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Abstract

To understand the mechanisms involved in the transition from protists to multicellular animals 

(metazoans), studying unicellular relatives of metazoans is as important as studying metazoans 

themselves. However, investigations remain poor on the closest unicellular (or colonial) relatives 

of Metazoa, i.e., choanoflagellates, filastereans and ichthyosporeans. Molecular-level analyses on 

these protists have been severely limited by the lack of transgenesis tools. Their genomes, 

however, contain several key genes encoding proteins important for metazoan development and 

multicellularity, including those involved in cell–cell communication, cell proliferation, cell 

differentiation, and tissue growth control. Tools to analyze their functions in a molecular level are 

awaited. Here we report techniques of cell transformation and gene silencing developed for the 

first time in a close relative of metazoans, the ichthyosporean Creolimax fragrantissima. We 

propose C. fragrantissima as a model organism to investigate the origin of metazoan 

multicellularity. By transgenesis, we demonstrate that its colony develops from a fully-grown 

multinucleate syncytium, in which nuclear divisions are strictly synchronized. It has been 

hypothesized that metazoan multicellular development initially occurred in the course of evolution 

through successive rounds of cell division, which were not necessarily be synchronized, or 

alternatively through cell aggregation. Our findings point to another possible mechanism for the 

evolution of animal multicellularity, namely, cellularization of a syncytium in which nuclear 

divisions are synchronized. We believe that further studies on the development of ichthyosporeans 

by the use of our methodologies will provide novel insights into the origin of metazoan 

multicellularity.
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Introduction

The acquisition of multicellularity was a crucial step in the evolution of animals (or 

metazoans), allowing the development of highly specialized cells that interact with each 

other (Bonner, 1998; Grosberg and Strathmann, 2007). This led to a variety of complex and 

mobile forms that we see now in extant animals. It has been hypothesized that the metazoan 

multicellular development initially occurred in the course of evolution through serial 

incomplete cell divisions, or alternatively through cell aggregation (Fairclough et al., 2010; 

Grosberg and Strathmann, 2007; Willmer, 1990). The striking morphological resemblance 

between the colonies of choanoflagellates, the closest relatives of metazoans, and the 

choanocyte chamber of sponges, the most basal metazoan lineage, has for example lent a 

support to such hypothesis (Fairclough et al., 2010; Willmer, 1990). Another hypothesis 

claims that, as seen in some species of slime molds and fungi, the ancestral metazoan cell 

formed syncytium, where nuclear division occurred without cell division. It would then 

cellularize by generating a membrane around each nucleus, forming a colony-like structure 

(Bonner, 1998; Grosberg and Strathmann, 2007; Willmer, 1990). In the Metazoa, this 

strategy is typically seen in insect embryogenesis, where a syncytium (or coenocyte) 

cellularizes prior to the blastoderm formation. Multi-nucleate cells formed through cell 

fusion are more often seen and play crucial roles during metazoan development, for 

instance, in various muscle tissues (Chen et al., 2007), nematode hypodermis (Sommer, 

2000), and the large multinucleate tissues of glass sponge embryos (Leys et al., 2006).

At a molecular level, the metazoan multicellularity and their developmental processes are 

enabled by several elaborate mechanisms such as cell–cell communication, cell 

proliferation, cell differentiation, and tissue growth control. These mechanisms have been 

mainly studied by the use of metazoan models. However, the investigations only on 

metazoans do not answer the question on how the metazoan multicellularity initially 

evolved. To elucidate this key evolutionary transition, studies on the extant closest relatives 

of metazoans, which can be unicellular or colonial, is essential. Such group of protists 

includes choanoflagellates, filastereans, and ichthyosporeans (or mesomycetozoans) (Carr et 

al., 2008; Lang et al., 2002; Ruiz-Trillo et al., 2008; Shalchian-Tabrizi et al., 2008; 

Steenkamp and Baldauf, 2004; Torruella et al., 2011). Understanding the developmental 

mechanism of the colony formation on these closest relatives of metazoans should provide 

some insights into the origin of metazoan multicellularity (Dayel et al., 2011). For instance, 

studies on the colony-forming choanoflagellate Salpingoeca rosetta have shown that its 

colony formation is carried out only through cell divisions that are not synchronized, 

triggered by a sphingolipid-like molecule secreted by the prey bacteria (Alegado et al., 2012; 

Fairclough et al., 2010).

