–5553.00 pg/mL) TGF-β2, and
26.33 pg/mL (range: 13.10–57.31 pg/mL) TGF-β3 (Table 2).
We detected significant differences among the three groups
in terms of the concentrations of TGF-β1 in AH
(Figure 1(a)), but no significant differences were detected
between the concentrations of TGF-β2 (Figure 1(b)) and
TGF-β3 (Figure 1(c)).

GEE was used to analyze the relationships between the
levels of TGF-β in AH and AL. The B and P values are given
in Table 2. The concentrations of TGF-β1 (Figure 2(a)) and
TGF-β3 (Figure 2(c)) in AH were positively correlated with
AL, while no significant relationship was observed between
TGF-β2 (Figure 2(b)) in AH and AL.

3.3. Levels of TGF-β in PL and Their Relationships with AL.
The concentrations of TGF-βs in PL are summarized in
Table 3. No significant differences were detected among the
three groups (Figures 1(d)–1(f)), and no relationship
between the concentrations of TGF-βs in PL and AL was
found (Figures 2(d)–2(f)).

3.4. Relationships between TGF-β Concentrations in AH and
PL. GEE indicated no significant relationships between the
TGF-β concentrations of any type in AH and PL (Table 4,
Figure 3).

4. Discussion

There were three major findings from this study. First, we
detected a positive correlation between the levels of TGF-β1
(B = 0:013, P = 0:015) and TGF-β3 (B = 1:778, P = 0:024) in
AH and AL. Second, among the three isoforms of TGF-β,
TGF-β2 had the highest concentration in AH. However, they
were not correlated with AL (B = 138:858, P = 0:248). Third,
the levels of TGF-β in PL were not correlated with those in
AL.

TGF-β is a multifunctional cytokine that regulates the
growth and differentiation of cells. It regulates the prolifera-
tion of scleral fibroblast cells and production of ECM [25]
and is considered the key factor mediating scleral remodeling
during the development of myopia [18, 19]. Although the

three isoforms are very similar in structure, they have differ-
ent functions [26].

TGF-β1 and TGF-β3 bind to receptors and signal in a
similar manner. They interact with transforming growth fac-
tor-β receptor II (TβRII), and subsequently, TβRI is
recruited to the receptor complex. However, TGF-β2 binds
very weakly to TβRII alone, and requires TβRIII to activate
the complex [27, 28].

The proportions of the isoform expression of scleral
TGF-β have been found to follow TGF − β1 : TGF − β2
: TGF − β3 = 2 : 33 : 1 [29]. In our study, in the AH of myo-
pia patients, the isoform expression of scleral TGF-β was
0.76 : 94 : 1. In the PL of myopia patients, the isoform expres-
sion of TGF-β was 43 : 2 : 1. According to Jobling et al. [29],
all of the three mammalian isoforms of TGF-β are downreg-
ulated in the sclera only 1 day after the development of myo-
pia. Another study showed that the levels of these isoforms
are not altered in the mammalian retina or choroid [30]. This
implies that TGF-β specifically signals scleral remodeling
when the signaling cascade reaches the sclera [11].

TGF-β1 is an important signaling molecule in the modu-
lation of ECM during ocular development. Nevertheless, its
function is controversial. Zhou et al. [31] observed that,
among the three isoforms in mouse sclera, only TGF-β1
exhibited significant differential expression, more than three-
fold, during ocular development, while the expression of the
others only changed marginally. In a study on tree shrews,
TGF-β1 expression decreased by 32% 1 day after FDM for-
mation [29]. In another study on an FDM guinea pig model,
TGF-β1 also significantly decreased, and was found to partic-
ipate in the Wnt3/β-catenin signaling pathway, and to medi-
ate type I collagen-dominated ECM in the sclera [32]. In the
present study, we found that levels of TGF-β1 in AH were
positively associated with AL in adult myopic patients. This
result seems to contradict previous studies [29, 32]. However,
in an FDM chick model, Rohrer and Stell [33] observed that
TGF-β1 was a potent inhibitor of basic fibroblast growth fac-
tor, which restrains the progression of myopia. However,
supplementation of TGF-β1 did not increase myopia or
induce myopia in unoccluded eyes. This implies that TGF-
β1 may need to act with cofactors to induce myopia.

In chick models, TGF-β2 is a “go signal” in the develop-
ment of FDM. However, there are inconsistencies in its
expression during myopia formation. In guinea pigs, Li
et al. [34] found that FDM decreased retinal and choroidal
TGF-β2 mRNA and protein expression levels. Other studies
have reported that TGF-β2 content increases or does not

Table 1: Sample characteristics.

