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Abstract: Laminate structures composed of stiff plates and thin soft interlayers are widely used in
aerospace, automotive and civil engineering encouraging the development of reliable non-destructive
strategies for their condition assessment. In the paper, elastodynamic behaviour of such laminate
structures is investigated with emphasis on its application in ultrasonic based NDT and SHM for the
identification of interlayer mechanical and interfacial contact properties. A particular attention is
given to the practically important frequency range, in which the wavelength considerably exceeds
the thickness of the film. Three layer model with spring-type boundary conditions employed for
imperfect contact simulation is used for numerical investigation. Novel effective boundary conditions
are derived via asymptotic expansion technique and used for analysis of the peculiar properties of
elastic guided waves in considered laminates. It is revealed that the thin and soft film influences the
behaviour of the laminate mainly via the effective stiffnesses being a combination of the elastic moduli
of the film, its thickness and interface stiffnesses. To evaluate each of these parameters separately (or
to figure out that the available experimental data are insufficient), a step-wise procedure employing
the effective boundary conditions is proposed and tested versus the laser Doppler vibrometry data
for Lamb waves in Aluminium/Polymer film/Alumunium structure. A good agreement between
theoretical and experimental data is demonstrated for a certain symmetric laminate specimen. The
possibility of using film-related thickness resonance frequencies to estimate the film properties and
contact quality is also demonstrated. Additionally, the rich family of edge waves is also investigated,
and the splitting of fundamental edge waves into pairs is revealed.

Keywords: laminate; soft material; thin interlayer; guided waves; edge waves; effective boundary
conditions

1. Introduction

Laminate thin-walled structures composed of stiff plates and soft polymeric interlay-
ers are typical for many industrial applications. Among such examples are adhesively
bonded metallic or fibre-reinforced composite components widely used in aerospace and
automobile manufacturing providing an adequate compromise between weight reduction,
strength properties and cost-efficient assembling [1,2] or laminated glass consisting of a
plastic interlayer surrounded by two adjacent glass plates which have become a ubiquitous
solution for automobile windshields and in architectural glazing due to its impact-energy
absorbing properties [3].

Since the integrity of the bonds in multi-layered assemblies directly affects the product
quality, development and implementation of reliable non-destructive strategies for their
condition assessment are essential [4,5]. Together with conventional ultrasonic testing [6],
the approaches employing elastic guided waves (EGWs) as a physical basis are emerging
to characterize adhesive joint properties [7–10]. For visualization of localized macroscopic
damage in bonded structures with EGWs, non-contact imaging techniques are being
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developed based on object surface scanning with a laser source [11], laser interferometer [12]
and their combinations [13]. Since guided wave dispersion properties strongly depend
on structural material parameters, EGWs are valuable for global assessment of adhesive
bonding integrity [8,14] and might be also used for the estimation of adhesive mechanical
properties [15,16]. The latter is particularly important for in- and post-manufacturing
quality control of bonded structures because the strength properties of adhesives strongly
depend on curing conditions [17,18].

In the EGWs diagnostics of laminate assemblies with soft interlayers, relevant mathe-
matical and computational models describing their elastodynamic behaviour are essential
for adequate interpretation of the experimental data. A natural and basic way is to model
such waveguides as multilayered objects assuming continuity conditions for displacement
and stress components at the interlaminar interfaces [15] (for bonded structures, they are
known as tri-layer models). To handle possible imperfectness in interface coupling, such
models are further modified by including an additional viscoelastic interfacial layer [19] or
assuming the spring-type boundary conditions (SBCs) between the laminae [8,20].

When the thickness of internal soft layers is sufficiently small compared to the wave-
length, their dynamics might be neglected and replaced by certain effective boundary
conditions (EBCs) coupling two external laminae and tuned to address interlayer mechani-
cal properties and the contact quality. As EBCs, uniformly distributed SBCs working in
traction/compression and shear are widely used [21,22] (i.e., if adhesively bonded struc-
tures are considered this relates to both cohesive and adhesive properties of bonded joints).
Alternatively, more sophisticated and precise models are proposed based on asymptotic ex-
pansion techniques using a small parameter related to the thickness of the interlayer [23–25].
However, to our best knowledge, up to now these models did not take into account contact
quality and their accuracy was not higher than the first order of the small parameter.

Compared to Lamb waves (LWs) in a monolithic single lamina, the presence of a soft
polymeric insert and layering of the waveguide sufficiently complicates corresponding
EGW phenomena. Theoretical considerations reveal that Lamb-type EGWs propagating in
such laminates are composed of modes that could be associated with corresponding LWs
of sublayers and coupling modes related to the global structure [19]. Moreover, certain of
the former are disparted in the laminate structure into mode pairs, which dispersion curves
in broad frequency ranges traverse along corresponding trajectories of these LWs [20,26].
Finally, specific mode repulsion phenomena, not occurring in a monolithic layer, could be
also pronounced [27]. It is observed that all these peculiarities of EGWs could depend both
on mechanical properties of thin interlayers and contact quality between laminae [8,19].
Thus, a thorough investigation of corresponding EGW phenomena and understanding
of their dependencies from the aforementioned input data is essential for the reliable
application of EGWs for the evaluation of laminate structures.

The aim of the current study is to comprehensively investigate and explain the influ-
ence of thin and soft interlayers on the behaviour of EGWs in laminate isotropic structures
with particular emphasis on the application of the obtained results for the identification of
mechanical properties of such sublayers and evaluation of interlaminar contact integrity.
For this purpose, extensive numerical analysis of EGW characteristics in a three-layered
geometrically symmetric laminate with a thin film is performed while elastic constants
and thickness of the latter as well as contact quality are serving as input. Along with
the well-established tri-layer model enriched with SBCs between the laminae to handle
possible contact degradation [7,8,20], a novel asymptotic model for the considered lay-
ered structure is proposed and the corresponding EBCs are derived. Employing them,
it becomes possible to explain rigorously the nature of mode pairs observed numeri-
cally by Loukkal et al. [19], Mezil et al. [20], Puthillath et al. [26] and to derive a clear semi-
analytical representation for the thickness resonance frequencies of the laminate. Moreover,
these EBCs allow advancing results of Gauthier et al. [8] on bonding quality assessment
by estimating specific frequency ranges and particular EGWs, where and on which the
influence of interlayer mechanical properties and its bonding quality with external lamina
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is the most pronounced. Using this information, a preliminary guideline for interlayer
identification is proposed and tested over available experimental data making it of po-
tential interest for ultrasonic based NDT/SHM. As a first step to further development of
EGWs-based techniques, edge waves (EWs) in the laminate with thin soft interlayers are
investigated and the complete picture of EGWs is presented. From the practical point of
view, the EWs can be used to detect a weakening of the bond, localized near the edge.
Moreover, together with LWs and SH-waves, they could provide additional information
for identification of mechanical properties of the film and its contact conditions.

2. Mathematical Modelling
2.1. Exact Statement of Boundary Value Problem

Let us consider a laminate composed of two isotropic and homogeneous elastic layers
D1 and D3 of thicknesses h1 and h3 and a thin film D2 of thickness h2 between them as
shown in Figure 1. Materials of the layers are characterized by the mass density ρq, Young’s
modulus Eq and Poisson ratio νq (q = 1, 2, 3).

x
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x1
x2

x3

H

h
3
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h
2
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Figure 1. Geometry of the problem.

The stress tensor components σ
(q)
lm (l, m = 1, 2, 3) and the displacement vector

u(q) = {u(q)
1 , u(q)

2 , u(q)
3 } in all the layers satisfy governing equations of linear elastody-

namics
∂σ

(q)
lm

∂xm
− ρq

∂2u(q)
l

∂t2 = 0, (1)

where xm are Cartesian coordinates (see Figure 1), t is the time. Let us assume that
the materials of all the layers are isotropic and obey the Hooke’s law. The stress tensor
components can be expressed through the ones of the displacement vector as follows:

σ
(q)
lm = λq∇ · u(q)δlm + µq

∂u(q)
l

∂xm
+

∂u(q)
m

∂xl

, (2)

where δlm is Kronecker’s delta, λq, µq are Lamé constants. Let us introduce parameter

β2
q =

c2
q,T

c2
q,L

=
µq

λq + 2µq
=

1− 2νq

2(1− νq)
,

where

cq,L =

√
λq + 2µq

ρq
,

cq,T =

√
µq

ρq

are the velocities of the longitudinal and transverse waves, respectively.
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The SBCs connecting the displacement vector u(q) and the traction vector composed of
tangential and normal stresses τ(q) = {σ(q)

13 , σ
(q)
23 , σ

(q)
33 } at the internal interfaces x3 = zp =

p
∑

i=1
hi (p = 1, 2) are written following [28–31]:

τ(p+1) = τ(p) = κ(p)
(

u(p+1) − u(p)
)

, x3 = zp. (3)

At the outer surfaces of the waveguide, stress-free boundary conditions (BCs)

τ(1) = 0, x3 = 0; τ(3) = 0, x3 = H (4)

are assumed.
The components of the stiffness matrices κ(p) have the form

κ(p)
lm = κ(p)

l δlm.

The dispersion relation describing plane GWs propagating in an infinite multi-layered
laminate can be obtained by reducing of the problem stated above to the plane one (LWs)
or anti-plane one (SH-waves) in the plane, say, (x1, x3). After the application of the Fourier
transform with respect to x1 coordinate and the Laplace transform with respect to the
time t [32], governing Equation (1) are reduced to the system of ordinary differential
equations for each layer with respect to x3 and with the wavenumber k and the circular
frequency ω = 2π f as parameters. The solution of the system of differential equation is
then substituted into the transformed BCs (3) and (4). As a result, an eigenvalue problem is
formulated, which is reduced to the dispersion equation

D(k, ω) = 0

and solved numerically following [33]. Table 1 presents the material properties used further
for numerics.

Table 1. Material properties used for numerics.

Material Density Young Modulus Poisson’s Ratio
ρ, kg/m3 E, GPa ν

Aluminium 2700 70 0.33
Cyanoacrylate adhesive [34] 1248 1.7 0.4

Silicone rubber [35] 1150 3.1 0.48
Two-component epoxy adhesive [36] 1345 2.75 0.35

Two-sided epoxy tape [37] 930 0.5 0.4

2.2. Modeling of the Film via EBCs

Let us suppose that the EGWs, guided by the laminate described in Section 2.1, satisfy
the condition L� h2, where L is the characteristic wavelength. In this case, the problem
stated in Section 2.1 can be reduced to a simplified one for a two-layered plate, composed of
layers D1 and D3 with some effective boundary conditions (EBCs) on the interface between
them, representing approximately the influence of the thin film. Using of asymptotic
methods is a natural way to construct such conditions. In [23,24], the EBCs were obtained
by asymptotic expansion of the transfer matrix of the interlayer. In [25], an another approach
is used, involving expansion of displacements and stresses both in the interlayer and in the
surrounding medium. A review of a various approaches to modeling thin layers via EBSc
can also be found in [25]. Here we present an alternative method for deriving EBCs, which
employs the asymptotic integration of Equations (1) and (2) for the film. This approach is
based on the ideas of Kaplunov et al. [38], which were used in [39] to construct the EBCs
for a half-space coated by a thin film.



Materials 2022, 15, 1307 5 of 32

Let us shift the origin of coordinate x3 to the middle surface of the film by setting
y = x3 − (h1 + h0) with h0 = h2/2, then the internal interfaces x3 = zp correspond to
y = ±h0. For the boundary values of traction components and displacements of the
external layers, we introduce notations

σ̂
(±1)
l3 = σ

(2±1)
l3

∣∣∣
y=±h0

, û(±1)
l = u(2±1)

l

∣∣∣
y=±h0

.

