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Abstract: Excessive alcohol consumption can cause alcoholic myopathy, but the molecular mechanism
is still unclear. In this study, zebrafish were exposed to 0.5% alcohol for eight weeks to investigate the
effect of alcohol on skeletal muscle and its molecular mechanism. The results showed that the body
length, body weight, cross-sectional area of the skeletal muscle fibers, Ucrit, and MO2max of the
zebrafish were significantly decreased after alcohol exposure. The expression of markers of skeletal
muscle atrophy and autophagy was increased, and the expression of P62 was significantly reduced.
The content of ROS, the mRNA expression of sod1 and sod2, and the protein expression of Nox2 were
significantly increased. In addition, we found that the inflammatory factors Il1β and Tnfα were
significantly enriched in skeletal muscle, and the expression of the HMGB1/TLR4/NF-κB signaling
axis was also significantly increased. In summary, in this study, we established a zebrafish model of
alcohol-induced skeletal muscle atrophy and further elucidated its pathogenesis.
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1. Introduction

As the frequency of alcohol consumption gradually increases, the damage caused by
excessive drinking to various organs in the body also continues to increase [1]. Skeletal
muscle myopathy due to excessive alcohol ingestion, termed alcoholic myopathy [2], is
characterized by progressive proximal weakness and skeletal muscle atrophy [3], which can
significantly impair gait and mobility in this patient population. Alcoholic myopathy occurs
in between 40 and 60% of individuals with chronic alcoholics [4,5], and the immediate cause
is an imbalance between skeletal muscle protein synthesis and degradation [6–9]; however,
the underlying cause is unclear. Therefore, extensive research is urgently needed to explore
the underlying mechanisms of alcoholic myopathy and find effective interventions.

The regulation of protein degradation is mainly achieved by the ubiquitin-proteasome sys-
tem (UPS) and the autophagy-lysosome system (ALS). Muscle RING finger 1 (MuRF1)/TRIM63
and muscle atrophy F-box (MAFbx), two E3 ligases in the UPS, are generally upregulated in al-
coholic myopathy [2,4,10]. The ALS is also closely related to skeletal muscle atrophy [11,12], and
autophagy levels were significantly increased in the skeletal muscle of chronic alcohol-drinking
mice [6,13].

Inflammatory signaling leads to skeletal muscle atrophy by activating protein degra-
dation [14–18]. The nuclear transcription factor NF-κB is a key regulator of inflammatory
signaling pathways and promotes the expression of inflammatory factors [19,20]. NF-κB
activity was significantly increased after the skeletal muscle of zebrafish was exposed to
alcohol [21]. High mobility group box 1 (HMGB1), an essential mediator of chronic inflam-
mation [22,23], activates NF-κB through Toll-like receptor 4 (TLR4) [24,25]. The expression
of HMGB1 is significantly increased in patients with alcoholic liver disease who consume
alcohol for long periods [26,27]. Therefore, we suspect that alcohol causes skeletal muscle
atrophy by activating HMGB1/TLR4/NF-κB signaling.
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Zebrafish, as a small and highly fecund vertebrate with a physiology and gene pool
similar to those of humans, can be used to study the mechanism of action of ethanol
in vivo [28,29]. The most significant advantage is the ease of administration, and water-
soluble drugs such as ethanol can be directly mixed with water and subsequently absorbed
by zebrafish [30]. In this study, we explore the molecular mechanisms of alcohol-induced
skeletal muscle atrophy in zebrafish and provide new ideas for therapeutic targets of
alcoholic myopathy.

2. Materials and Methods
2.1. Experimental Animals and Groups

The experimental animals were 8-month-old AB strain male zebrafish (n = 60) pur-
chased from Wuhan Institute of Hydrobiology, Chinese Academy of Sciences, which were
maintained under a light:dark cycle of 14 h:10 h. The operating procedures complied with
the “Regulations on the Management and Use of Laboratory Animals of Hunan Normal
University”. The experimental fish were divided into a control group (n = 30) and an
alcohol exposure group (n = 30), which were reared in water or a 0.5 percent alcohol solu-
tion, respectively, for a total of 8 weeks of intervention. The control and alcohol exposure
groups were fed fresh Artemia daily at 9:00 am, 1:00 pm, and 5:00 pm. The water or alcohol
was changed every 24 h, and the alcohol concentration of the alcohol exposure group
was measured daily. Hunan Normal University’s Laboratory Animal Ethics Committee
approved this study (No. 2018-046).

