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Abstract

Android is the most widely used mobile operating system (OS). A large number of third-

party Android application (app) markets have emerged. The absence of third-party market

regulation has prompted research institutions to propose different malware detection

techniques. However, due to improvements of malware itself and Android system, it is dif-

ficult to design a detection method that can efficiently and effectively detect malicious

apps for a long time. Meanwhile, adopting more features will increase the complexity of

the model and the computational cost of the system. Permissions play a vital role in the

security of the Android apps. Term Frequency—Inverse Document Frequency (TF-IDF) is

used to assess the importance of a word for a file set in a corpus. The static analysis

method does not need to run the app. It can efficiently and accurately extract the permis-

sions from an app. Based on this cognition and perspective, in this paper, a new static

detection method based on TF-IDF and Machine Learning is proposed. The system per-

missions are extracted in Android application package’s (Apk’s) manifest file. TF-IDF

algorithm is used to calculate the permission value (PV) of each permission and the sensi-

tivity value of apk (SVOA) of each app. The SVOA and the number of the used permis-

sions are learned and tested by machine learning. 6070 benign apps and 9419 malware

are used to evaluate the proposed approach. The experiment results show that only use

dangerous permissions or the number of used permissions can’t accurately distinguish

whether an app is malicious or benign. For malware detection, the proposed approach

achieve up to 99.5% accuracy and the learning and training time only needs 0.05s. For

malware families detection, the accuracy is 99.6%. The results indicate that the method

for unknown/new sample’s detection accuracy is 92.71%. Compared against other state-

of-the-art approaches, the proposed approach is more effective by detecting malware and

malware families.
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1 Introduction

The number of smartphone users is growing rapidly. It is expected to grow from 2.7 billion in

2016 to 6 billion in 2020 [1]. The open-source mobile operating system Android is very popu-

lar among mobile users and developers. In 2017, 85.0% of new smartphones sold used Android

operating system [2]. Continuous increase in the number of Android apps. Android users are

able to choose between 3.8 million apps at the first quarter of 2018 [3]. Meanwhile, due to the

openness of the Android system, the download of third-party Android apps has increased dra-

matically in recent years. Unfortunately, the third-party Android apps markets are poorly reg-

ulated. Lack of the supervision leads to the increasingly security issues of Android apps.

Malware authors use stealth techniques, dynamic execution, etc. to bypass the existing protec-

tion methods [4]. Malware can cause Android users’ privacy disclosure, short message service

(SMS) interception (which can lead to account theft, network payment security issues), mali-

cious deduction, automatic transmission of virus links to other people in the address book, etc.

Therefore, a fast and efficient detection system is extremely needed [5].

Android permissions play an important role in protecting the security of Android apps [6,

7]. Research shows that more than>70% of Android apps request permissions they don’t

need [1]. Currently, when installing, Android apps tell users what permissions will be use.

However, these still can’t guarantee the security of Android apps [8].

There are some researches based on permissions for above issues. W. Enck et al. [9] pro-

posed an Android security framework based on apps’ permissions (called Kirin system). Kirin

system can detect malicious apps and automatically checks dangerous permissions when

installed. However, the permission check lead to the user install the apps need more time. Y.

Zhang et al. [10, 11] proposed the VetDroid to reconstruct the sensitive behavior of Android

apps. However, the dynamic analysis platform requires all execution paths. R. Zhang et al. [12]

proposed a scheme for rapid detection of malware based on the perspective of permissions cor-

relation. Experiments on 2000 samples show that the detection accuracy is 88.98%. Tuncay G.

S. et al. [6] and J. Sellwood et al. [13] studied custom permissions and solved the problem of

custom permissions. Google also worked on custom permissions by issuing bug fixes. But cus-

tom permissions are only for one or several apps. Therefore Custom permissions have no com-

monality in detecting large-scale Android apps.

The static detection method [14] is simple and efficient compared with the dynamic and

hybrid methods. Android apps permissions are declared in the manifest.xml file. The elements

of the manifest.xml file can be read without running the app. So the permissions in an Android

app can be quickly and accurately extracted by the static method.