Choanoflagellates are excellent models for the study of multicellularity evolution in the 

context of their closer relationship to metazoans than any other pre-metazoan lineage and 

their characteristic morphology reminiscent of sponge choanocytes (King, 2004). However, 

the traditional hypothesis that an ancestral choanoflagellates-like protist gave rise to the 

choanocyte-bearing metazoan ancestor has been challenged by the presence of choanocyte-

like cells in non-sponge metazoans (Cantell et al., 1982; Lyons, 1973; Nerrevang and 

Wingstrand, 1970). This hypothesis is also contradicted by some molecular and histological 
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evidence indicating that sponge choanocytes are rather specialized cells that arise from non-

collared cells during embryogenesis (Maldonado, 2005). It is thus possible that the evolution 

of metazoan multicellularity may not be best shaped by the colonial choanoflagellates.

More importantly, the lack of methodologies for functional assays, e.g. cell transformation 

and gene silencing, limits further investigation on choanoflagellates at a molecular level. 

Recent analyses on the genomes of the unicellular or colonial relatives of metazoans have 

shown that they contain several genes encoding key proteins to the metazoan 

multicellularity and development, such as the cell adhesion proteins cadherins and integrins, 

the cell–cell communication and differentiation-controlling proteins tyrosine kinases, a 

variety of transcription factors, and the organ growth-controlling pathway (King et al., 2008; 

Manning et al., 2008; Nichols et al., 2012; Sebé-Pedrós et al., 2010, 2011, 2012; Suga et al., 

2008, 2012). However, the functions of these proteins in the non-metazoan lineages remain 

unclear. It is therefore critical to establish, among the closest metazoan relatives, new model 

organisms where functional molecular assays are possible. We here propose the 

ichthyosporean C. fragrantissima as a model organism to understand the origin of Metazoa, 

demonstrating the possibility of functional assays on it by transgenesis and gene silencing.

Materials and methods

Cultures of ichthyosporeans

Live cultures of C. fragrantissima (Marshall et al., 2008) and S. arctica (Jøstensen et al., 

2002) were kindly provided by Wyth Marshall (University of British Columbia, Vancouver, 

Canada) and by Bjarne LandFald (University of Tromsø, Tromsø, Norway), respectively. 

They were maintained at 12 1C in the MAP medium (18.6 g/L Difco marine broth 2166 

(BD), 20 g/L Bacto peptone (BD) and 10 g/L NaCl).

DNA constructs

C. fragrantissima and S. arctica histone H2B sequences were obtained from their draft 

genome sequences. C. fragrantissima genomic fragment containing β-tubulin gene (Cfrβtub) 

was cloned according to GenomeWalker (Clontech) protocol. 972 bp of the upstream 

sequence and 493 bp of the downstream sequence of the coding region were combined with 

Venus (RIKEN Brain Science Institute) yellow fluorescent protein by PCR, and cloned into 

pBluescript (Agilent Technologies). To examine the movement of nuclei in live cells, we 

made another construct by combining the Cfrβtub promoter and terminator with the coding 

sequence of S. arctica histone H2B (SarH2B) fused to mCherry (Clontech) red fluorescent 

protein. A similar construct was made by the use of histone H2B2 of C. fragrantissima 

(CfrH2B2), which is one of the two duplicated paralogs found in the draft genome sequence. 

These fusion proteins were designated SarH2B-mCherry and CfrH2B2-mCherry, 

respectively. The sequences newly identified in this study are deposited in DNA Data Bank 

of Japan (DDBJ) with the accession numbers AB636312, AB636313, AB666311, and 

AB666312.
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Electroporation and live cell imaging

Using Neon (Life Technologies), we applied two pulses of 1000 V (33 V/mm) for 30 ms in 

10 μL tip with R buffer (Life Technologies). Two DNA constructs expressing Venus and 

histone-mCherry fusion protein (80 ng/μl each) were co-electroporated, and then cells were 

directly transferred into the MAP medium and incubated overnight at 12 °C. All examined 

Venus-positive cells expressed also mCherry, thus we used the Venus signal as a 

transgenesis marker. The transformants were transferred to a glass bottom dish (MatTek) 

and time-lapse imaging was performed in the MAP medium with AF7000 fluorescence 

microscope (Leica) and Temperable Insert P Lab-Tek (PeCon), which keeps the live 

specimen at the appropriate temperature. The images were processed with ImageJ program 

(http://imagej.nih.gov/ij/).

Gene silencing

siRNAs (Sigma) were designed from the coding sequence of mCherry and that of S. arctica 

H2B (designated siRNA-mCherry and siRNA–SarH2B, respectively). Their concentrations 

were adjusted at the maximum available (200 μM) and 1 μL was mixed with 10 μL cell 

suspension immediately before electroporation.