With the new notations, BCs (3) can be written in the form

σ
(2)
l3

∣∣∣
y=±h0

= σ̂
(±1)
l3 , u(2)

l

∣∣∣
y=±h0

= û(±1)
l ∓ ξ

(±1)
l σ̂

(±1)
l3 , (5)

where ξ
(±1)
l =

[
κ(

3±1
2 )

l

]−1
are interface compliances. Let µ and ρ be the characteristic

values of the shear moduli and densities of the external layers. The behaviour of the film
can be described in terms of dimensionless parameters ε = h0/L, µ2/µ, ρ2/ρ. In order to
consider the general case of long-wave vibrations, we assume ε� 1, µ2/µ ∼ 1, ρ2/ρ ∼ 1
and introduce dimensionless variables

ηi =
xi
L

, ζ =
x3

h0
, τ =

tcT

L
, u(2)

l =
h0µ

µ2
wl , σ

(2)
lm = µplm. (6)

Here and further on i, j = 1, 2, i 6= j, cT =
√

µ/ρ. Let us write down BCs (5) in
dimensionless variables (6) as the sum

pl3|ζ=1 + pl3|ζ=−1 =
2
µ

Sl3, wl |ζ=1 + wl |ζ=−1 =
2µ2

h0µ
Ũl (7)

and the difference

pl3|ζ=1 − pl3|ζ=−1 =
1
µ

(
σ̂
(1)
l3 − σ̂

(−1)
l3

)
,

wl |ζ=1 − wl |ζ=−1 =
µ2

h0µ

(
û(1)

l − û(−1)
l − Pl ,

)
,

(8)

where

Sl3 =
1
2

(
σ̂
(1)
l3 + σ̂

(−1)
l3

)
, Ul =

1
2

(
û(1)

l + û(−1)
l

)
, Ũl = Ul −Ql ,

Ql =
1
2

(
ξ
(1)
l σ̂

(1)
l3 − ξ

(−1)
l σ̂

(−1)
l3

)
, Pl = ξ

(1)
l σ̂

(1)
l3 + ξ

(−1)
l σ̂

(−1)
l3 .

(9)

After substituting (6) into (1) and (2), one can rewrite this system in the form

∂p33

∂ζ
= −ε

(
∂i pi3 + ∂j pj3

)
+ ε2∂2

τw3,

∂pi3
∂ζ

= −ε
(

1− 2β2
2

)
∂i p33 − ε2

[
∂2

plwi +
(

3− 4β2
2

)
∂i∂jwj

]
,

∂w3

∂ζ
= β2

2 p33 − ε
(

1− 2β2
2

)(
∂iwi + ∂jwj

)
,

∂wi
∂ζ

= pi3 − ε∂iw3

(10)

and
pii =

(
1− 2β2

2

)
p33 + 2ε

[
2
(

1− β2
2

)
∂iwi +

(
1− 2β2

2

)
∂jwj

]
,

pij = ε
(
∂jwi + ∂iwj

)
,

(11)

where ∂i =
∂

∂ηi
, ∂2

τ =
ρ2µ

ρµ2

∂2

∂τ2 , ∂2
pl = 4

(
1− β2

2
)
∂2

i + ∂2
j − ∂2

τ . Operator ∂2
pl is related to the

theory of plate extension (see below).
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Let us assume that the functions pl3, wl and their derivatives with respect to ηi and τ
have the order of unity as ε→ 0. Under this assumption, system (10) can be integrated by
making use of asymptotic iterations [38]. In the zero order approximation, we omit in (10)
all the terms with ε and ε2. Then the system (10) gives

p0
33 = s33 + O(ε), p0

i3 = si3 + O(ε),

w0
3 = v3 + β2

2s33ζ + O(ε), w0
i = vi + si3ζ + O(ε),

(12)

where sl3, vl are arbitrary functions of ηi and τ. By substituting (12) in the sum of BC (7),
we find

sl3 =
1
µ

Sl3, vl =
µ2

h0µ
Ũl . (13)

Now we are in the position to obtain the first order approximation. By restoring the
terms with ε and substituting into them already known zero order approximation, we come
again to the system, which allows integration, and so on. It is convenient to write integrals
of the odd functions of ζ as even functions, which turns to zero at ζ = ±1 (e.g., the integral
of ζ is

(
ζ2 − 1

)
/2). Then formulae (13) are valid for any approximation. After constructing

approximation of pn
l3, vn

l of desirable order n, one can substitute them in the difference of

BCs (8) and obtain the relations between the boundary values σ̂
(±1)
l3 , û(±1)

l , i.e., the EBCs.
Besides, we have the formulae for all the displacements and stresses in the film (for pii, pij,
formulae (11) must be used). As soon as the problem for the domains D1, D3 connected via
the EBCs is solved, one can reconstruct the distribution of the stresses and the displacement
in the film with the asymptotic error O

(
εn+1).

In the original variables, the EBCs of the second order have the form

σ̂
(1)
33 − σ̂

(−1)
33 = −j1h2

(
∂Si3
∂xi

+
∂Sj3

∂xj

)
+ j2h2ρ2

∂2Ũ3

∂t2 ,

σ̂
(1)
i3 − σ̂

(−1)
i3 = −j1h2

(
1− 2β2

2

)∂S33

∂xi
− j2h2µ2

[
ΩplŨi +

(
3− 4β2

2

) ∂2Ũj

∂xi∂xj

]
,

û(1)
3 − û(−1)

3 =
h2

λ2 + 2µ2
S33 + P3 − j1h2

(
1− 2β2

2

)(∂Ũi
∂xi

+
∂Ũj

∂xj

)
− j2

h3
2β2

2
12µ2

Ω3S33,

û(1)
i − û(−1)

i =
h2

µ2
Si3 + Pi − j1h2

∂Ũ3

∂xi
+ j2

h3
2

12µ2

[
ΩiSi3 +

(
1− β2

2

) ∂2Sj3

∂xi∂xj

]
,

(14)

where

Ωpl = 4
(

1− β2
2

) ∂2

∂x2
i
+

∂2

∂x2
j
− 1

c2
2,T

∂2

∂t2 , Ω3 =
1− 2β2

2
β2

2
∆ +

β2
2

c2
2,T

∂2

∂t2 ,

Ωi =
(

2− β2
2

) ∂2

∂x2
i
+

∂2

∂x2
j
− 1

c2
2,T

∂2

∂t2 , ∆ =
∂2

∂x2
i
+

∂2

∂x2
j

,
(15)

j1,2 = 0, 1 indicates the approximation order. In the case
∂

∂x2
= 0, operator Ωpl can be

written in the form

Ωpl =
2

1− ν2

(
∂2

∂x2
1
−
(
1− ν2

2
)
ρ2

E2

∂2

∂t2

)
.

Such an operator describes propagation of an extensional wave in a thin plate with free
faces (see, e.g., [38]). In the problem under consideration, this operator becomes dominating
only in the case µ2 � µ, which is not in the focus of the present investigation.

If ξ
(±1)
l = 0, the zero-order terms of (14) coincide with those obtained in [23,25].

The first order approximation (j2 = 0) is in agreement with that in [23] except the terms
with j2 in the first two equations in (14), which referred to the first approximation in [23].
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Apparently, this discrepancy is caused by the procedure of the EBCs derivation used by
Rokhlin and Wang [23], which employs a transfer matrix for the vectors containing stresses
and particle velocities.

If convenient, one can shift the vertical coordinate in domains D1 and D3 to calculate
σ̂
(±1)
l3 , û(±1)

l on the same surface in the global coordinate system, but this operation is
not necessary.

In the zero order approximation (j1 = j2 = 0), the EBCs are spring-type BCs

σ̂
(1)
33 = σ̂

(−1)
33 , σ̂

(1)
i3 = σ̂

(−1)
i3 ,

û(1)
3 − û(−1)

3 = ξeff
3 σ̂

(1)
33 , û(1)

i − û(−1)
i = ξeff

i σ̂
(1)
i3

(16)

with effective compliances

ξeff
3 =

h2

λ2 + 2µ2
+ ξ

(1)
3 + ξ

(−1)
3 , ξeff

i =
h2

µ2
+ ξ

(1)
i + ξ

(−1)
i , (17)

corresponding to effective stiffnesses κeff
1 = (ξeff

1 )−1, κeff
3 = (ξeff

3 )−1. Formulae (17) show
that in the case of an imperfect contact the effective compliances are the sums of those of
the film itself

ξeff
3,0 =

h2

λ2 + 2µ2
=

h2β2
2

µ2
, ξeff

i,0 =
h2

µ2
(18)

and those of the interfaces between the film and the external layers.
In the case of a symmetric laminate (h1 = h3 = h, E1 = E3, ν1 = ν3, ρ1 = ρ3,

ξ
(−1)
l = ξ

(1)
l = ξl = κ−1

l ), it is convenient to shift the coordinate y locally in D3 as
z = y− h2/2, and in D1 as z = y+ h2/2. Then in the global coordinate system (x1, x2, z) the
surfaces of the waveguide are defined by z = ±h and the interface by z = 0. The boundary
values σ̂

(±1)
l3 , û(±1)

l mean the limits as z → ±0 (we have a discontinuity here because of
the film).

The problem can be separated into two independent ones: for the symmetric vibrations
defined as

u(1)
i

∣∣∣
z=−d

= u(3)
i

∣∣∣
z=d

, u(1)
3

∣∣∣
z=−d

= −u(3)
3

∣∣∣
z=d

,

σ
(1)
ll

∣∣∣
z=−d

= σ
(3)
ll

∣∣∣
z=d

, σ
(1)
ij

∣∣∣
z=−d

= σ
(3)
ij

∣∣∣
z=d

, σ
(1)
i3

∣∣∣
z=−d

= −σ
(3)
i3

∣∣∣
z=d

,
(19)

(d ∈ [0, h]), and for the antisymmetric vibrations characterized by

u(1)
i

∣∣∣
z=−d

= −u(3)
i

∣∣∣
z=d

, u(1)
3

∣∣∣
z=−d

= u(3)
3

∣∣∣
z=d

,

σ
(1)
ll

∣∣∣
z=−d

= −σ
(3)
ll

∣∣∣
z=d

, σ
(1)
ij

∣∣∣
z=−d

= −σ
(3)
ij

∣∣∣
z=d

, σ
(1)
i3

∣∣∣
z=−d

= σ
(3)
i3

∣∣∣
z=d

.
(20)

It is sufficient to consider only one of two external layers, e.g., the upper one (the
domain index is omitted below).

The symmetry properties imply

S33 = σ̂33, Ũi = ûi − ξiσ̂i3, P3 = 2ξ3σ̂33, Si3 = Ũ3 = Pi = 0

for the symmetric problem and

Si3 = σ̂i3, Ũ3 = û3 − ξ3σ̂33, Pi = 2ξiσ̂i3, S33 = Ũi = P3 = 0

for the antisymmetric one. According to these relations, two conditions in (14) are satisfied
identically, and the other two give the EBCs for each case:
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for the symmetric vibrations:

σ̂i3 = −j1h0

(
1− 2β2

2

)∂σ̂33

∂xi
− j2h0µ2

[
ΩplŨi +

(
3− 4β2

2

) ∂2Ũj

∂xi∂xj

]
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

(
1− 2β2

2

)(∂Ũi
∂xi

+
∂Ũj

∂xj

)
− j2

h3
0β2

2
3µ2

Ω3σ̂33;

(21)

for the antisymmetric vibrations:

σ̂33 = −j1h0

(
∂σ̂i3
∂xi

+
∂σ̂j3

∂xj

)
+ j2h0ρ2

∂2Ũ3

∂t2 ,

ûi =
1
2

ξeff
i σ̂i3 − j1h0

∂Ũ3

∂xi
+ j2

h3
0

3µ2

[
Ωiσ̂i3 +

(
1− β2

2

) ∂2σ̂j3

∂xi∂xj

]
.

(22)

Here σ̂l3, ûl are boundary values on the lower surface of the upper layer.
The material parameters of soft films considered in this work (see Table 1) are related

to the parameters of the external layers (aluminium) as ρ2/ρ1 ∼ 1, µ2/µ1 � 1. An analysis
of EBCs (21) and (22) taking into account the additional small parameter µ2/µ1 shows that
the the underlined terms in (15), (21) and (22) are small. By omitting them we obtain the
simplified EBCs used in Section 5.