2.2. Zebrafish Model Treated with Alcohol Exposure

Studies have shown that a 1% ethanol concentration can lead to the unnatural death of
zebrafish, while zebrafish maintain a normal state in an ethanol concentration of 0.5% [31].
Therefore, a 0.5% ethanol concentration was selected in this experiment, which significantly
changed the physiology of zebrafish without causing death.

2.3. Determination of Exercise Capacity and Maximal Oxygen Uptake

Ucrit is the maximum swimming speed achieved in the fish test protocol and it reflects
the maximum ability of the fish to provide energy during continuous activity. It can be
used as an evaluation index for fish’s swimming ability and metabolic performance [32].
Zebrafish’s motility and oxygen consumption were analyzed using a miniature swimming
tunnel respirator (Loligo Systems, Viborg, Denmark). The specific test and calculation
methods are as follows.

First, the body length and body weight of the zebrafish were measured and they fasted
for 24 h. Second, the fasted zebrafish were transferred to the lane of the respirator for
adaptive training at a rate of 0.8 body length per second (BL/S) for 2 h. After adaptation,
the water speed in the respirator of the swimming lane was gradually increased according
to the speed increment pattern of 1.35 BL/S every 7 min until the zebrafish reached the
exhausted state (the standard of the exhausted state was that the zebrafish stopped at
the water outlet of the swimming lane, ending 20 s above). Swimming lane respirator
parameter settings during measurement were as follows: rinse for 90 s, wait for 30 s, and
measure for 5 min. Finally, Ucrit was calculated based on the maximum swimming speed
recorded by the instrument. The calculation formula was Ucrit = Uf + Us × (Tf/Ts), where
Uf is the swimming speed of the experimental fish when it is exhausted; Us is the speed
increment (1.35BL/S); Tf is the maximum swimming speed maintained before exhaustion
time (min); Ts is the time interval (7 min) [32]. In order to eliminate the influence of zebrafish
body length (BL) on swimming speed to a certain extent, the relative critical swimming
speed (Ucrit-r) was used to calculate the maximum swimming speed of zebrafish, and the
calculation formula was Ucrit-r = Ucrit/BL.

According to the real-time oxygen consumption MO2 (mmol/kg/h) recorded by
the swimming lane respirator during the acceleration test, a graph was drawn between
the acceleration nodes. Referring to the model equation calculated by Palstra, the oxy-
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gen consumption MO2 and velocity node equation were derived by regression analysis:
MO2 = SMR + aUBL

2 + bUBL, where SMR (basal metabolic rate, standard metabolic rate)
represents the minimum oxygen consumption required to maintain metabolism in unfed
zebrafish at rest; UBL represents the ratio of real-time swimming speed to body length; a
and b are constants. The maximal oxygen consumption of zebrafish is the value of oxygen
consumption at the critical swimming speed.

2.4. HE Staining

Skeletal muscles were dehydrated, clarified in xylene, and embedded in paraffin.
Serial sections of paraffin were cut using an RM2016 microtome (Leica, Wetzlar, Germany)
and mounted on glass slides (Servicebio, Wuhan, China). H&E staining images were
acquired using a NIKON DS-U3 camera control unit (Nikon, Tokyo, Japan).

2.5. DHE Staining

Fresh skeletal muscle tissue was placed on frozen slides, and ROS staining (DHE)
solution (D7008, Sigma, diluted 1:500) was added to the marked area. ROS-positive areas
were stained red with fluorescein. Positive areas were scored using ImageJ (version 5.0).