A Morpholino antisense oligo (Gene Tools) was designed on the basis of the SarH2B coding 

sequence including the start codon and two bases prior to it. We determined the position of 

the Morpholino target sequence such that it includes as small 5′ UTR sequence as possible. 

By this strategy, we eliminated the possible influence to the translation of endogenous β-

tubulin genes and to that of the transgenesis marker Venus, in both of which the same 

promoter sequence (C. fragrantissima β-tubulin promoter) as that of the Morpholino target 

construct is used. However, the native SarH2B sequence was not optimum for designing 

Morpholino at this location because of its biased nucleotide composition. We thus modified 

the SarH2B sequence at two nucleotide positions (described in the Results section) and 

designed Morpholino against this modified target sequence. These modifications do not 

affect the mCherry signal at nuclei (see the Results section). The modified sequence is called 

SarH2Bm (S. arctica H2B modified). Accordingly, the Morpholino oligo is called MO-

SarH2Bm.

The sequences of siRNAs and Morpholino are in Table 1. Note that neither the siRNA nor 

the Morpholino were designed from the sequences of C. fragrantissima genes in order to 

avoid knocking down their native expression from the nuclear genome. After 

electroporation, we measured the ratio of fluorescence intensity of mCherry to that of Venus 

for all transformants found under the microscope.

Immunostaining

Cells were fixed by 4% paraformaldehyde freshly prepared in artificial sea water for 10 min. 

After washing with PBS, they were permeabilized by rapid freeze–thaw procedure 

performed twice with liquid nitrogen. This permeabilization step is unnecessary for staining 

only with DAPI. Cells were incubated with primary antibodies (rabbit anti-actin; Sigma 

A-2066, and mouse anti-α-tubulin; Sigma T-9026) for overnight at 4 °C. and then, after 

washing, with secondary antibodies (anti-mouse Alexa Fluor 488 and anti-rabbit Alexa 
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Fluor 568; Invitrogen) for 1 h at room temperature. After the secondary antibodies were 

washed off, DAPI (Roche) was applied and washed two more times. Cells were then 

mounted with Fluorescence Mounting Medium (Dako) and observed under TCS SP5 

confocal microscope (Leica). The images were processed with the ImageJ program.

Results

Development of C. fragrantissima

The ichthyosporean C. fragrantissima (Fig. 1A) spends a unique lifecycle starting from a 

minute uninucleate cell of 6–8 μm in diameter (Marshall et al., 2008) (Fig. 1B). The cell 

matures after growing to 30–70 μm in diameter, producing numerous uninucleate motile 

amoebae in the mother cell. The amoebae then migrate out through tears of the cell wall. 

The maturation step is a dynamic process taking around 2–3 h, including rapid 

rearrangement of the cytoplasm and amoeba formation (Video 1). The amoeba settles and 

encysts after various periods of traveling (Video 2). When the culture matures, the amoebae 

usually stay and encyst within the mother cell and large colonies reminiscent of metazoan 

blastula embryos become prominent (Fig. 1A). A C. fragrantissima growth-stage cell is a 

syncytium, containing multiple nuclei in a single cytoplasm (Marshall et al., 2008). The 

nuclei are always arranged near the cell surface in the growth stage, and usually one large 

vacuole occupies the central cavity (Fig. 1C).

Transformation of C. fragrantissima by electroporation

We succeeded in transforming C. fragrantissima by electroporating DNA constructs (Fig. 

2). A capillary tip with a wire-type electrode, which applies a uniform electric field to the 

sample (Kim et al., 2008), was used for the electroporation. The conventional cuvette-based 

electroporation chamber did not yield any positive result even when a similar electric field 

condition was applied. The transformation efficiency was around 7% at maximum. No 

stable transformant was obtained. However, the short generation time of C. fragrantissima 

(~2 days) allowed the expressed protein to be maintained until after the next generation 

starts (Video 3).