2.3. Thickness Resonance Frequencies

Except the rare cases of backwards waves, the cut-off frequencies of LWs coincide
with thickness resonance frequencies, which are eigenvalues of the problem analogous
to that for LWs, but with wavenumber k = 0 (see [38] for more details). In the laminate
under consideration, these frequencies can be separated into two groups: thickness stretch
resonance frequencies, for which the corresponding eigenforms satisfy conditions u(q)

1 = 0,

σ
(q)
13 = 0, and thickness shear resonance frequencies with u(q)

3 = 0, σ
(q)
33 = 0.

For the antisymmetric vibrations, the thickness stretch resonance frequencies are
defined as f a

n,st = ωa
n,st/2π, where ωa

n,st (n = 1, 2, . . .) are ω-roots of equation

sin
ωh
c1,L

(
cos

ωh2

2c2,L
−
√

µ2ρ2

κ3β2
ω sin

ωh2

2c2,L

)
+

β1
√

µ2ρ2

β2
√

µ1ρ1
sin

ωh2

2c2,L
cos

ωh
c1,L

= 0. (23)

In the case of a soft interlayer, we have µ2/µ1 � 1, so the roots of Equation (23) allow
additional separation in two groups, approximately defined by equations

sin
ωh
c1,L

= 0 (24)

or

cos
ωh2

2c2,L
−
√

µ2ρ2

κ3β2
ω sin

ωh2

2c2,L
= 0. (25)

The roots of Equations (24) and (25) are thickness stretch resonance frequencies of
the external layers and the film with SBCs on its surfaces, respectively. In the case of a
thin film, the thickness resonances are extremely high-frequency ones. But in the case
µ2/µ1 � 1, which is considered here, these resonances can arise at the relatively low
frequencies. If κ3 → ∞, the lowest thickness stretch resonance frequency of the film is

defined by the lowest root of equation cos
ωh2

2c2,L
= 0. If κ3 → 0, this frequency can be

approximately described by two-term asymptotic approximation:
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f a
fl,st ≈



1
2π

√√√√√√
2κ3

ρ2h2

(
1 +

κ3h2β2
2

6µ2

) if κ3 → 0,

c2,L

2h2
if κ3 → ∞.

(26)

For the 50 µm-thick two-sided epoxy tape from Table 1, f a
fl,st = 10.7 MHz at κ3 = ∞

and f a
fl,st < 3 MHz if κ3 < 9 GPa/mm. The number n of the frequency (26) in the series f a

n,st
depends on the relation between parameters of the external layers and the film, including
the interface stiffnesses. In the case when the frequency (26) coincides with some of the
root of Equation (24), so-called “repulsion effect” arises, so we do not have multiply root in
such a situation.

The antisymmetric thickness shear resonance frequencies are defined as f a
n,sh =

ωa
n,sh/2π, where ωa

n,sh are ω-roots of equation

sin
ωh
c1,T

(
sin

ωh2

2c2,T
+

√
µ2ρ2

κ1
ω cos

ωh2

2c2,T

)
−
√

µ2ρ2√
µ1ρ1

cos
ωh2

2c2,T
cos

ωh
c1,T

= 0, (27)

which can be separated analogously to Equation (23) if µ2/µ1 � 1 , except the case of
the lowest thickness shear resonance frequency f a

1,sh. The latter cannot be observed in the
film considered separately, and is characteristic only for three-layered waveguides. In a
strongly inhomogeneous waveguide, the part of the dispersion curve starting from this
frequency comes to be in the long-wave range in respect to the external layers (i.e., L� h,
where L is the characteristic wavelength). This case is thoroughly studied in [40], where
the two-mode asymptotic polynomial expansions of the Rayleigh-Lamb dispersion relation
approximating both the fundamental antisymmetric wave and the first high order wave
can be found. In the laminate considered in the present paper, this effect can be obtained if
µ2 or κ1 is sufficiently small. The antisymmetric thickness shear resonance frequencies of
the film are high and not of interest for the present investigation.

The thickness stretch resonance frequencies for the symmetric vibrations are defined
as f s

n,st = ωs
n,st/2π, where ωs

n,st are ω-roots of equation

sin
ωh
c1,L

(
sin

ωh2

2c2,L
+

√
µ2ρ2

κ3β2
ω cos

ωh2

2c2,L

)
−

β1
√

µ2ρ2

β2
√

µ1ρ1
cos

ωh2

2c2,L
cos

ωh
c1,L

= 0. (28)

The properties of the roots of Equation (28) are analogous to the ones of Equation (27).
In particular, the lowest thickness stretch resonance frequency f s

1,st is also of the type, that
is characteristic only for three-layered waveguides and comes to be in low-frequency range
in respect to the external layers, if µ2/β2 or κ3 is sufficiently small. The thickness stretch
resonance frequencies of the film are very high in this case.

The symmetric shear resonance frequencies are of more interest for the present investi-
gation. They are defined as f s

n,sh = ωs
n,sh/2π, where ωs

n,sh are ω-roots of equation

sin
ωh
c1,T

(
cos

ωh2

2c2,T
−
√

µ2ρ2

κ1
ω sin

ωh2

2c2,T

)
+

√
µ2ρ2√
µ1ρ1

sin
ωh2

2c2,T
cos

ωh
c1,T

= 0. (29)

As µ2/µ1 � 1, the roots of Equation (29) can be separated into two groups, approxi-
mately defined by equations

sin
ωh
c1,T

= 0 (30)

or

cos
ωh2

2c2,T
−
√

µ2ρ2

κ1
ω sin

ωh2

2c2,T
= 0. (31)
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As for Equations (24) and (25), we have here the thickness shear resonance frequencies
of the external layers (Equation (30)) and those of the film with SBCs on its surfaces
(Equation (31)), acting, in contrast with (25), in the tangential direction. If κ1 → ∞,
the lowest thickness shear resonance frequency of the film is defined by the lowest root of

equation cos
ωh2

2c2,T
= 0. As κ1 → 0, two-term asymptotic approximation can be derived, so

we have

f s
fl,sh ≈


1

2π

√√√√√ 2κ1

ρ2h2

(
1 +

κ1h2

6µ2

) if κ1 → 0,

c2,T

2h2
if κ1 → ∞.

(32)

For the 50 µm-thick two-sided epoxy tape with the material properties given in Table 1,
f s
fl,sh < 3 MHz if κ1 < 15 GPa/mm.

In the narrow frequency ranges of the thickness resonance frequencies of the film
the vibrations of the interlayer are of the long-wave, high-frequency type [38]. In this
case, the assumptions made by integration of the system (10) are not valid, so the EBCs
constructed above are not applicable in these regions. In [38], the procedure of asymptotic
analysis specified for the long-wave, high-frequency vibrations, is developed, which could
be also applied in the case under consideration. In the present work, we restrict ourselves
to long-wave, low-frequency EBCs, constructed above.

3. Properties of Lamb Waves in Laminates with Soft Interlayer
3.1. Main Properties of Dispersion Curves and Vibration Forms

In this paper, slowness curves (SCs) s = k(ω)/ω are investigated since SCs for
various GWs could be easier distinguished compared to wavenumbers k or phase velocities
ω/k(ω). Some SCs for LWs in the three-layered waveguide with soft interlayer might
be somehow similar to the SCs for pure upper or lower waveguides analogous to [19,26].
To investigate this effect more detailed, it is natural to compare guiding properties of the
symmetric laminate with a soft thin mid-layer and a homogeneous waveguide, which
is the first layer of the laminate. Figure 2 demonstrates SCs of 4.05 mm thickness plate
(2 mm aluminium/50 µm film/2 mm aluminium) and 2 mm thickness aluminium plate.
Hereinafter, SCs of symmetric and antisymmetric elastic waves are shown using lines of
different colours. To distinguish SCs for the two considered waveguides, capital letters are
used for the laminate (A0, S0, . . .), while lower-case letters denote GWs propagating in the
layer (a0, s0, . . .). It is observed that the SCs of different GWs propagating in the laminate
and in the layer almost coincide in wide frequency ranges. For example, these are a0 and
A0 modes if f > 0.8 MHz; s0 for the layer and A1 for the laminate if f > 0.7 MHz; a1, s1 for
the layer and S2, A2 and for the laminate for all the frequencies higher than their cut-off
frequencies. The largest discrepancy between SCs for two considered waveguides occurs
for first GWs.

An insight into the nature of such a coincidence can be given via the consideration
of the wave-fields corresponding to these GWs. The displacement distribution of LWs
propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm film/2 mm aluminium)
and in 2 mm thickness aluminium plate are depicted in Figures 3–5, where the variation
of horizontal u1(x3, f ) and vertical u3(x3, f ) components of the displacement vector of the
first Lamb waves (LWs) are shown as contour plots.
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Figure 2. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm
film/2 mm aluminium) and 2 mm thickness aluminium plate.
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Figure 3. Displacement distribution uk(x3, f ) of LWs A0 and S0 propagating in 4.05 mm thickness
plate (2 mm aluminium/50 µm film/2 mm aluminium) and LW a0 propagating in 2 mm thickness
aluminium plate.
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Figure 4. Displacement distribution uk(x3, f ) of LWs A1 and S1 propagating in 4.05 mm thickness
plate (2 mm aluminium/50 µm film/2 mm aluminium) and LW s0 propagating in 2 mm thickness
aluminium plate.
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Figure 5. Displacement distribution uk(x3, f ) of LWs A2 and S2 propagating in 4.05 mm thickness
plate (2 mm aluminium/50 µm film/2 mm aluminium) and LW a1 propagating in 2 mm thickness
aluminium plate.

The employment of EBCs (21) and (22) provides better understanding of peculiar
properties of LWs revealed in numerical investigation. Let us write down the boundary
conditions for the upper layer with the zero-order approximation of EBCs (j1 = j2 = 0): for
the symmetric vibrations:

σ13|z=h = σ33|z=h = 0,

σ13|z=0 = 0, σ33|z=0 =
2µ2

h2β2
2

u3|z=0;
(33)

for the antisymmetric vibrations:

σ33|z=h = σ13|z=h = 0,

σ33|z=0 = 0, σ13|z=0 =
2µ2

h2
u1|z=0.

(34)

After solving the problem for the upper layer, one can construct the wave-field in the
lower one by continuation of the solution according to (19) or (20). From BCs (33) and
(34), one can easily see that the problem is reduced to the statement for a single layer with
stress-free BCs on the top surface and elastically constrained the bottom one. Notice also,
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that the elastic constraint acts only in the normal direction to the surface in the symmetric
case (33). On the contrary, in the antisymmetric case (34) we have the elastic constraint only
in the tangential direction. To analyze the influence of this constraint, one must take into
account the properties of LWs in a single layer.

On the basis of the asymptotic analysis carried out in [38], the relations for the first
LWs can be obtained. Thus,
for mode s0:

σ13 = E1ε4σ̄13, σ33 = E1ε3σ̄33, u3 =
h
2

εū3, u1 =
h
2

ū1, σ̄13 ∼ σ̄33 ∼ ū3 ∼ ū1; (35)

for mode a0:

σ33 = E1ε4σ̄33, σ13 = E1ε3σ̄13, u1 =
h
2

εū1, u3 =
h
2

ū3, σ̄33 ∼ σ̄13 ∼ ū1 ∼ ū3; (36)

for modes s1, a1, . . .:

σ13 = E1σ̄13, σ33 = E1σ̄33, u3 =
h
2

ū1, u1 =
h
2

ū3, σ̄13 ∼ σ̄33 ∼ ū3 ∼ ū1. (37)

Here ε = πh/L, where L is the characteristic wavelength. For the mode s0, this

wavelength can be roughly estimated as L ∼ cpl/ f , where c1,pl =
√

E1/(1− ν2
1)ρ1 and

f is the frequency. For the other modes of a single layer, L ∼ c1,T/ f . All the modes of a
single layer satisfy three BCs out of four BCs in (33) and (34). Let us investigate the last BC,
considering the antisymmetric mode of the laminate as a couple of antisymmetric modes
a0. Introducing (36) in (34), we have

ε2 σ̄13|z=0 =
hµ2

h2E1
ū1|z=0 →



ū1|z=0 = 0, ε→ 0;

σ̄13|z=0 = K ū1|z=0, ε ∼
(

hµ2

h2E1

)1/2
;

σ̄13|z=0 = O
(

hµ2

h2E1

)
ū1|z=0, ε ∼ 1.