In this paper, we present a new approach, that extracts permissions in apps, calculates the

sensitive value of permissions (SVOA) with TF-IDF algorithm, and uses machine learning to

detect malware. In the proposed approach, firstly, the Apks are decompiled by Apktool. The

system permissions declared in the Manifest files are extracted by a Python program. Secondly,

a model based on TF-IDF algorithm to detect the security of Android app is proposed. The

permission’s sensitivity value of Apk (SVOA) is calculated by the model. Thirdly, 15489 sam-

ples (6070 benign samples and 9419 malware samples) are trained and tested by machine

learning classification algorithms (include Naive Bayes (NB), J48, Bayesian Networks (BN),

Random Forest (RF), Random Tree (RT) and K-Nearest Neighbor (K-NN)). Finally, the opti-

mal algorithm is selected for the detection and analysis of malware.

In summary, the contributions of our work are as follows.

1. Based on TF-IDF, a new detection approach for malicious apps is proposed. The approach

can obtain the sensitive value of each apk by calculating the SVOA in the apk. The approach

could effective detected malware.
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2. 15489 samples are trained and classified by six classifiers and two validation methods of

machine learning, and found the optimal classifier and validation method.

3. The experimental results are analyzed and discussed in detail. The results show that the

accuracy of the proposed approach for malware detection can reach 99.5%. The test and

classification time reached 0.05s. The accuracy of the malware families detection is 99.6%,

and the partial malware families detection accuracy is higher than other state-of-the-art

approaches. The proposed approach also has good detection performance for large-scale

samples and unknown/new samples.

The rest section of this paper as follows. In section 2, the related work on Android apps

detection is summarized. Section 3 briefly introduced the preliminaries on Android permis-

sion and TF-IDF algorithm. In section 4, a new Android app security detection approach

based on the IF-IDF is proposed. In section 5, the proposed Android app security detection

method is used for machine learning classify. And subsequent works are given in section5. The

conclusions are given in Section 6.

2 Related work

Currently, many android malware detection technologies have been proposed by the research-

ers. There are mainly static detection method, dynamic detection method and hybrid method.

2.1 Static detection

Static detection method is based on decompilation technology and doesn’t need run the apps.

It analyse the code, rule matching and other operations (such as permissions, data flow, con-

trol flow, etc.). [4, 14–16].

MaMaDroid [17] used Markov chains to build API sequence model. The method learn and

test through the feature obtained by API sequence model. The F-measure of MaMaDroid can

reached 99%. DroidSieve [18] proposed high-quality features for malware detection and mal-

ware family detection. These features include Intents, permissions, mate-information, etc.

MUDFLOW [19] used sensitive sources (include the Intents, Sinks, API, etc.) to detect new

malware and its accuracy can reach 86.4%.

These static detection methods used multiple features to detect malware. Its have less cost

and don’t need run apps for detect malware [7, 20].

2.2 Dynamic detection

In contrast to static detection, dynamic detection detects apps’ behavior at runtime. It captures

and analyzes sensitive behavior in real time. Dynamic detection needs to be run in a specially

built environment [10, 21, 22].

DroidCat [23] used dynamic features to detect resource obfuscation, system-call obfusca-

tion and other obfuscation. The F1 of DroidCat can reached 97%. DroidScribe [24] analyzed

the running behavior of apps by dynamic detection method and divided malware into differ-

ent families.

Although dynamic detections are effective in identifying malicious behaviors, they require

a lot of costs [25]. Meanwhile, for conditionally triggered malicious applications, dynamic

detections are also helpless.

PLOS ONE A detection method for android application security

PLOS ONE | https://doi.org/10.1371/journal.pone.0238694 September 11, 2020 3 / 19

https://doi.org/10.1371/journal.pone.0238694


2.3 Hybrid detection

Recently, the detection based on machine learning technology has received extensive attention

[26–29]. However, machine learning has high requirements for sample features. Now, more

and more scholars use hybrid methods to detect Android malware [25, 30–32]. Y. Du et al.