Group A Group B Group C Total P

N (patients, eyes) 7, 10 22, 37 9, 12 38, 59

Age (years, mean ± SD) 25:43 ± 6:079 26:68 ± 8:312 23:89 ± 3:01 25:79 ± 6:968 0.604

Sex (male : female) 1 : 6 7 : 15 3 : 6 11 : 27 0.783

SER (D, P50, P25, P75) -7.44, -8.28, -6.34 -9.50, -11.25, -8.63 -13.13, -14.69, -10.88 -9.75, -12.00, -8.50 <0.001
AL (mm, mean ± SD) 24:99 ± 0:521 27:17 ± 0:510 28:72 ± 0:683 27:11 ± 1:265 <0.001
SER: spherical equivalent refraction; AL: axial length. One-way ANOVA test. Pearson’s chi-square test.
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significantly change [18, 30, 35, 36]. In our study, we did not
find a significant correlation between the levels of TGF-β2
and AL. Jia et al. [20] reported a positive relationship between
human AH levels of TGF-β2 and AL. However, the subjects

in that study had an average age of 67:0 ± 11:7 years, while
our subjects had an average age of 25:79 ± 6:97 years. On
the other hand, in Zhuang et al. [37], the vitreous level of
TGF-β2 was not significantly different in patients with high

Table 2: Concentrations of TGF-βs (pg/mL) in AH and relationship with AL (P50 (P25, P75)).

Group A (n = 10) Group B (n = 37) Group C (n = 12) Total (n = 59) B value P value

TGF-
β1

13.94 (7.90, 19.97) 19.97 (14.95, 32.50) 29.67 (19.97, 35.27) 19.97 (13.94, 31.56) 0.013 0.015

TGF-
β2

2352.00 (1920.75,
2489.25)

2462.00 (1827.50,
3400.50)

2556.50 (1646.50,
3341.25)

2446.00 (1809.00,
3178.00)

138.858 0.248

TGF-
β3

23.03 (17.64, 26.33) 26.33 (20.25, 32.02) 26.33 (22.78, 36.40) 26.33 (19.72, 31.21) 1.778 0.024

GEE: generalized estimating equation; B value: coefficient variables.
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Figure 1: TGF-β1 concentrations of the three groups, detected in aqueous humor (AH) (a) and plasma (PL) (d). TGF-β2 concentrations in
AH (b) and PL (e). TGF-β3 concentrations in AH (c) and PL (f). The upper and lower borders of the boxes indicate the quartiles of the TGF-β
concentrations. The maximum and minimum values are shown by the whiskers (∗P < 0:05).

4 BioMed Research International



myopia, compared to a control group. Chen et al. [25] stud-
ied different portions of sclera in guinea pigs during the
induction time of lens-induced myopia (LIM), and they
found that the activity of TGF-β2 was first elevated at the
posterior pole, then in the anterior portion. This discrepancy

could be due to differences in patient age. Hence, we hypoth-
esize that the concentration of TGF-β2 is altered in different
subjects.

Compared to TGF-β1 and TGF-β2, TGF-β3 has a rather
low ocular concentration. There have been few studies about
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Figure 2: Scatter plots showing the relationships between the concentrations of TGF-β1, TGF-β2, and TGF-β3 in AH and AL (a, b, c) and the
relationships between the concentrations of TGF-β1, TGF-β2, and TGF-β3 in PL and AL (d, e, f).

Table 3: Concentrations of TGF-βs (pg/mL) in PL and relationship with AL (P50 (P25, P75)).

Group A n = 7 Group B n = 22 Group C n = 9 Total n = 38
Spearman’s

test†
P

value
R P

TGF-
β1

9104.00 (7101.00,
12163.00)

7753.00 (5270.50,
11033.50)

10551.00 (7899.50,
26861.25)

8984.00
(6295.75,11939.50)

0.193† 0.259 0.431

TGF-
β2

477.84 (432.53, 523.44) 523.44 (365.44, 912.61) 718.69 (483.53, 1038.50) 523.44 (432.53, 947.05) 0.236† 0.172 0.507

TGF-
β3

210.47 (200.75, 393.08) 229.90 (186.99, 378.40) 205.61 (180.11, 279.91) 210.47 (200.75, 340.27) 0.203† 0.907 0.277

Spearman’s rank coefficient†. Independent-samples Kruskal-Wallis’s test.
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the implications of TGF-β3 in myopia formation. Jobling
et al. [29] reported that TGF-β3 expression significantly
decreases between 1 and 5 days after FDM. Although TGF-
β3 has similar structures to TGF-β1 and TGF-β2, they have
different functions. TGF-β3 was found to reduce the expres-
sion of alpha-smooth muscle actin (α-SMA) [38] in rabbit
corneal tissue, a marker of fibrogenic cells. Guo et al. [26]
reported that TGF-β3 upregulates Smad7 expression, which
is an antagonist of TGF-β signaling and is associated with
decreased fibrosis. By adding either TGF-β1 or TGF-β3, they
observed differential expression of the matrix metallopro-
teinase 1 gene, an important regulator of ECM. In our study,
we found that levels of TGF-β3 in AH were positively associ-
ated with AL in myopic patients. As TGF-β1 and TGF-β3
seemed to have opposite effects on fibrosis, further studies

are needed to elucidate their functions in the development
of myopia.