(38)

In the numerical example under consideration, the shear interlayer parameter is

hµ2

h2E1
= 0.1� 1. (39)

Expressing ε through f (ε = πh f /c1,T), one can estimate the transition frequency,

corresponding to ε ∼
(

hµ2

h2E1

)1/2
: ftrans = 0.16 MHz. One can see from (38) that the

laminate behaves itself approximately as an antisymmetric couple of antisymmetric modes
a0 at f � ftrans, as a single layer of the thickness 2h = 4 mm at f � ftrans, and in the
vicinity of ftrans as an antisymmetric couple of modes in a layer of the thickness h = 2 mm
with a strong elastic constraint at the bottom surface. In the last two cases, the BCs for the
upper layer are essentially asymmetric, so the waveform must be different from that of a0.
All these proprieties can be seen by mode A0 in Figure 3.

The other antisymmetric modes are not fundamental, so the using of (35) with ε→ 0
has no sense for them. Let us consider the antisymmetric mode of the laminate as a couple
of symmetric modes s0. Introducing (35) in (34), we have

ε4 σ̄13|z=0 =
hµ2

h2E1
ū1|z=0 →


σ̄13|z=0 = K ū1|z=0, ε ∼

(
hµ2

h2E1

)1/4
;

σ̄13|z=0 = O
(

hµ2

h2E1

)
ū1|z=0, ε ∼ 1.

(40)
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In this case ε = πh f /c1,pl and ftrans = 0.48 MHz. The behaviour defined by (40) can
be observed by mode A1 in Figures 2 and 4.

Now let us consider the symmetric mode of the laminate as a couple of symmetric
modes s0. Introducing (35) in (33), we have

ε2 σ̄33|z=0 =
hµ2

h2E1β2
2

ū3|z=0 →



ū3|z=0 = 0, ε→ 0;

σ̄33|z=0 = K ū3|z=0, ε ∼
(

hµ2

h2E1β2
2

)1/2

;

σ̄33|z=0 = O

(
hµ2

h2E1β2
2

)
ū3|z=0, ε ∼ 1,

(41)

and ftrans = 0.67 MHz. Here the stretch interlayer parameter

hµ2

h2E1β2
2
= 0.6 (42)

is not so small as the shear one given by (39). Consequently, the influence of the elastic
constraint on symmetric modes of the laminate is stronger than that on the antisymmetric
ones. For the symmetric mode of the laminate considered as a couple of antisymmetric
modes a0 we introduce (36) in (34) and obtain

ε4 σ̄33|z=0 =
hµ2

h2E1β2
2

ū3|z=0 →


σ̄33|z=0 = K ū3|z=0, ε ∼

(
hµ2

h2E1β2
2

)1/4

;

σ̄33|z=0 = O

(
hµ2

h2E1β2
2

)
ū3|z=0, ε ∼ 1

(43)

with ε = πh f /c1,T and ftrans = 0.44 MHz. Here the behaviour of the laminate is compli-
cated by the repulsion effect, because of which the mode S0 begins as a one defined by (41)
and transforms to one defined by (43) at f > 0.5 MHz, and visa versa for S1. As f � ftrans,
the mode S0 behaves as mode s0 for a single layer of the thickness 2h = 4 mm. The slowness
of s0 in the long-wave range do not depend on the thickness, so the transition from the
first line of (41) to the third means that the coincidence between the SC of s0 and that
of the laminate becomes worse at f � ftrans = 0.67 MHz. With taking into account the
repulsion effect, one can see the behaviour defined by (41) and (43) by modes S0 and S1 in
Figures 2–4.

Introducing (37) in (33) and (34), we obtain the third lines in (41) and (38), respectively.
Thus, all the next modes can be approximately considered as couples of modes of the
single 2mm-thickness aluminium layer (see an example of this behaviour in Figure 5).
The classification of possible variants is presented in Figure 6. Notice, that the accuracy of
this scheme depends on the values of parameters (39) and (42). The asymptotic behaviour
(37) is not applicable in the vicinities of the thickness resonance frequencies (see [38]). These
vicinities are rather narrow, so they are not considered in the present work.

3.2. Influence of the Mechanical Properties of Interlayer

Let us investigate the influence of the mechanical properties of the soft thin inter-
layer on the characteristics of LWs propagating such as the considered symmetric lami-
nate. Figure 7 exhibits SCs for LWs propagating in 4.05 mm thickness plate (2 mm alu-
minium/50 µm interlayer/2 mm aluminium) with perfect contact BCs at the interfaces,
where properties of four various materials listed in Table 1 are employed to simulate thin
soft interlayer: two-sided epoxy tape (dashed thick lines), two-component epoxy adhesive
(dash-dotted lines), cyanoacrylate adhesive (dashed thin lines), silicone rubber (thick solid
lines). The Young’s moduli of adhesives vary in a relatively narrow range, whereas Poisson
ratios belong to a wide range including most of the adhesives (0.35 ≤ ν ≤ 0.48).
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Figure 6. Classification of GWs propagating in homogeneous elastic waveguide and symmetric
three-layered waveguide with thin soft mid-layer.
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Figure 7. Slownesses of antisymmetric (a) and symmetric (b) LWs propagating in 4.05 mm thickness
plate (2 mm aluminium/50 µm interlayer/2 mm aluminium) for four materials: two-sided epoxy
tape (dashed thick lines), two-component epoxy adhesive (dash-dotted lines), cyanoacrylate adhesive
(dashed thin lines), silicone rubber (thick dotted lines).
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One can see that most of the SCs are dissimilar for the considered materials, al-
though there are frequency ranges, where SCs for all the materials coincide (1–1.3 MHz
for A1, 1.5–3 MHz for A2). All these peculiarities can be explained based on the anal-
ysis, presented above. For example, the close values of the tangential effective stiffness
(κeff

1 = 20.4 GPa/mm for two-component epoxy adhesive, κeff
1 = 20.9 GPa/mm for silicone

rubber) explains the fact, that all the antisymmetric modes for these two materials coincide.
The SCs of symmetric modes for two-component epoxy adhesive (κeff

3 = 88.3 GPa/mm)
and cyanoacrylate adhesive (κeff

3 = 72.9 GPa/mm) lay close together in all the frequency
range up to 3 MHz. For the silicone rubber, the value of the tangential effective stiffness
become extremely large (κeff

3 = 544.6 GPa/mm) because of the small value of β2 for such a
Poisson’s ratio, and the latter explains the peculiar behaviour of symmetric modes. Thus, it
can be concluded that the dissimilar material properties of the thin soft interlayer lead to
distinguishable dissimilar SCs.

The comparison of SCs for the laminate and the aluminium sublayer shows that the
growing of the Young modulus E2 influences the symmetric couples of sublayer modes
more than the antisymmetric ones. This fact could be explained on the basis of the scheme
in Figure 6, since it is obviously easier to bend a thin film than to stretch it in the trans-
verse direction.

3.3. Influence of the Thickness of Interlayer

Figure 8a demonstrates SCs for four different values of h2 LWs and illustrate the
influence of the soft interlayer thickness on the SCs. A discrepancy distinguished by eye
can be observed even for two similar thicknesses h2 = 40 µm (dash-dotted lines) and
h2 = 50 µm (dashed lines). One can also see, that the SCs move close to those of an
aluminium sublayer, when the thickness of the film grows, except the narrow frequency
ranges near the cut-offs of the film. This effect is in agreement with formulae (18) and the
analysis performed in Sections 2.3 and 3.1.
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Figure 8. SCs of LWs propagating in the laminate (2 mm aluminium/h2 thickness film/2 mm
aluminium) at h2 = 10, 40, 50, 100µm (a) and in 4.1 mm thickness plate (h2 = 100µm) calculated
using EBCs (21) and (22) of zero order (thin dashed lines), second order (solid lines), three layer
model (thick dashed lines) (b).

In Figure 8b, the SCs for LWs calculated using EBCs (21) and (22) are compared with
those computed using the exact three layer model. Up to 1.25 MHz, on can see no difference
between SCs obtained with the use of the SBCs (zero order EBCs, j1 = j2 = 0) and by the
exact three-layer model, except the region around the “turn”of mode S0. For the second
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order EBCs (j1 = j2 = 1), one can see a good agreement everywhere except the frequency
range around 2.2 MHz, where the EBCs do not describe an additional mode. This is an
example of the effect mentioned in the end of Section 2.3 and related to the thickness
resonance frequencies of the film. Indeed, for the two-sided epoxy tape with the parameters
listed in the Table 1 and κ1 = ∞, the formula (32) gives f s

fl,sh = 2.2 MHz for the 100µm-film.
For the 50µm-film, we have f s

fl,sh = 4.4 MHz. In this case, the agreement between the three
layer model and one with second order EBCs (21) and (22) is very good up to 3 MHz.

3.4. Influence of the Adhesive Bonding or Imperfect Contact

The condition of the perfect contact is an idealization, which, from the practical point
of view, can be considered only as an approximation. The estimation of the applicability
of such an approximation is not a trivial problem. The possible way to solve it may be
found with the use of mathematical modeling, in which the possible contact degradation
is taken into account via the SBCs (3). In Figure 9, the SCs for various combinations of
κ1 and κ3 are presented. Comparing this figure with Figures 7 and 8a, one can see that it
is hard to distinguish between the effects of the thickness, the material properties or the
interface stiffnesses variation, unless the thickness resonance frequency of the film comes
to be in the considered frequency domain, as in Figure 8a for the 100µm-thick film. This is
explained by Figure 8b, which show that the principal behaviour of SCs can be described
by the model with zero order EBCs, in which the parameters of the film are presented
only through combinations (17). Still, the extraction of all the film-related parameters
including the interface stiffnesses from dispersion properties of LWs is possible, when the
experimental data meet certain requirements, which are investigated in Section 3.5.

In the case of weakened interfaces with large values of ξl = κ−1
l , the numerical

calculation of dispersion curves the 50µm-film reveals the effect of sharp increase of
slowness analogous to that shown in Figure 8. It can be seen from Figure 9a, that this effect
is most likely to be observed by symmetric modes, when the interface is weakened in the
tangential direction.
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Figure 9. SCs of symmetric LWs propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm
film/2 mm aluminium) with the imperfect contact for four different combinations of normal and
tangential stiffnesses κi (a) and symmetric LWs for two different values of the interface tangential
stiffness if κ3 = ∞ (b).

Two examples of SCs for symmetric modes in the case of continuous vertical displace-
ments, i.e.,κ3 = ∞, are presented in Figure 9b forκ1 = 2.5 GPa/mm andκ1 = 4.2 GPa/mm.
The investigation of vibration forms shows that in the vicinity of the frequency (32) they
are characterized by “trapping”of the energy by the film, so the external layers nearly cease
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to move at all. Since the measurements of the wave-field are usually made on the outer
surfaces of the laminate, this effect can manifest itself only as gaps in the experimentally
acquired dispersion curves of symmetric modes. For example, for κ1 = 2.5 GPa/mm one
must see the gap by the modes S0 and S1 in frequency range G1, and by the modes S0
and S5 in frequency range G2 (see Figures 9b, 10 and 11). Here we consider only modes,
which are observed in the experiment (see Section 5). Of course, analogous gaps could be
observed for the other symmetric modes, if one could see the modes themselves.
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Figure 10. Displacement distribution uk(x3, f ) of SLWs propagating in 4.05 mm thickness plate (2 mm
aluminium/50 µm film/2 mm aluminium) with imperfect contact (κ1 = 2.5 GPa/mm, κ3 = ∞).
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Figure 11. Displacement distribution uk(x3, f ) of SLWs propagating in 4.05 mm thickness plate (2 mm
aluminium/50 µm film/2 mm aluminium) with imperfect contact (κ1 = 4.2 GPa/mm, κ3 = ∞).