2.6. Total RNA Extraction and qRT-PCR

The skeletal muscle of zebrafish was collected from the upper region of the line con-
necting the zebrafish anterior vertebra and caudal vertebrae. RNA was extracted from
zebrafish muscle tissue by homogenization in TRIzol solution, according to the manufac-
turer’s protocol (Thermo Fisher Scientific, Waltham, MA, USA). A reverse transcription
system kit (Takara, Tokyo, Japan) was used to convert RNA to cDNA. SYBR green master
mix (Thermo Fisher Scientific, Waltham, MA, USA) was used to perform real-time PCR. A
real-time PCR system (CFX96, Bio-Rad, Hercules, CA, USA) was used to determine relative
mRNA expression. Sangon Biotech synthesized primers for the detected genes and the
reference gene gapdh. The relative mRNA expression was determined by using the 2-∆∆CT
method with the primers listed in Table S1.

2.7. Western Blotting

The skeletal muscle was lysed in RIPA buffer (High) (Solarbio, Wuhan, China) containing
one mM phenylmethylsulfonyl fluoride (PFMS) and 1× protease phosphatase inhibitor
(Solarbio, Wuhan, China). After quantification with a BCA protein quantification kit (Vazyme,
Nanjing, China), 20 g of protein lysate was loaded onto an SDS-PAGE gel. The PAGE gel was
cut according to the molecular weight of the target protein, and the protein was transferred
to a PVDF membrane after electrophoresis. The membranes were blocked with 5% nonfat
milk at room temperature and incubated with primary antibody at 4 ◦C overnight. See
Table S2 for specific information on the primary antibodies. After washing in PBST, the
membranes were incubated with a goat anti-rabbit IgG-HRP secondary antibody (1:10,000,
Absin, Shanghai, China). Proteins were detected using a gel imaging system (Tanon, Shanghai,
China). Immunoreactive bands were visualized and quantified using ImageJ software.

2.8. Data Analysis

Statistics were analyzed with GraphPad Prism 8 (GraphPad Software, San Diego, CA,
USA). All data were normally distributed and are presented as the mean ± SD of three
independent experiments. Significance was determined using an unpaired-samples t test.
*, **, *** represent p < 0.05, p < 0.01, and p < 0.001, respectively; ns represents p > 0.05, with
no statistical significance.
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3. Results
3.1. Alcohol Exposure Alters Zebrafish Appearance, Skeletal Muscle Morphology, and
Exercise Capacity

After 8 weeks of 0.5% alcohol exposure, compared with those of the control group, the
alcohol-exposed zebrafish’s body size (Figure 1A), body length (Figure 1B), body weight
(Figure 1C), and back muscle weight/body weight (Figure 1D) were significantly decreased.
The results of HE staining showed that the size and arrangement of skeletal muscle fibers in
the alcohol exposure group were significantly changed (Figure 1E), and the cross-sectional
area of muscle fibers was significantly reduced (Figure 1F). Zebrafish exercise capacity
indices Ucrit, Ucrit-r, and MO2max were significantly lower in the alcohol exposure group
than in the control group (Figure 1G–I).
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Figure 1. Morphology, skeletal muscle histology, and exercise capacity analysis of alcohol-induced
zebrafish. (A) Comparison of appearance. Bar = 10 mm. (B) Body length (mm). (C) Body weight (g).
(D) Back muscle proportion of body weight (%). (E) Hematoxylin–eosin (HE) staining. Bar = 20 µm.
(F) Cross-sectional area (CSA) of muscle fibers (µm2). (G) Absolute critical swimming speed
(cm/s). (H) Relative critical swimming speed (body length/second). (I) Maximal oxygen uptake
(mmol/kg/h). n = 7. * p < 0.05, ** p < 0.01, *** p < 0.001.
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3.2. Alcohol Exposure Activates the UPS and ALS of Zebrafish Skeletal Muscle

The main pathways of protein degradation are the UPS and ALS, which are involved
in the degradation of more than 80% of proteins in cells [33]. The results showed that the
mRNA levels of the UPS marker factors trim63a, trim63b, and fbxo25 in the alcohol exposure
group were significantly increased (Figure 2A). The protein levels of Mafbx and Murf1
were significantly increased (Figure 2B,C). The ALS mRNA levels of the marker factors atg7,
beclin1, and lc3a were also significantly increased in the alcohol exposure group (Figure 2D),
and the protein level of Beclin1 was significantly increased (Figure 2E), while the protein
levels of the autophagy substrate P62 were decreased (Figure 2F).