[25] first analyzed the community structures of function call graphs, then used machine learn-

ing algorithms to evaluate the performance. W. Wang et al. [32] proposed DroidEnsemble

which used structural and string features for static analysis of Android apps. They extracted

seven string features and used three machine learning algorithms to evaluate the performance.

Afonso et al. [33] and Dash et al. [34] detected malware by dynamically obtained features.

Meanwhile, some state-of-the-art approaches used dynamic and static methods to obtain fea-

tures to detect malware [35, 36]. The drawbacks of the hybrid approach is that it requires addi-

tional OS system consumption and a lot of time.

More and more mining techniques and machine learning techniques are applied to detect

malware [37, 38]. G. Suareztangil et al. [39] proposed a text mining method that can automati-

cally classify malicious samples and malicious families by the code structure of apps. B. Sanz

et al. [40] used text mining approach in the disassembled Android apps smali, it obtained a

good result of accuracy (83.51%). W. Wang et al. [41] detected malware from three aspects by

data mining. They used three ranks analyze individual permissions and collaborative permis-

sions. J. Li et al. [27] proposed the SIGPID (Significant Permission Identification). They found

that only 22 permissions are significant and used machine-learning to classify different fami-

lies of malware. The precision and accuracy of the method can reach above 90%. All these

studies applied mining techniques analysis code structures, smalis and permissions to detect

the security of apps.

To sum up, in order to simplify the detection model and improve the detection efficiency,

the approach in this paper only uses the permission feature to detect malware. Android apps’

permissions are declared in the manifest.xml file. Permissions are extracted from the manifest.

xml file doesn’t need to run the app, it just needs to decompile the app. Meanwhile, the

Android permissions are very suitable for static extraction. Therefore, the proposed approach

uses the static method (TF-IDF algorithm) to calculate the sensitivity value of the apks. Then,

Android apps are learned and classified by machine learning algorithms.

3 Preliminaries

In this section, the background of Android permission and TF-IDF Algorithm are introduced.

3.1 Android Permission

The permission declaration mechanism is an important Android security mechanism. It

means that if an app wants to access the system resources, it must declare the permissions in

the manifest.xml. Android system permissions are divided into three categories: normal, dan-

gerous, signature (As shown in Table 1) [42]. Normal permissions don’t involve user privacy,

they also don’t need require user authorization, such as mobile phone vibration, access to the

network, etc. Whereas, dangerous permissions are involve user privacy and requires user

Table 1. Android system permission categories.

Type Interpretation Examples

normal very little risk INTERNET,BLUETOOTH, etc.

dangerous high risk CALL_PHONE, CAMERA, etc.

signature Need digital signature PLATFORM, SHARE, etc.

https://doi.org/10.1371/journal.pone.0238694.t001
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authorization, such as reading sdcard, accessing address book, etc. Signature permissions pro-

tect the apps’s private resources. These permissions can only be granted if the requesters sign

with matching certificates. Except system permissions, Android apps also adopts some custom

permissions. These permissions allow apps to access some particular apps [6].

Before Android 6.0, when installing an Apk, the android operating system will prompt the

user that the permissions of the Apk will need to install and display it in a list. However, these

prompts are only prompted during installation, very few users will abandon the installation of

an Apk if they see the Apk needs some sensitive permissions. Beginning in Android 6.0, users

will have permission authorization when running apps, which replaces the authorization dur-

ing the installation [43]. However, runtime authorization is organized in groups, not individ-

ual permission. For instance, the app has been authorized for READ_CONTACTS. When the

app requests WRITE_CONTACTS, the system will directly authorize WRITE_CONTACTS,

because READ_CONTACTS and WRITE_CONTACTS are in same permission group.