3.5. Analysis of the Influence of the Film Parameters on the Basis of EBCs

If the goal is to consider plane LW propagating in x1-direction, the EBCs (21) and (22)
can be written in simpler form by setting ∂/∂x2 = 0 u2 = 0, σ12 = σ32 = 0. Besides, in the
case of a soft film one can use the simplified EBCs, obtained in the end of Section 3.5. Let
us write them down in the form

σ̂13 = −j1h0
ν2

1− ν2

∂σ̂33

∂x1
+ jredh0ρ2

[
∂2û1

∂t2 − jsim
1
2

(
ξeff

1 − ξeff
1,0

)∂2σ̂13

∂t2

]
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1− ν2

[
∂û3

∂x1
− jsim

1
2

(
ξeff

1 − ξeff
1,0

)∂σ̂13

∂x1

]
− jsim

h0(1− 2ν2)
2

48(1− ν2)2

(
ξeff

1,0

)2
ρ2

∂2σ̂33

∂t2 (44)

for symmetric LWs and
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σ̂33 = −j1h0
∂σ̂13

∂x1
+ jredh0ρ2

[
∂2û
∂t2 − jsim

1
2

(
ξeff

3 −
1− 2ν2

2(1− ν2)
ξeff

1,0

)
∂2σ̂33

∂t2

]
,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

[
∂û3

∂x1
− jsim

1
2

(
ξeff

3 −
1− 2ν2

2(1− ν2)
ξeff

1,0

)
∂σ̂33

∂x1

]
− jsim

h0

12

(
ξeff

1,0

)2
ρ2

∂2σ̂13

∂t2 (45)

for antisymmetric ones, where jred = 0, 1 and jsim = 0, 1 are standing for the approximation
type. In (44) and (45), the film-connection is characterized by five material parameters: ξeff

1 ,
ξeff

3 , ν2, ρ2, ξeff
1,0. By setting jsim = 0, we come to reduced EBCs:

SLW:


σ̂13 = −j1h0

ν2

1− ν2

∂σ̂33

∂x1
+ jredh0ρ2

∂2û1

∂t2 ,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1− ν2

∂û3

∂x1
,

ALW:


σ̂33 = −j1h0

∂σ̂13

∂x1
+ jredh0ρ2

∂2û3

∂t2 ,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

∂û1

∂x1
.

(46)

The advantage of (46) consist in the fact, that they contain only four material parame-
ters: ξeff

1 , ξeff
3 , ν2, ρ2. Let us also write down the first order EBCs

SLW:


σ̂13 = −j1h0

ν2

1− ν2

∂σ̂33

∂x1
,

û3 =
1
2

ξeff
3 σ̂33 − j1h0

ν2

1− ν2

∂û3

∂x1
,

ALW:


σ̂33 = −j1h0

∂σ̂13

∂x1
,

û1 =
1
2

ξeff
1 σ̂13 − j1h0

∂û1

∂x1

(47)

with three parameters and the zero order EBCs

SLW: σ̂13 = 0, û3 =
1
2

ξeff
3 σ̂33, ALW: σ̂33 = 0, û1 =

1
2

ξeff
1 σ̂13 (48)

containing only two ones. As one can see from (44)–(47), the parameters ν2, ρ2 arise only
in the higher-order asymptotic approximations. It means that their estimation from the
experimental data can be strongly affected by the noise and the other type of experimental
errors. Thus, it is advisable to define the regions, where the influence of each of the
parameters is the most pronounced. This can be done on the basis of the EBCs as follows.

Let us assume that we have two aluminuim plates of the thickness 2 mm, glued
together by a film, and the experimentally acquired SCs of LWs. The material properties of
the aluminuim can be determined by conducting an analogous experiment for a single plate,
so we assume them to be known and coinciding with those given in Table 1. The thickness
of the film is also assumed to be known and equal to 50 µm, but its material parameters
must be extracted from the experimental data. Let us also suppose, that we are not sure
whether the contact between the film and the aluminium is perfect or not. Therefore,
we have to determine 5 parameters: E2, ν2, ρ2, ξ1, ξ3. This problem is equivalent to the
evaluation of parameters ξeff

1 , ξeff
3 , ν2, ρ2, ξeff

1,0 entering in EBCs (44) and (45).
At the first step, we calculate SCs with material parameters of a film, which is expected

to be similar to the one used in the experiment (e.g., the two-side epoxy tape from the
Table 1), using both the exact three layer model and the zero-order EBCs (48). By comparing
the results, we can find region Z \A in the slowness-frequency domain, where the SCs are
well described, when using zero-order EBCs (see Figures 12a and 13a). Analysis of the
properties of Lamb waves presented in Section 3.1 allows to define modes within these
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regions, which are strongly influenced by the film. These modes are indicated by arrows in
Figures 12a and 13a. If the experimental data for these parts of SCs are available, one can
determine parameter ξeff

3 by matching the symmetric modes and ξeff
1 for the antisymmetric

ones. Notice, that these two parameters can be determined independently.
If the contact between layers is perfect, we can also find the Poisson’s ratio (PR) at

this stage:

νpr =
ξeff

1 − 2ξeff
3

2
(
ξeff

1 − ξeff
3
) . (49)

Let us call this a provisional Poisson’s ratio, since it is not valid in the case of an
imperfect contact.
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Figure 12. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm
film/2 mm aluminium) for different approximations of EBCs: (a)—zero-order EBCs (48), (b)—first
order EBCs (47), (c)—reduced EBCs (46); (d–f)—zoomed regions B, A and C from subplots (a–c).
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Figure 13. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm
film/2 mm aluminium) with an imperfect contact at the interfaces (κ1 = κ3 = 20 GPa/mm) for
different approximations of EBCs: (a)—zero-order EBCs (48), (b)—first order EBCs (47), (c)—reduced
EBCs (46), (d)—simplified EBCs (44) and (45).

At the next step, we calculate the SCs using the first order EBCs with already known
ξeff

1 and ξeff
3 . The comparison shows that the influence of the new parameter ν2 consist

mainly in improving the SC of the wave S0 in the region A (see Figures 12a,b,e and 13a,b).
If we have the data for this region, we can choose an appropriate value of ν2, which is called
an experimental PR. A discrepancy between the provisional PR and the experimental PR
indicates that the contact is imperfect. For example, we have νpr = 0.19 for κ1 = 20 GPa,
κ3 = 20 GPa, νpr = −0.05 for κ1 = ∞, κ3 = 20 GPa, and νpr = 0.43 for κ1 = 20 GPa,
κ3 = ∞ instead of ν2 = 0.4 for the two-side epoxy tape. Thus, the provisional PR is not
suitable in the case of an imperfect contact. However, the experimental PR is valid in
both cases.

Now we are in the position to define the density by calculating the SCs using reduced
EBCs (46), in which all the parameters except ρ2 are known. The influence of ρ2 is most
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pronounced in the regions B and C (see Figures 12b,c,d,f or B, C and D 13b,c). At the
last step, we determine the parameter ξeff

1,0 by using the simplified EBCs (44) and (45) and
matching the SCs in the regions E and F (see Figure 13c,d). If the accuracy of the simplified
EBCs is not sufficient (as in the region F in Figure 13d), one can use tri-layer model and
match the Young modulus E2, since all the other parameters of that model can be expressed
through it and already known quantities. On the each step beginning from the second
one, an iteration procedure for the refinement of parameters is possible (e.g., after the
determination of ρ2 we can refine ν2 to meet the small changes between the first order and
reduced EBCs in the region A (see Figure 12e), then, if necessary, refine ρ2 to meet changes
in B, C, and so on).

Thus, all the material parameters related to the film can be determined. In the case of
a perfect contact ξeff

1,0 = ξeff
1 , i.e., all the material parameters are already known before the

last step. In this case, the simplified EBC can be used to check the found parameters (see
Figure 12d,e,f).

The consideration above shows that experimental data of high accuracy are needed
to determine all the parameters of the film. If such data are not available, it is more
reasonable to define the effective stiffnesses κeff

1 = (ξeff
1 )−1, κeff

3 = (ξeff
3 )−1 only. They

allow to describe the SCs with a practically good accuracy and are sufficient to detect the
damage of the interfaces between the film and the aluminium. In the case, when all the
parameters are required, the step-wise algorithm presented above can be used to check,
whether the amount and accuracy of the experimental data are sufficient to fulfil the task
or not.

4. Properties of Other Guided Waves in Laminates with Soft Interlayer

Besides the Lamb waves, the laminate under consideration can guide horizontally
polarized shear waves (SH-waves). The anti-plane problem describing them can be obtained

for the general statement in Section 2.1 by setting u1 = u3 = 0,
∂

∂x2
= 0. The corresponding

EBCs follow from (14) or (21) and (22) after the same setting. Let us write down anti-plane
EBCs for a symmetric laminate:
for the symmetric vibrations:

σ̂23 = −j2h0µ2Ωsh(û2 − ξ2σ̂23), (50)

for the antisymmetric vibrations:

û2 =
1
2

ξeff
2 σ̂23 + j2

h3
0

3µ2
Ωshσ̂23, (51)

where Ωsh =
∂2

∂x2
1
− 1

c2
2,T

∂2

∂t2 , ξeff
2 is defined by (17). As one can see from (50), the sym-

metric SH-wave coincides with some SH-wave of the single layer with asymptotic error
of the second order. With the same error, the antisymmetric SH-wave is SH-mode of the
same layer with elastic constraint on the bottom surface, defined by the effective stiff-
ness κeff

2 = (ξeff
2 )−1 (see (51)). If this stiffness is sufficiently small, we have a long-wave,

low-frequency mode with non-zero cut-off frequency. This case is thoroughly studied
in [41].

The properties of SH-waves in the laminate are analogous to those of LWs analyzed in
Section 3.1, but in this case the symmetric modes are not affected by the stretch interlayer
parameter. In the long-wave range in respect to film (h2 � L), all the SH-modes can
be considered as a symmetric or antisymmetric couple of symmetric or antisymmetric
SH-waves of the upper (or the lower) layer, with an exception of the mode ASH0. The latter
represents an antisymmetric couple of symmetric modes ssh0 at high frequencies, but at
low frequencies it behaves differently and has non-zero cut-off frequency.
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The form of EBCs (50) and (51) shows, that in their range of applicability the dispersion
curves of antisymmetric SH-waves depend mainly on the parameter ξeff

2 . The dependence
on the shear modulus µ2 in particular is defined by the second-order asymptotic term, so
it must be very weak. If the stiffness κ2 = ξ−1

2 is not too small, the dispersion curves of
symmetric SH-waves depend weakly on µ2, ρ2 and h2. In the case µ2 � µ1, the first term
in Ωsh is small comparing to the second one, so the dispersion curves are not sensitive
to µ2. These conclusions are in agreement with the results of paper [10], where a similar
problem was considered and the non-sensitivity of the mode SH2 (SSH1 in the notations of
the present paper) to µ2 and κ2 was revealed by means of numerical FE-based investigation.
Thus, in the range of applicability of EBCs (50) and (51) it is hardly possible to extract both
µ2 and κ2 from the experimentally acquired dispersion properties of SH-waves.

As for LWs, the EBCs (50) and (51) fail in the vicinities of the thickness resonance
frequencies of the film. On the basis of the three layer model, the latter are defined by
Equations (27), (29) and (31) with κ2 instead of κ1. The lowest of such frequencies is
observed for symmetric modes. Only if this frequency comes to be in the frequency range
under consideration, one can find both µ2 and κ2. Thus, even in the best case, SH-waves
allow to determine only three parameters of the film: the shear modulus, the density and
the interface stiffness in tangential direction. So it is of interest to study the possibilities of
the other GWs.

Let us consider a semi-infinite laminate, occupying the domain −∞ < x1 < ∞,
x2 6 0, 0 6 x3 6 h (see Figure 1). In this case, the plate can support one more type of
GWs—edge waves (EWs), propagating along the edge x2 = 0 in x1 direction and exponen-
tially decaying as x2 → −∞. These waves were intensively studied theoretically (see the
overview [42] and the references therein), in the recent time their existence and properties
were confirmed in several experimental studies [43–46]). But the EWs in a laminate glued
by a thin soft film were not yet investigated.