Synchronized nuclear division in a growing syncytium prior to the colony formation in 
ichthyosporeans

Using the developed transformation technique, we traced the movement of nuclei in a C. 

fragrantissima cell in the growth stage. We transformed the cells with a DNA construct 

(Fig. 3A), in which C. fragrantissima β-tubulin (Cfrβtub) promoter was combined with the 

histone H2B (SarH2B) coding sequence of Sphaeroforma arctica, another ichthyosporean 

(Jøstensen et al., 2002). SarH2B was tagged with mCherry red fluorescent protein (the 

expressed fusion protein is thus called SarH2B-mCherry). Another construct that expresses 

Venus yellow fluorescent protein by the same promoter was co-electroporated as a 

transformation marker. The obtained transformants visualized nuclear movement and 

division in live cells. Interestingly, the time-lapse movie reveals that the nuclei divide 

strictly synchronously (Video 4 and Fig. 3B).
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To confirm this in other ichthyosporean species, we examined the subcellular structures of S. 

arctica in its growth stage by antibody staining. The lifecycle of S. arctica is very similar to 

that of C. fragrantissima, but lacks the amoeboid stage (Jøstensen et al., 2002). The 

structures of spindle bodies, which represent the stages of nuclear division, indicate that the 

nuclei also divide synchronously in this ichthyosporean species (Fig. 3C)

Gene silencing by RNA interference and Morpholino

Gene silencing (or knockdown) by the mechanism of RNA interference (RNAi) or by 

blocking translation with antisense oligonucleotides such as Morpholino is a powerful tool 

for functional assays. We thus tested gene silencing by both RNAi and Morpholino in C. 

fragrantissima.

Evaluating the effect of silencing in C. fragrantissima is not as straightforward as in 

metazoans, due to the low transformation efficiency and the difficulty in quantifying the 

marker expression in the unicellular context. From the previous experiment (Fig. 3B), 

however, we realized that the signal intensity of mCherry in the nuclei appears to be well 

correlated with that of Venus, the transformation marker. Indeed, a graph plotting the 

intensities of these two fluorescent proteins in individual transformant cells shows a good 

correlation (R2=0.88) between these two values even though the fluorescence intensity itself 

greatly differs depending on the cells (Fig. 4). This means that the ratio of the mCherry 

expression to the Venus expression is fairly constant regardless of the absolute expression 

level, likely due to the constant ratio of the amounts of constructs brought into the cells. We 

thus used this ratio to evaluate the effect of silencing.

We first designed two synthetic small interfering RNAs (siRNAs) from the coding sequence 

of mCherry and from that of SarH2B. Each of these siRNAs was then co-electroporated 

together with the two constructs Cfrβtub:Venus and Cfrβtub:SarH2B-mCherry. In either 

experiment, the siRNA down-regulated the expression of SarH2B-mCherry (Fig. 5A–C). 

This silencing effect disappeared when the target sequence contained three mismatches (one 

terminal mismatch and two non-terminal mismatches), demonstrating the sequence 

specificity of the silencing effect (Fig. 5B and D).

Next, we tested the translational block by a Morpholino antisense oligo designed from the 

SarH2B sequence. We slightly modified this target sequence (designated SarH2Bm) in order 

to optimize the Morpholino sequence design at the location where the target contains as 

small 5′UTR as possible (see Materials and Methods section). Similar to siRNA, this 

Morpholino oligo (MO-SarH2Bm) knocked down the expression of the construct encoding 

SarH2Bm-mCherry fusion protein (Fig. 6A–C). A dose-dependency was observed in the 

effect (Fig. 6C). The effect totally disappeared when five mismatches were introduced in the 

target sequence (Fig. 6D).

Discussion

Implications for the origin of metazoan multicellularity

Regarding the origin of metazoan multicellularity, three possible mechanisms have been 

traditionally discussed: first, successive rounds of incomplete cell division; second, 
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spontaneous aggregation of individual cells; and third, cellularization of a syncytium 

(Bonner, 1998; Grosberg and Strathmann, 2007; Willmer, 1990). At a cellular level, the 

second hypothesis appears not to have been well credited (Willmer, 1990) because metazoan 

embryos do not usually allow genetic heterogeneity. The first hypothesis is supported, for 

instance, by the recent observation of the colonial choanoflagellate S. rosetta (Fairclough et 

al., 2010). Interestingly, the cell division rendering its colony formation loses the synchrony 

after several divisions (Fairclough et al., 2010). On the other hand, our findings in 

ichthyosporeans suggest the third mechanism. Unlike the choanoflagellate cell division, the 

nuclear divisions in ichthyosporean cells are strictly synchronized during their whole growth 

stage.