Life 2022, 11, x FOR PEER REVIEW 5 of 11 
 

 

3.2. Alcohol Exposure Activates the UPS and ALS of Zebrafish Skeletal Muscle 
The main pathways of protein degradation are the UPS and ALS, which are involved 

in the degradation of more than 80% of proteins in cells [33]. The results showed that the 
mRNA levels of the UPS marker factors trim63a, trim63b, and fbxo25 in the alcohol expo-
sure group were significantly increased (Figure 2A). The protein levels of Mafbx and 
Murf1 were significantly increased (Figure 2B,C). The ALS mRNA levels of the marker 
factors atg7, beclin1, and lc3a were also significantly increased in the alcohol exposure 
group (Figure 2D), and the protein level of Beclin1 was significantly increased (Figure 2E), 
while the protein levels of the autophagy substrate P62 were decreased (Figure 2F). 

 

Figure 2. The effect of alcohol exposure on protein degradation in skeletal muscle. (A) Changes in 
the mRNA levels of trim63a, trim63b, and fbxo25. (B) Western blot analysis of the difference in Mafbx 
protein levels. (C) Protein expression level of Murf1. (D) mRNA expression of atg7, beclin1, and lc3a. 
(E) Western blot analysis of changes in Beclin1 levels. (F) Western blot analysis of changes in P62 
levels. * p < 0.05, ** p < 0.01, and *** p < 0.001. 

3.3. Alcohol Exposure Increases ROS Generation and Redox System Dysregulation in Zebrafish 
Skeletal Muscle 

We detected reactive oxygen species (ROS) in alcohol-exposed zebrafish skeletal 
muscle by DHE staining. The results showed that the content of ROS in the fibers of skel-
etal muscle in the alcohol exposure group was significantly increased (Figure 3A), and the 
fluorescence intensity of ROS was also significantly increased, as determined by ImageJ 
analysis (Figure 3B). The mRNA levels of the antioxidant enzymes sod1 and sod2 (Figure 
3C) in the alcohol exposure group were significantly increased, and the protein expression 
of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) was significantly in-
creased (Figure 3D). 

Figure 2. The effect of alcohol exposure on protein degradation in skeletal muscle. (A) Changes in
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3.3. Alcohol Exposure Increases ROS Generation and Redox System Dysregulation in Zebrafish
Skeletal Muscle

We detected reactive oxygen species (ROS) in alcohol-exposed zebrafish skeletal
muscle by DHE staining. The results showed that the content of ROS in the fibers of skeletal
muscle in the alcohol exposure group was significantly increased (Figure 3A), and the
fluorescence intensity of ROS was also significantly increased, as determined by ImageJ
analysis (Figure 3B). The mRNA levels of the antioxidant enzymes sod1 and sod2 (Figure 3C)
in the alcohol exposure group were significantly increased, and the protein expression of
nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) was significantly increased
(Figure 3D).
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3.4. Alcohol Exposure Activates Inflammation and the HMGB1/TLR4/NF-κB Signaling Pathway

Next, we tested alcohol-exposed zebrafish skeletal muscle for inflammatory factors
and HMGB1/TLR4/NF-κB signaling. Compared with those in the control group, the
mRNA levels of the inflammatory factors il1β and tnfα were significantly increased in the
alcohol exposure group (Figure 4A). The expression of the Il1β and Tnfα proteins was also
significantly increased (Figure 4B,C). Moreover, the protein levels of Hmgb1, Tlr4, and
Nf-κb were significantly upregulated (Figure 4D–F).
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4. Discussion

Prolonged and excessive alcohol consumption reduces skeletal muscle mass and
impairs skeletal muscle function [34], but its pathogenesis remains understudied. In the
present study, alcohol-exposed zebrafish had significantly reduced skeletal muscle size and
exercise capacity, and the UPS and ALS were activated. Skeletal muscle inflammatory factor
and ROS production was significantly increased, and HMGB1/TLR4/NF-κB signaling,
which regulates inflammation, was also significantly increased. These results suggest that
alcohol exposure causes skeletal muscle atrophy in zebrafish and that HMGB1/TLR4/NF-
κB signaling may mediate alcohol-induced skeletal muscle atrophy.