In this work, we consider a symmetric laminate with perfect contact on the interfaces,
and employ the second order EBCs (21) and (22). The problem is reduced to one for the
upper layer with free top surface, EBCs (21) or (22) at the bottom surface, and BCs on the
edge x2 = 0

σ
(1)
l2 = ql(x1, z, t),

∫ h

0
σ
(1)
l2 dz +

∫ h0

0
σ
(2)
l2 dy =

∫ h

0
ql(x1, z, t)dz, (52)

where l = 1, 2, 3, ql(x1, z, t) are prescribed loads. In (52), σ
(2)
l2 are stresses in the film, which

can be calculated with the asymptotic error O
(
ε3) as stated in Section 2.2 after deriving the

EBCs. We assume that the film is unloaded, and require the satisfying of edge BC for the
film in the integral form only, which is justified for the case of the long-wave vibrations
(L� h2).

This statement of the problem is analogous to that one considered in [43], so one can
apply the same method, which is based on the use of the Laplace and the Fourier integral
transforms and expansion through wave modes of the infinite layer. As in [43], both LWs
and SH-waves must be taken into account. The unknown constants of the expansion are
determined by satisfying BC (52) as described in [43].

EWs correspond to poles ωm(k) (k is the wavenumber) in the complex plane ω, which
are found numerically. The calculated slownesses of EWs are shown in Figures 14 and 15
together with the slownesses of LWs and SH-waves. The notations EAn, ESn, introduced
for a homogeneous plate, are applicable to a symmetric laminate as well. The SCs for an
aluminium plate of the thickness 2 mm are also shown here for comparison.

The attenuation of EWs defined as Im ωm(k) is shown in Figure 16. This effect is
caused by the radiation of the energy transferred into the interior of the plate due to the
coupling of EWs with propagating LWs and SH-waves. It is characteristic for edge modes
with attenuation that their dispersion curves split into branches because of the intersection
with the cuts in the complex plane, associated with propagating Lamb and SH-modes.
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Figure 14. Slownesses of all GWs propagating in 4.05 mm thickness symmetric laminate with a soft
thin interlayer (2 mm aluminium/50 µm film/2 mm aluminium).
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Figure 16. Attenuation of EWs propagating in 4.05 mm thickness symmetric laminate with a soft thin
interlayer (2 mm aluminium/50 µm film/2 mm aluminium) and 2 mm aluminium plate.

The behaviour of the SCs for SH-waves is demonstrated in Figure 14 and their com-
parison with the SH-waves in the 2mm-thick aluminium homogeneous layer is shown in
Figure 15. It confirms the results of the theoretical analysis given above. Except ASH0, all
the SH-waves of the laminate are only slightly influenced by the film. The behaviour of EWs
is more complicated. As one can see from the Figures 14 and 15, in the laminate with a soft
thin interlayer one can observe a richer family of EWs than in a monolithic layer. In general,
it reproduces the main properties of LWs investigated n Section 3.1. There are the pairs of
SCs in Figures 14 and 15 corresponding to SCs of EWs in a 2mm-thick aluminium layer,
although the EWs associated with ea0.5, es0.5 and symmetric waves associated with ea1
were not found. Apparently, the influence of the film has moved the corresponding poles
to the hidden sheets of the Riemann surface. It is interesting to notice that the high order
EWs EA0.5, ES0.5, ES1 in their main features are close to fundamental waves: their SCs are
in general lay close together, and their cut-off frequencies and attenuation is small. To our
best knowledge, such type of EWs, which could be called quasi-fundamental EWs, was not
studied before. The other higher order EWs revealed in this paper are better observed in a
thick plate, as it was shown in [44].

The most interesting from the practical point of view are fundamental waves EA0, ES0
and theirs pairs EA0.5, ES0.5, ES1, which are most likely to be observed in the experiments.
The analogy with LWs allows to suggest that they can provide the information about
ξeff

1 , ξeff
3 and, in the case of highly accurate experimental data, about ν2 and ρ2. However,

the possibility of the evaluation of µ2 and ξ1 taken separately is rather questionable,
unless the available frequency range contains regions, where the long-wave EBCs are not
valid because of some resonance phenomena in the film. In the latter case, EWs have
an advantage in comparison with LWs and SH-waves. As it is shown in [43], EWs are
well observed by measurements on the edge, where one can acquire the wave-field in the
neighbourhood of the film, and so obtain more information about dynamic behaviour of
the latter, than from data acquired on the faces of the laminate. The investigation of EWs
on the basis of the three layer model would make this paper too voluminous, so it will be
the topic of the future work.

5. Comparison: Theory vs. Experiment
5.1. Experimental Setup

To verify the predicted properties experimentally, a three-layered specimen was fabri-
cated of two 2 mm-thickness aluminium plates of dimensions 600× 150× 2 mm3 joined by
an double sided adhesive film (acquired from selbstklebefolien.com) of 50 µm thickness as
shown in Figures 1 and 17a. The resulting laminates were further cured for 24 h at room
temperature under uniform pressure of 2000 Pa.

selbstklebefolien.com
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GWs in the specimen are excited by a thin adhesively attached circular piezoelec-
tric actuator of 5 mm radius and 0.5 mm thickness manufactured from PZT PIC 151
(PI Ceramic GmbH, Germany). Out-of-plane velocities of propagating wave packages are
acquired in a non-contact manner on the specimen surface by PSV-500-V laser Doppler
vibrometer (LDV) (Polytec GmbH, Waldbronn, Germany), which head is placed about
1100 mm above the sample minimizing the oblique angle laser beam measurement er-
rors [47]. Since the specimen surfaces remained intact with no special treatment for their
reflectivity improvement applied, at least 200 time averagings are performed for each
measurement point to improve signal-to-noise ratio. Moreover, 3 MHz low-pass filtering is
introduced with LDV software and 7.8125 MHz sampling frequency is chosen to meet the
Nyquist criterion. The scheme of the experimental setup is shown in Figure 17a.

Transducer

LDV

a)

Specimen

Scan points

0.05 mm

Alumium plate

Soft film

0 0.05 0.1-3

0

0

3

t, ms

0 1 2 3

1

f, MHz

c) Normalized Fourier spectrum, |U
3
|

•

b) Out-of-plane velocity, |u
3
|, mm/s

•

LDV

Input impulse applied

Figure 17. Sketch of the experimental setup (a). Out-of-plane velocities (b) and their spectrum (c)
measured by the LDV at a point located 70 mm away from the piezoelectric actuator center after its
broadband excitation with 1 µs rectangular pulse tone burst voltage.

To illustrate the capability of broadband LW excitation with the employed piezoelectric
actuator which is essential for further evaluation of experimental dispersion curves, a typi-
cal LDV-acquiered wave signal and its spectrum are shown in Figure 17b,c. The actuator
was driven by broadband 1 µs rectangular pulse tone burst voltage which spectrum is also
provided in Figure 17c (red curve). The excited wave signal covers the proposed frequency
range up to 3 MHz, and, as expected, is close to zero only at local minima of the driving
tone burst at 1, 2 and 3 MHz.

5.2. Analysis of the Experimental Data

Experimental slownesses for the fabricated laminate structure occupying in the in-
troduced cooridinate system the domain |x1| < 300,−150 < x2 < 0, 0 < x3 < 4.05
are shown in Figure 18 by circles. These slownesses have been computed applying the
matrix pencil method (MPM) [48] to out-of-plane velocities measured along the interval
20 ≤ x1 ≤ 180 mm, x2 = −75 mm, x3 = 4.05 mm with 0.3 mm step after piezoelectric
actuator excitation with 1 µs rectangular pulse tone burst voltage. As it can be seen from
Figure 18, the MPM-data are in a good agreement with theoretically calculated slownesses
for the three-layered laminate. In particular, one can see the pairs of dispersion curves
laying closely together (A0 and S0, A1 and a part of S1, A4 and S4), which were predicted
and explained in the theoretical part of this investigation.

The material parameters, used for theoretical SCs in Figure 18, were determined as
follows. Preliminary, we refined the parameters of the aluminum layers in an analogous ex-
periment for a single 2mm-thick plate before gluing. The material properties of aluminium
plate are shown in the Table 2. Notice, that the experimental data for the laminate itself can
be also used to refine the parameters of the aluminium. It was shown in Section 3.1 that the
SCs of modes A1 in the range 1.1–1.3 MHz, A2 and A4 in the range 1.5–2.7 MHz are nearly
coincident with those of a single 2mm-thick aluminium layer, and these stretches are well
observed in MPM-data. However, these parts of experimental data are useless, when the
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goal is to determine the parameters of the film. Let us consider the data, which cannot be
described by SCs of an aluminium plate, and proceed according to the procedure given in
Section 3.5.
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Figure 18. Slownesses of LWs propagating in 4.05 mm thickness plate (2 mm aluminium/50 µm
film/2 mm aluminium) determined via the MPM (circles) and estimated theoretically (solid lines).

Table 2. Material properties found experimentally.

Material Eff. Stiffness Density Young Modulus Poisson’s Ratio
GPa/mm ρ, kg/m3 E, GPa ν

κeff
1 κeff

3

Aluminium – – 2715 72 0.345

Two-sided
epoxy tape 1.1 26 900 0.26–0.35

[
0.505− 0.16 E

GPa

]
–0.5

At the first step, we find the values of the effective stiffnesses
(

ξeff
1

)−1
= κeff

1 = 1–

1.2 GPa/mm,
(

ξeff
3

)−1
= κeff

3 = 24.5–27.5 GPa/mm by fitting the experimental data in
the region Z \ A with the SCs, calculated on the basis of the model with zero-order EBC.
The provisional Poisson’s ratio (49) changes in the limits νpr =0.474–0.481 and seems to
be too high for this material. Since νpr increases when ξeff

1 grows, we can suggest that the
film-aluminium interface has some compliance in the tangential direction. At the second
step, we can only say that ν2 = 0.3–0.5, since the divergence of the MPM-data is too large
to find the Poisson’s ratio more definitely. But the influence of ν2 is negligible in the region
B, so we can define the density as ρ2 = 800–1000 kg/m3. For the last step, there are no data
in the regions D and E, so it is impossible to determine the last parameter ξeff

1,0. It means,
that the experimental data are insufficient to define the Young modulus of the film and the
stiffnesses of the interfaces. However, with the use of some additional considerations we
can deduce the limits of the estimated values of E2 and ν2.

Taking into account the symmetry, we express from (17)

ξ1 =
1
2

ξeff
1 −

h2(1 + ν2)

E2
, ξ3 =

1
2

ξeff
3 −

h2(1 + ν2)β2
2

E2
. (53)
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From the condition ξ1 > 0, ξ3 > 0 follows that the pair (E2, ν2) must lay in the domain
P1 ∩ P3 with P1 : E2 > 2h2(1 + ν2)κeff

1 , P3 : E2 > 2h2(1 + ν2)β2
2κeff

3 . Besides, from (53)
follows κ1 = ξ−1

1 > 2κeff
1 , κ3 = ξ−1

3 > 2κeff
3 . Applying these inequalities together with

formulas (26) and (32), we obtain estimations

f a
fl,st > f a

fl,0 f s
fl,sh > f s

fl,0, (54)

where f a
fl,0 is the root of Equation (23) at κ3 = 2κeff

3 , µ2/β2
2 → ∞, which is the nearest

to the approximate value (26) as κ3 → 0. Analogously, f s
fl,0 is the root of Equation (29)

at κ1 = 2κeff
1 , µ2 → ∞, which is the nearest to the approximate value (32) as κ1 → 0.