It has been considered that the mechanism of choanoflagellate colony formation implies a 

possible strategy for developing metazoan multicellularity. Their clearly closer relationship 

to metazoans than any other pre-metazoan lineage advantageously lends support to this 

hypothesis. However, only a minor fraction of choanoflagellate species form colonies, 

whose morphology is diverse (Carr et al., 2008; Leadbeater and Thomsen, 1989; Thomsen 

and Buck, 1991). Moreover, recent phylogenetic studies suggest the paraphyly of the 

colony-forming species (Nitsche et al., 2011; Paps et al., 2013). It is therefore possible that 

choanoflagellates gained their colony-forming property several times within the 

choanoflagellate lineage, independently of metazoan evolution. Unlike choanoflagellates, 

many ichthyosporeans (especially the order Ichthyophonida) spend a similar life-cycle with 

a characteristic colonial stage (Jøstensen et al., 2002; Marshall and Berbee, 2010; Marshall 

et al., 2008; Mendoza et al., 2002; Whisler, 1960). It is noteworthy that the colony formation 

through syncytium is also seen in some slime molds and fungal species (Bonner, 1998; 

Grosberg and Strathmann, 2007), which are the closest relatives of metazoans besides 

choanoflagellates, filastereans, and ichthyosporeans. Thus, the colony development through 

syncytium cellularization clearly represents an important mechanism for developing multi-

cell-like structures among the metazoan relatives. We therefore consider the cellularization 

of a syncytium with synchronized nuclear divisions to be a feasible strategy for the origin 

and evolution of metazoan multicellularity, in addition to the successive rounds of 

incomplete cell division.

It is possible, given the diversity of syncytium formation during metazoan embryogenesis 

(Chen et al., 2007), that the ichthyosporean colony formation does not have a direct 

evolutionary relationship to any of the metazoan syncytial embryogenesis or development 

that we see now in extant animals. In the Metazoa, syncytium formation during development 

may have evolved several times, independently of the metazoan ancestor, similarly to the 

collar cells, which also seem to have been invented many times during metazoan evolution 

(Cantell et al., 1982; Lyons, 1973; Nerrevang and Wingstrand, 1970). If the morphological 

analogies do not contribute to elucidating the origin of metazoan multicellularity, it is 

important to investigate the close metazoan relatives in a molecular level.

Future perspectives

Recent genomic studies on the closest living relatives of metazoans have revealed the 

presence of several key genes encoding proteins important for metazoan development and 
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multicellularity (King et al., 2008; Manning et al., 2008; Nichols et al., 2012; Sebé-Pedrós et 

al., 2010, 2011, 2012; Suga et al., 2008,2012). These proteins seem unnecessary for their 

principally unicellular lifestyles. Consequently, gene co-option has been suggested to be an 

important mechanism for the evolution of multicellularity (Abedin and King, 2010; Sebé-

Pedrós et al., 2011; Suga et al., 2012). However, how they have been co-opted at the 

transition from unicellular to multicellular organisms remains unclear because their original 

functions in the ancestor protists are unknown. To infer the ancestral functions of these 

genes, one has to know their functions in the extant closest metazoan relatives. In this 

regard, our success in transgenesis and gene silencing for the first time among the closest 

relatives of metazoans represents an important progress toward understanding the origin of 

animals. Moreover, although the genome sequencing of C. fragrantissima is still ongoing, 

genes that are involved in some important regulatory mechanisms for metazoan 

multicellularity have already been identified in ichthyosporeans, for instance, the integrin-

mediated adhesion and signaling pathway (Sebe-Pedros and Ruiz-Trillo, 2010). We 

therefore propose C. fragrantissima as an ideal model organism to investigate the origin of 

metazoan multicellularity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Creolimax fragrantissima-an emerging metazoan-relative model. (A) Scanning electron 

microscopy of a mature C. fragrantissima culture (Photo courtesy of Arnau Sebé-Pedrós). 

(B) Lifecycle of C. fragrantissima, comprising growth (I–II), maturation (II–III), 

dissemination (IV), colonial (IV’) and amoeboid (V) stages. Nuclei (black dots) are depicted 

for I–III. (C) Nuclear staining with DAPI (red) overlaid on bright field image of a growth-

stage cell of C. fragrantissima. c—cytoplasm. v—vacuole.
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Fig. 2. 
C. fragrantissima transgenesis. Cells were observed approximately at 16 h after 

electroporation with the marker construct Cfrβtub:Venus, which expresses Venus yellow 

fluorescent protein in the cytoplasm. The bright field image and the fluorescence 

microscopic image (in green channel) are merged. Scale bar: 30 μm.
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Fig. 3. 
C. fragrantissima transformation reveals the synchronized nuclear division. (A) Schemes of 

constructs. (B) Stills of time-lapse movie showing synchronized nuclear divisions in a live 

growth-stage transformant. Bright field images (top), fluorescence in cytoplasm from the 