Body weight, lean body mass, and skeletal muscle weight/whole body weight loss,
as obvious markers of skeletal muscle atrophy, are commonly observed in models of
alcohol-induced skeletal muscle atrophy [35–37]. Decreased muscle strength and increased
perception of exercise fatigue have been reported in alcohol-fed mice [38]. In this ex-
periment, zebrafish’s body weight, back muscle/body weight, and skeletal muscle fiber
cross-sectional area were significantly reduced. Ucrit and MO2max values were signifi-
cantly reduced after alcohol exposure, indicating that alcohol exposure leads to skeletal
muscle atrophy and reduced exercise ability in zebrafish.

Impaired protein synthesis is an important cause of skeletal muscle atrophy. We
experimentally validated the canonical signaling IGF1/PI3K/AKT pathway for protein
synthesis. The experimental results showed that there was no significant change in the
IGF1/PI3K/AKT signaling axis. Similar to the results of this experiment, alcohol reduces
protein synthesis in alcohol-fed mice through non-IGF1/PI3K/AKT signaling [39]. A
similar situation may exist in alcohol-exposed zebrafish, which is the focus of our next
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study. The UPS and ALS are the main pathways of protein degradation [40]. Autophagy
markers were significantly enriched in alcohol-fed rats [41]. The mRNA levels of murf1 and
mafbx were also significantly increased in alcohol abuse patients [42]. In the present study,
alcohol exposure increased UPS and ALS activity in zebrafish, similar to previous findings
in rats [43]. This finding indicates that the protein degradation pathway dominated by the
UPS and ALS was the direct cause of alcohol-induced skeletal muscle atrophy in zebrafish.

Inflammation is an essential cause of skeletal muscle atrophy [33,44]. NF-κB and
the NF-κB-induced inflammatory factor TNFα can activate the transcription of murf1 and
mafbx [40,45,46]. The mRNA levels of tnfα and il-6 were increased in the gastrocnemius muscle
of adult rats fed alcohol [47]. In this study, the expression of the inflammatory factors Tnfα
and Il1β was increased in the skeletal muscle of alcohol-exposed zebrafish, which may be the
reason for the atrophy of the zebrafish’s skeletal muscle caused by alcohol exposure.

ROS production can be induced by the inflammatory factors Tnfα and Il1β [48,49],
and TLR4 and TLR4/NF-KB are also closely related to ROS [50,51]. Nox is a common
ROS-generating enzyme, and the expression of Nox2 is dependent on NF-κB activation [52].
In alcohol-exposed zebrafish’s skeletal muscle, Nox2 was activated, the ROS content was
significantly increased, and the mRNA levels of sod1 and sod2 were elevated. This is
similar to the experimental results and characteristics of alcohol consumption in rats and
myotubes [9,53]. Although the expression levels of sod1 and sod2 were adaptively increased
in this study, ROS levels were significantly increased in skeletal muscle, which may be due
to the overactivation of Nox2, unbalancing the redox system and eventually generating a
large amount of ROS in skeletal muscle.

HMGB1 is a DNA-binding protein, released extracellularly, that binds to TLR4, which
triggers NF-κB signaling and induces an inflammatory response. The HMGB1 content
was significantly increased in the serum of rats exposed to alcohol for a long period of
time [54,55]. As a common receptor of HMGB1, TLR4 activation leads to the overexpression
of MAFbx, MuRF1, and the autophagy markers LC3-II and P62 in C2C12 myotubes to
induce skeletal muscle atrophy [17,56]. NF-κB, a downstream signal mediated by TLR4,
is also closely associated with skeletal muscle atrophy [12,57]. HMGB1/TLR4/NF-KB is
the primary signal regulating inflammation, and their protein expression was significantly
increased in this experiment, indicating that they may be a potential regulatory mechanism
in alcoholic myopathy.

In conclusion, we successfully constructed a model of alcohol-induced skeletal muscle
atrophy in zebrafish, providing a model for the testing of treatments for human alcoholic
myopathy. For the first time, in a zebrafish model, it was demonstrated that the process
of alcohol-induced skeletal muscle atrophy is mediated by HMGB1/TLR4/NF-κB, which
provides a reference for the treatment of alcoholic myopathy in humans.
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