For the following considerations, let us assume the mean values for κeff
1 , κeff

3 , ρ2, given in
Table 2, as the experimentally determined parameters of the two-side epoxy type. Then
we have f a

fl,st > 7.5 MHz, which is far outside the frequency limit of the experimental data.
But for the symmetric shear resonance frequency, the estimation (54) gives f fl

t > 1.6 MHz.
Theoretically, we could observe the effect of this resonance as gaps in SCs of symmetric
modes, if f s

fl,sh < 3 MHz. In our experimental data, we see the gaps by all modes around
1 MHz, 2 MHz and 3 MHz. Apparently, they are related to the spectrum of the pulse load
with the duration 1µs. But the situation, when the frequency f fl

t comes to be in one of the
load-gaps around 2 MHz and 3 MHz, cannot be excluded. Starting from the fact, that we
can see mode S0 up to 1.75 MHz and mode S4 in the range 2.08–2.7 MHz, and taking into
account the width of the gaps shown in Figure 9, we obtain estimations for the possible
values of f s

fl,sh:
fmin,1 < f s

fl,sh < fmax,1, f s
fl,sh > fmin,2 (55)

with fmin,1 = 1.88 MHz, fmax,1 = 2.03 MHz, fmin,2 = 2.8 MHz. The numerical solving of
Equation (29) with κ1 = ξ−1

1 defined by (53), allows to determine the domains Q1, Q2 of
the possible values of (E2, ν2), for which the inequalities (55) are satisfied. Thus, the pair
(E2, ν2) can lay in the domains P1 ∩ P3 ∩Q1 or P1 ∩ P3 ∩Q2. For the κeff

1 given in the Table 2,
we found P1 ∩ P3 ∩Q2 = ∅. By approximating the boundaries of P1 ∩ P3 ∩Q1, we come to
the limits for possible values of E2 and ν2, given in Table 2 (in the formula for the lower
limit of ν2, E means the value of the Young modulus in GPa). According to formulas (53),
the values of κeff

1 , κeff
3 , E2, ν2 define the interface stiffnesses:

κexp
1 =

1

1
2
(
κeff

1
)−1 −

h2(1 + ν
exp
2 )

Eexp
2

, κexp
3 =

1

1
2
(
κeff

3
)−1 −

h2(1 + ν
exp
2 )(1− 2ν

exp
2 )

2Eexp
2 (1− ν

exp
2 )

,

where Eexp
2 , ν

exp
2 are some values from the ranges given in Table 2, κeff

1 , κeff
3 are experimental

values, also given in this table. The range of possible values of Eexp
2 and ν

exp
2 corresponds

to ranges κexp
1 ∈ [4, 6] GPa/mm and κexp

3 ∈ [52, ∞) GPa/mm.

6. Discussion

With extensive analytical and numerical analysis, it is illustrated that mechanical prop-
erties of the thin soft interlayer and the interface contact quality have a sufficient influence
on the EGWs properties in a three-layered laminate structures. Physically, it manifests
itself in the occurrence of normal modes being related to the global structure or to the
corresponding LWs of sublayers, emergence of repulsion effects and additional thickness
resonances. Such impact can be efficiently described both quantitatively and qualitatively
by the derived EBCs, where analytical expressions are now available for the expansion
terms. Employing EBCs it becomes possible to provide physically clear explanation to the
observed behaviour of high-order EGWs in considered laminate structures (i.e., emergence
of mode pairs, closed-form representations for cut-off frequencies, etc.). Moreover, specific
frequency regions and EGWs being most sensitive to interlayer mechanical properties
and its bonding quality with external lamina are revealed. Therefore, a consequential
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procedure for soft interlayer identification based on the EBCs can be implemented using
experimentally evaluated EGW dispersion curves obtained from the measurements on the
specimen surface.

It is revealed that for a broad frequency range the interlayer influence on the elastody-
namic behaviour of the laminate structure could be reliably described by just the effective
stiffnesses κeff

1 and κeff
3 being a combination of the elastic moduli of the film, its thickness

and interface stiffnesses. They could be reliably identified from experimental data and
might be already used in certain NDT/SHM applications for contact integrity evaluation.
For example, if the values of κeff

1 and κeff
3 are estimated in advance for a reference pris-

tine structure, their deviation from baseline values indicates the changes either in contact
condition or interlayer degradation. However, for some other practical applications the
mechanical properties of the film itself may be essential, as well as the interface stiffnesses.
In this case, one must take into account that the separate determination of these parameters
involves higher order terms of EBCs, which have small influence on EGW behaviour. There-
fore, special attention should be paid, whether the amount and accuracy of the available
experimental data is sufficient to determine all the required parameters. For instance,
with the experimental dispersion curves for LWs mentioned above, it is possible to provide
unique output only if the thickness of the film is known in advance and the perfect contact
is assured. If (as in the example considered) the last condition cannot be met for sure,
the unique quantification of the elastic moduli and the interface stiffnesses turned out to
be practically impossible. This result has its physical explanation in a well known fact
that dynamic effects in a thin film have correspondingly high frequencies, which are hard
to achieve in the current experiment. At lower frequencies the behaviour of the film is
rather quasi-static, thus, not all of its parameters are equally involved in the dynamics
of the laminate. Still, the theoretical analysis shows that from the complete and precise
experimental data all the film-related parameters could be determined.

The peculiar property of the thin and soft film is that the lowest of its thickness reso-
nance frequencies can be found in the low-frequency range, available for the experimental
investigation. In this case, some additional information about the film-related parameters
can be obtained, even if these frequencies could be observed only as gaps in the exper-
imentally acquired dispersion curves. In the present paper, ranges of mutual variation
of film and contact parameters are estimated via the consideration of possible values of
film-related thickness resonance frequencies. As a general recommendation, it can be
noticed that the broadening of the considered frequency range to include the resonance
phenomena in the film is the best way to achieve unique determination of its parameters.
In this regard, the EWs seem to be perspective candidate, since they allow observation on
the edge in the vicinity of the film.

Although numerical examples and experimental validation are considered in this
paper for a symmetric waveguide only, the employed computational model and derived
effective boundary conditions (14) are valid for a laminate structure with dissimilar isotropic
external layers of arbitrary thickness. Therefore, a general case of a non-symmetric three-
layered laminate with soft thin film can be also efficiently investigated employing the
analytical relations of the derived EBCs.

An example provided in this contribution demonstrates that though some characteris-
tics of the laminate could be determined, a certain number of limitations exist. The limits
of applicability of the results follow from the assumptions, made during the investigation.
The EBCs are applicable in the case when the characteristic wavelength is much greater that
the thickness of the film, and are suitable for frequency ranges outside the small vicinity of
the thickness resonances of the film. The step-wise procedure for the evaluation of the film
parameters assumes that the material of the film is homogeneous, isotropic and non-viscous.
Moreover, it is assumed that the contact quality is uniform within the whole interface so
that it could be described with a finite set of constants used in SBCs. Another limitation is
that LDV scans over a single line are used in the presented study for material properties
identification. High-amplitude reflections induced due to the presence of inhomogeneities
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near the scan line such as specimen edges, internal macroscopic localised defects, etc.,
may sufficiently spoil the data, and, therefore, sufficiently complicate the procedure of
mechanical property identification if not being avoided.

For further research endeavors, it is essential to address viscoelastic behaviour of the
interlayer typical for polymer-based materials in a three-layered model (Section 2.1) and
EBCs and to investigate its influence on fundamental and high-order EGWs [49]. Another
topic of emerging interest is the extension of the proposed methodology to metal-composite
and composite-composite bonded structures [50] considering anisotropic mechanical prop-
erties of sublayers. The current study mainly concentrated on the investigation of LWs
propagation. Although SH-waves and EWs, generally speaking, behave similarly, they
might provide additional data for identification procedures (see an example of SH-waves
employment in [10]) including those based on the derived EBCs. Therefore, further experi-
mental and theoretical investigations related to the laminates with thin interlayers should
also exploit the potential of EGWs of other kinds.
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NDT non-destructive testing
SHM stuctural health monitoring
SCs slowness curves
EGWs elastic guided waves
GWs guided waves
LWs Lamb waves
ALW antisymmetric Lamb wave
SLW symmetric Lamb wave
EWs edge waves
BCs boundary conditions
EBCs effective boundary conditions
SBCs spring-type boundary conditions
LDV laser Doppler vibrometer



Materials 2022, 15, 1307 31 of 32

References
1. Higgins, A. Adhesive bonding of aircraft structures. Int. J. Adhes. Adhes. 2000, 20, 367–376. [CrossRef]
2. Barnes, T.; Pashby, I. Joining techniques for aluminium spaceframes used in automobiles: Part II. adhesive bonding and

mechanical fasteners. J. Mater. Process. Technol. 2000, 99, 72–79. [CrossRef]
3. Norville, H.S.; King, K.W.; Swofford, J.L. Behavior and Strength of Laminated Glass. J. Eng. Mech. 1998, 124, 46–53. [CrossRef]
4. Adams, R.; Drinkwater, B. Nondestructive testing of adhesively-bonded joints. NDT E Int. 1997, 30, 93–98. [CrossRef]
5. Ramalho, G.M.F.; Lopes, A.M.; da Silva, L.F.M. Structural health monitoring of adhesive joints using Lamb waves: A review.

Struct. Control Health Monit. 2022, 29, e2849. [CrossRef]
6. Goglio, L.; Rossetto, M. Ultrasonic testing of adhesive bonds of thin metal sheets. NDT E Int. 1999, 32, 323–331. [CrossRef]
7. Huo, S.; Reis, H. Estimation of adhesive bond strength in laminated safety glass using guided mechanical waves: Part I. An

energy velocity approach. Insight—Non-Destr. Test. Cond. Monit. 2008, 50, 146–152. [CrossRef]
8. Gauthier, C.; Ech-Cherif El-Kettani, M.; Galy, J.; Predoi, M.; Leduc, D. Structural adhesive bonding characterization using guided

Lamb waves and the vertical modes. Int. J. Adhes. Adhes. 2020, 98, 102467. [CrossRef]
9. Mehrabi, M.; Soorgee, M.H.; Habibi, H.; Kappatos, V. A novel application of ultrasonic Lamb waves: Studying adhesive effects

on the inspection of coating debonding in a three-layer waveguide. Nondestruct. Test. Eval. 2021, 36, 616–636. [CrossRef]
10. Koodalil, D.; Rajagopal, P.; Balasubramaniam, K. Quantifying adhesive thickness and adhesion parameters using higher-order

SH guided waves. Ultrasonics 2021, 114, 106429. [CrossRef]
11. Nakao, S.; Hayashi, T. Adhesive Bond Imaging by Noncontact Measurements with Single-Sided Access. J. Nondestruct. Eval.

Diagn. Progn. Eng. Syst. 2018, 1, 021009. [CrossRef]
12. Rucka, M.; Wojtczak, E.; Lachowicz, J. Damage Imaging in Lamb Wave-Based Inspection of Adhesive Joints. Appl. Sci. 2018, 8,

522. [CrossRef]
13. Spytek, J.; Ziaja-Sujdak, A.; Dziedziech, K.; Pieczonka, L.; Pelivanov, I.; Ambrozinski, L. Evaluation of disbonds at various

interfaces of adhesively bonded aluminum plates using all-optical excitation and detection of zero-group velocity Lamb waves.
NDT E Int. 2020, 112, 102249. [CrossRef]

14. Ke, Y.T.; Cheng, C.C.; Lin, Y.C.; Huang, C.L.; Hsu, K.T. Quantitative assessment of bonding between steel plate and reinforced
concrete structure using dispersive characteristics of lamb waves. NDT E Int. 2019, 102, 311–321. [CrossRef]

15. Ismaili, N.A.; Chenouni, D.; Lakhliai, Z.; El-kettani, M.E.C.; Morvan, B.; Izbicki, J.L. Determination of epoxy film parameters in a
three-layer metal/adhesive/metal structure. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1955–1959. [CrossRef]

16. Ong, W.; Rajic, N.; Chiu, W.; Rosalie, C. Adhesive material property evaluation for improved Lamb wave simulation. Int. J.
Adhes. Adhes. 2016, 71, 28–38. [CrossRef]

17. Zhu, X.; Li, Y.; Chen, G.; Wang, P.C. Curing-Induced Distortion Mechanism in Adhesive Bonding of Aluminum AA6061-T6 and
Steels. J. Manuf. Sci. Eng. 2013, 135, 051007. [CrossRef]

18. Rudawska, A. The influence of curing conditions on the strength of adhesive joints. J. Adhes. 2020, 96, 402–422. [CrossRef]
19. Loukkal, A.; Lematre, M.; Bavencoffe, M.; Lethiecq, M. Modeling and numerical study of the influence of imperfect interface

properties on the reflection coefficient for isotropic multilayered structures. Ultrasonics 2020, 103, 106099. [CrossRef]
20. Mezil, S.; Bruno, F.; Raetz, S.; Laurent, J.; Royer, D.; Prada, C. Investigation of interfacial stiffnesses of a tri-layer using Zero-Group

Velocity Lamb modes. J. Acoust. Soc. Am. 2015, 138, 3202–3209. [CrossRef]
21. Fraisse, P.; Schmit, F.; Zarembowitch, A. Ultrasonic inspection of very thin adhesive layers. J. Appl. Phys. 1992, 72, 3264–3271.