TGF-β is involved in two competing mechanisms of
myopia formation. On the one hand, decreasing TGF-β
levels reduce α-SMA expression and contraction during
myopia formation [19]. On the other hand, decreases in
TGF-β cause concurrent reductions in ECM production
and scleral thickness [29]. In one study, mimicking the
decreases in TGF-β levels during myopia induction caused
a 15% reduction in collagen synthesis [29]. In another, sup-
plementing TGF-β1 by intravitreal injection increased type
I collagen expression [39]. Gao et al. [40] reported that the
TGF-β1 gene was bidirectionally regulated during the induc-
tion and recovery time of LIM. It can increase or reduce tis-
sue fibrosis via the regulation of Smad3 or Smad2/Smad7

Table 4: Relationships between TGF-β concentrations (pg/mL) in AH and PL (P50 (P25, P75)).

AH-OD AH-OS PL
GEE

B value P value

TGF-β1 19.97 (15.96, 33.75) 19.97 (10.92, 29.68) 6295.75 (8984.00, 11939.50) 0.023 0.073

TGF-β2 2388.0 (1810.5, 3279.0) 2454.5 (1791.5, 3125.5) 432.53 (523.44, 947.05) -0.000009 0.398

TGF-β3 24.62 (18.89, 29.07) 26.33 (22.47, 33.26) 200.75 (210.47, 340.27) 0.008 0.881

OD: right eyes. OS: left eyes. PL: plasma. GEE: generalized estimated equation. B value: coefficient variables.
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Figure 3: Relationships between the concentrations of TGF-β1 (a), TGF-β2 (b), and TGF-β3 (c) in AH and PL.
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[41], but these relationships and the manipulation of this sig-
naling pathway need further research.

In this study, we recruited adult myopic patients with a
stable refraction for at least 2 years (the changes of refraction
were below 0.50D). In this way, we studied the profile of
TGF-β isoforms in AH and PL in a relatively stationary stage
of myopia. One of the advantages of our study is that we min-
imized the influence of age and systemic changes on levels of
TGF-βs. Jia et al. [20] found that the concentration of TGF-
β2 was negatively associated with age, while Yamamoto
et al. [42] found an opposite result. Nonetheless, older
patients tend to take more medications for chronic condi-
tions than younger people do. The advantage of our study
is that we recruited young patients with an average age of
25:79 ± 6:97 years. Moreover, we simultaneously collected
samples of AH and PL and analyzed the concentrations of
TGF-βs. No association was found between the levels of
TGF-βs in AH and PL. Thus, we assumed that systemic levels
of TGF-βs may not directly influence the refractive state of
healthy myopic subjects.

The limitations of our study also need to be discussed.
Firstly, we recruited neither healthy young people with nor-
mal AL because of the ethical concerns of AH sample collec-
tion, nor the elder subjects (people older than 45 years) with
normal AL who underwent cataract surgery because age
might lead to changes of TGF-β levels. The patients with
age-related cataract who underwent phacoemulsification
were mostly of older age. They possibly have a higher preva-
lence of metabolic diseases (such as diabetes [43] and liver
diseases [44]). Moreover, Zhu et al. [45] found that in cata-
ract patients, the concentration of TGF-β2 decreased while
nuclear color darkens. Besides, Yamamoto et al. [42] found
that the concentration of TGF-β2 varied in a negative trend
while aging and in different types of cataract. TGF-β was
reported to be one of the most important cytokines inducing
subcapsular cataract and posterior capsule cataract [46]. So it
is note-worthy that the levels of TGF-β2 can be changed
because of the abnormal metabolism of the lens and the cap-
sule membrane. The relationship between the level of TGF-
β2 in AH with age still remains undetermined: Yamamoto
et al. [42] found out that the level of TGF-β2 decreased while
the subjects were aging, while Jia et al. [20] found no correla-
tion. Concerning the reasons above, we classified the myopic
patients into three groups according to their AL and com-
pared the changes of TGF-βs in these groups instead of com-
paring with the control group. Secondly, in this study, we did
not detect the activity of the TGF-βs although we truly agree
that their functions were related with the activity. Our further
study will focus on the activity and function of TGF-βs in
myopic eyes. Thirdly, the refraction state of the subjects in
this study was in a relatively stationary stage, which means
we could not discern the level changes of TGF-β isoforms
during myopia formation.

5. Conclusion

In conclusion, we found that the concentrations of TGF-β1
and TGF-β3 in AH were positively associated with AL in
myopic young patients, while the concentrations of TGF-βs

in PL were not statistically correlated with AL. This indicates
that TGF-β1 and TGF-β3 could be potential targets for myo-
pia control. Further study is required to elucidate the molec-
ular mechanisms related to TGF-βs in the progression of
myopia.
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