Venus protein (middle), and that in nuclei from mCherry protein (bottom), which are both 

expressed by the C. fragrantissima β-tubulin (Cfrβtub) promoter, are shown. Four examples 

of synchronized nuclear divisions are highlighted by arrowheads and ovals. Time from the 

start of the movie is shown. Full movie available in Video 4. (C) Synchronized nuclear 
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division of S. arctica suggested by antibody staining. Nuclei (blue: stained with DAPI), 

spindle bodies (green: α-tubulin antibody) and cytoplasm (red: actin antibody) of three S. 

arctica growth stage cells were stained. Z-axis projection was applied to each hemisphere. 

An artifact signal present at a breakage on the cell wall (arrowhead), which was introduced 

by the permeabilization step of the protocol. Scale bar: 10 μm.
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Fig. 4. 
Correlation between Venus and mCherry signals in transformants. Intensities of 

fluorescence signals of Venus and mCherry are plotted. A point represents one transformant. 

The coefficient of determination R2 and the sample number n are shown. Axis values are 

arbitrary.
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Fig. 5. 
RNA interference on C. fragrantissima and the influence of sequence mismatches. (A) 

Scheme of constructs. The sequences where the siRNAs were designed are indicated by blue 

lines. The effect of mismatches between the sequence of siRNA and that of the target 

construct onto silencing was tested by the second construct Cfrβtub:CfrH2B2-mCherry. 

SarH2B, S. arctica histone H2B; CfrH2B2, C. fragrantissima histone H2B2. (B) Sequence 

alignment of siRNA–SarH2B sense strand, SarH2B, and CfrH2B2. Nucleotide positions 

183–201 of the histone H2B coding sequences are shown. Two dT overhang of the siRNA 

are underlined. The mismatched sites between the siRNA and target sequences are in red. 

(C) RNA interference by siRNAs against mCherry (middle) and against SarH2B (right). 

Used siRNAs and the co-electroporated constructs are indicated at the graph bottom. Ratio 

of mCherry to Venus signal intensity (values arbitrary) was measured for each transformant. 

(n, sample number) In box plots, the outliers beyond 1.5 Interquartile range (IQR) but still 

within 3 IQR are shown by circles. (D) siRNA is nonfunctional with three mismatches 

(right) while the effect of siRNA-mCherry is unchanged (middle).
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Fig. 6. 
Silencing by Morpholino and the influence of sequence mismatches. (A) Schemes of 

constructs. The sequences where the Morpholino was designed are indicated by red lines. To 

test the effect of the sequence mismatches, we made another construct 

(Cfrβtub:SarH2Bm5M-mCherry), in which five mismatches (position indicated by a yellow 

box) were incorporated. (B) Sequences of the Morpholino (MO-SarH2Bm) and the two 

target constructs. To optimize the design of the Morpholino sequence at the position where 

the included 5′ UTR sequence is minimized, we modified the native SarH2B sequence at 

two sites (designated SarH2Bm). The original nucleotides (two cytosines) of SarH2B are 

shown below the sequence of Cfrβtub:SarH2Bm-mCherry. The five mismatches introduced 

in the construct Cfrβtub:SarH2Bm5M-mCherry are highlighted by red letters. Start codons 

are underlined. (C) Silencing by Morpholino in two different concentrations. The final 

Morpholino concentration in the cell suspension and the coelectroporated constructs are 

indicated at the graph bottom. Ratio of mCherry to Venus signal intensity was measured for 

each transformant cell (n, sample number). (D) Silencing by Morpholino with or without 

sequence mismatches. Note that MO-SarH2Bm at this concentration did not suppress the 

translation when five mismatches were introduced in the target (right). The outliers beyond 

3 IQR are shown by asterisks and those beyond 1.5 IQR but still within 3 IQR are shown by 

circles.
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Table 1

siRNA and Morpholino sequences.

Molecule Target Strand Sequence

siRNA mCherry Sense 5′-CAUGGCCAUCAUCAAGGAG[dT][dT]-3′

Antisense 5′-CUCCUUGAUGAUGGCCAUG[dT][dT]-3′

siRNA S. arctica Sense 5′-CUCGUUCGUUAUUGACGUG[dT][dT]-3′

H2B Antisense 5′-CACGUCAAUAACGAACGAG[dT][dT]-3′

Morpholino S. arctica Antisense 5′-CTTGATGGTACTTTAGGATGCATGA-3′

H2Bm
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