[CrossRef]
22. Vlasie, V.; Rousseau, M. Acoustical validation of the rheological models for a structural bond. Wave Motion 2003, 37, 333–349.

[CrossRef]
23. Rokhlin, S.I.; Wang, Y.J. Analysis of boundary conditions for elastic wave interaction with an interface between two solids.

J. Acoust. Soc. Am. 1991, 89, 503–515. [CrossRef]
24. Rokhlin, S.I.; Wang, Y.J. Equivalent boundary conditions for thin orthotropic layer between two solids: Reflection, refraction, and

interface waves. J. Acoust. Soc. Am. 1992, 91, 1875–1887. [CrossRef] [PubMed]
25. Boström, A.; Bövik, P.; Olsson, P. A comparison of exact first order and spring boundary conditions for scattering by thin layers.

J. Nondestruct. Eval. 1992, 11, 175–184. [CrossRef]
26. Puthillath, P.; Ren, B.; Lissenden, C.J.; Rose, J.L. Guided wave mode pairs for transmissibility in adhesively bonded metal plates.

AIP Conf. Proc. 2013, 1511, 199–206. [CrossRef]
27. Lugovtsova, Y.; Johannesmann, S.; Henning, B.; Prager, J. Analysis of Lamb wave mode repulsion and its implications to the

characterisation of adhesive bonding strength. Proc. Meet. Acoust. 2019, 38, 030005. [CrossRef]
28. Baik, J.M.; Thompson, R.B. Ultrasonic scattering from imperfect interfaces: A quasi-static model. J. Nondestruct. Eval. 1984,

4, 177–196. [CrossRef]
29. Boström, A.; Wickham, G.R. On the boundary conditions for ultrasonic transmission by partially closed cracks. J. Nondestruct.

Eval. 1991, 10, 139–149. [CrossRef]
30. Lekesiz, H.; Katsube, N.; Rokhlin, S.I.; Seghi, R.R. Effective spring stiffness for a periodic array of interacting coplanar penny-

shaped cracks at an interface between two dissimilar isotropic materials. Int. J. Solids Struct. 2013, 50, 2817–2828. [CrossRef]
31. Golub, M.V.; Doroshenko, O.V. Effective spring boundary conditions for modelling wave transmission through a composite with

a random distribution of interface circular cracks. Int. J. Solids Struct. 2019, 165, 115–126. [CrossRef]

http://doi.org/10.1016/S0143-7496(00)00006-3
http://dx.doi.org/10.1016/S0924-0136(99)00361-1
http://dx.doi.org/10.1061/(ASCE)0733-9399(1998)124:1(46)
http://dx.doi.org/10.1016/S0963-8695(96)00050-3
http://dx.doi.org/10.1002/stc.2849
http://dx.doi.org/10.1016/S0963-8695(98)00076-0
http://dx.doi.org/10.1784/insi.2008.50.3.146
http://dx.doi.org/10.1016/j.ijadhadh.2019.102467
http://dx.doi.org/10.1080/10589759.2020.1843653
http://dx.doi.org/10.1016/j.ultras.2021.106429
http://dx.doi.org/10.1115/1.4039229
http://dx.doi.org/10.3390/app8040522
http://dx.doi.org/10.1016/j.ndteint.2020.102249
http://dx.doi.org/10.1016/j.ndteint.2019.01.002
http://dx.doi.org/10.1109/TUFFC.2009.1271
http://dx.doi.org/10.1016/j.ijadhadh.2016.08.008
http://dx.doi.org/10.1115/1.4025013
http://dx.doi.org/10.1080/00218464.2019.1656615
http://dx.doi.org/10.1016/j.ultras.2020.106099
http://dx.doi.org/10.1121/1.4934958
http://dx.doi.org/10.1063/1.351447
http://dx.doi.org/10.1016/S0165-2125(02)00092-6
http://dx.doi.org/10.1121/1.400374
http://dx.doi.org/10.1121/1.403717
http://www.ncbi.nlm.nih.gov/pubmed/1597594
http://dx.doi.org/10.1007/BF00566408
http://dx.doi.org/10.1063/1.4789049
http://dx.doi.org/10.1121/2.0001074
http://dx.doi.org/10.1007/BF00566223
http://dx.doi.org/10.1007/BF00567096
http://dx.doi.org/10.1016/j.ijsolstr.2013.04.006
http://dx.doi.org/10.1016/j.ijsolstr.2019.02.002


Materials 2022, 15, 1307 32 of 32

32. Glushkov, E.V.; Glushkova, N.V. On the efficient implementation of the integral equation method in elastodynamics. J. Comput.
Acoust. 2001, 9, 889–898. [CrossRef]

33. Glushkov, E.; Glushkova, N.; Eremin, A. Forced wave propagation and energy distribution in anisotropic laminate composites.
J. Acoust. Soc. Am. 2011, 129, 2923–2934. [CrossRef] [PubMed]

34. Yokoyama, T.; Shimizu, H. Determination of Impact Shear Strength of Adhesive Bonds with the Split Hopkinson Bar. Trans. Jpn.
Soc. Mech. Eng. Ser. A 1997, 63, 2604–2609. [CrossRef]

35. Pan, Y.; Zhu, F.; Fan, J.; Tao, J.; Lin, X.; Wang, F.; Shi, L. Investigation of Mechanical Properties of Silicone/Phosphor Composite
Used in Light Emitting Diodes Package. Polymers 2018, 10, 195. [CrossRef] [PubMed]

36. Goglio, L.; Rezaei, M. Variations in mechanical properties of an epoxy adhesive on exposure to warm moisture. J. Adhes. Sci.
Technol. 2014, 28, 1394–1404. [CrossRef]

37. Golub, M.V.; Doroshenko, O.V.; Wilde, M.V.; Eremin, A.A. Experimental validation of the applicability of effective spring
boundary conditions for modelling damaged interfaces in laminate structures. Compos. Struct. 2021, 273, 114141. [CrossRef]

38. Kaplunov, J.D.; Kossovich, L.Y.; Nolde, E.V. Dynamics of Thin Walled Elastic Bodies; Academic Press: San Diego, CA, USA, 1998;
p. 226.

39. Dai, H.H.; Kaplunov, J.; Prikazchikov, D. A long-wave model for the surface elastic wave in a coated half-space. Proc. R. Soc. A
2010, 466, 3097–3116. [CrossRef]

40. Kaplunov, J.; Prikazchikov, D.A.; Prikazchikova, L.A. Dispersion of elastic waves in a strongly inhomogeneous three-layered
plate. Int. J. Solids Struct. 2017, 113–114, 169–179. [CrossRef]

41. Kaplunov, J. Asymptotic analysis of an anti-plane dynamic problem for a three-layered strongly inhomogeneous laminate. Math.
Mech. Solids 2020, 25, 3–16. [CrossRef]

42. Lawrie, J.B.; Kaplunov, J.D. Edge waves and resonance on elastic structures: An overview. Math. Mech. Solids 2012, 17, 4–16.
[CrossRef]

43. Wilde, M.V.; Golub, M.V.; Eremin, A.A. Experimental and theoretical investigation of transient edge waves excited by a
piezoelectric transducer bonded to the edge of a thick elastic plate. J. Sound Vib. 2019, 441, 26–49. [CrossRef]

44. Wilde, M.V.; Golub, M.V.; Eremin, A.A. Experimental observation of theoretically predicted spectrum of edge waves in a thick
elastic plate with facets. Ultrasonics 2019, 98, 88–93. [CrossRef] [PubMed]

45. Hughes, J.M.; Mohabuth, M.; Khanna, A.; Vidler, J.; Kotousov, A.; Ng, C.T. Damage detection with the fundamental mode of edge
waves. Struct. Health Monit. 2021, 20, 74–83. [CrossRef]

46. Hughes, J.M.; Mohabuth, M.; Kotousov, A.; Ng, C.T. The fundamental ultrasonic edge wave mode: Propagation characteristics
and potential for distant damage detection. Ultrasonics 2021, 114, 106369. [CrossRef] [PubMed]

47. Neumann, M.N.; Hennings, B.; Lammering, R. Identification and Avoidance of Systematic Measurement Errors in Lamb Wave
Observation with One-Dimensional Scanning Laser Vibrometry. Strain 2013, 49, 95–101. [CrossRef]

48. Schöpfer, F.; Binder, F.; Wöstehoff, A.; Schuster, T.; von Ende, S.; Föll, S.; Lammering, R. Accurate determination of dispersion
curves of guided waves in plates by applying the matrix pencil method to laser vibrometer measurement data. CEAS Aeronaut. J.
2013, 4, 61–68. [CrossRef]

49. Dahmen, S. Influence of volumic fraction of adhesive in elastic and viscous thin bonded Aluminum/Adhesive/Aluminum plate
on Lamb modes that have ZGV modes. Ultrasonics 2019, 94, 37–49. [CrossRef]

50. Budhe, S.; Banea, M.; de Barros, S.; da Silva, L. An updated review of adhesively bonded joints in composite materials. Int. J.
Adhes. Adhes. 2017, 72, 30–42. [CrossRef]

http://dx.doi.org/10.1142/S0218396X01001169
http://dx.doi.org/10.1121/1.3559699
http://www.ncbi.nlm.nih.gov/pubmed/21568395
http://dx.doi.org/10.1299/kikaia.63.2604
http://dx.doi.org/10.3390/polym10020195
http://www.ncbi.nlm.nih.gov/pubmed/30966231
http://dx.doi.org/10.1080/01694243.2012.697392
http://dx.doi.org/10.1016/j.compstruct.2021.114141
http://dx.doi.org/10.1098/rspa.2010.0125
http://dx.doi.org/10.1016/j.ijsolstr.2017.01.042
http://dx.doi.org/10.1177/1081286518790804
http://dx.doi.org/10.1177/1081286511412281
http://dx.doi.org/10.1016/j.jsv.2018.10.015
http://dx.doi.org/10.1016/j.ultras.2019.05.009
http://www.ncbi.nlm.nih.gov/pubmed/31229886
http://dx.doi.org/10.1177/1475921720920314
http://dx.doi.org/10.1016/j.ultras.2021.106369
http://www.ncbi.nlm.nih.gov/pubmed/33636443
http://dx.doi.org/10.1111/str.12015
http://dx.doi.org/10.1007/s13272-012-0055-7
http://dx.doi.org/10.1016/j.ultras.2018.12.005
http://dx.doi.org/10.1016/j.ijadhadh.2016.10.010

	Introduction
	Mathematical Modelling
	Exact Statement of Boundary Value Problem
	Modeling of the Film via EBCs
	Thickness Resonance Frequencies

	Properties of Lamb Waves in Laminates with Soft Interlayer
	Main Properties of Dispersion Curves and Vibration Forms
	Influence of the Mechanical Properties of Interlayer
	Influence of the Thickness of Interlayer
	Influence of the Adhesive Bonding or Imperfect Contact
	Analysis of the Influence of the Film Parameters on the Basis of EBCs

	Properties of Other Guided Waves in Laminates with Soft Interlayer
	Comparison: Theory vs. Experiment
	Experimental Setup
	Analysis of the Experimental Data

	Discussion
	References