Unfortunately, various studies have shown that most Android apps have security issues

with permissions [44–47]. Although Google offers dangerous permissions, J. Li et al. [27]

study shows that normal permissions aren’t all safe, and dangerous permissions aren’t all

unsafe once they appear. W. Wang et al. [41] list 22 important permissions. Among them, only

8 permissions are consistent with the 24 dangerous permissions proposed by Google. Mean-

while, the detection method is extremely difficult. Statisticed by statista: until January 2018,

43.4% of users still use the Android operating system version lower than Android 6.x.

Part of the permissions which declared in the Taobao app’s Manifest.xml file are shown in

Fig 1. READ_CONTACTS is reads the address book, CAMERA is takes the photo and video,

and INTERNETACCESS_ NETWORK_STATE is the full network access right. Google

has defined a total of 135 system permissions [48]. com.android. launcher.permission.

INSTALL_SHORTCUT is a custom permission. A custom permission is used in a small range,

and individual analyses are not representative [42]. Our work analyzes android system permis-

sions, regardless of custom permissions.

3.2 TF-IDF algorithm

TF-IDF is a statistical method and used to evaluate the importance of a word to a document or

a corpus [49, 50]. It is a commonly used weighting technique. If the number of a word occur-

rences in the file increases, the importance of the word increases [51].

In documents, the term frequency (TF) refers to the number of times a word appears in a

document. Inverse document frequency (IDF) is a measure of the general importance of a

word. A word’s IF-IDF is the value obtained by multiplying TF and IDF. The larger the IF-IDF

of a word, the more important the word is in the document.

Some definitions of TF-IDF algorithm are as follows.

Fig 1. Part of the permissions declared in the Taobao app’s Manifest.xml file.

https://doi.org/10.1371/journal.pone.0238694.g001
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LetM be a set of documents, denoted as:

M ¼ fd1; d2; . . . ; dj; . . . djMjg; ð1Þ

where dj represents the jth document inM.

Let K be a set of terms inM, denoted as:

K ¼ ft1; t2; . . . ; tj; . . . tjKjg; ð2Þ

where ti represents the ith in K.

Definition 1: (TermFrequency: TFij). TFij is frequency of ti appear in dj, TFij calculates for-

mula [39, 40, 52] as follows:

TF
ij
¼

n
i;jX

k

n
k;j

;
ð3Þ

where ni,j is the nunber of times term ti appears in a document dj.
X

k

n
k;j

is total number of

times that all terms K appear in the document dj.
Definition 2: (InverseDocumentFrequency: IDFi). The IDF [39, 40, 52] is the total number

of documents divided by the number of documents contain the ti. And then take the logarithm

of the quotient. The formula is as follows:

IDFi ¼ log
jMj

jj : ti 2 djj
; ð4Þ

where |M| is the total number of documents. |j: ti 2 dj| is the number of documents contain the

ti.
The fewer documents containing ti, the greater IDFi value, indicating that ti has a strong

ability to distinguish in documents.

Definition 3: (Term Frequency—Inverse DocumentFrequency: TF−IDF) The TF−IDF is

obtained by multiplying TFij and IDFi [39, 40, 52]. It is defined as follows:

TF � IDF ¼ TF
ij
� IDFi: ð5Þ

TF-IDF combines the advantages of both TF and IDF, and evaluates the importance of ti to

one of the document in the documents set. The importance of ti is proportional to the number

of times it appears in the document and is inversely proportional to the frequency it appears in

the documents set.

4 System model

The proposed approach use TF-IDF to get app permission’s SVOA. The system model consists

of four steps: the dataset collection, decompile Apk and calculate the Apk’s SVOA, use

machine learning to test and result analysis. The system model is illustrated in Fig 2.

Step 1. Collect Apk samples.

This step need to write a web crawler in python and get benign Android Apks from the

Android app markets (Google Play, Android third-party app stores, etc.). Then collection

malicious Android Apks through university labs, research institutions and security companies.

Step 2. Apk decompile and calculate the Apk’s SVOA.

The processing flows of Apk decompile and calculate the Apk’s SVOA are shown as Fig 3.

ApkTool (used to disassemble and assemble Android package (.apk)) [2] is used to decompile
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all the Apks in batches, and finally it generate a folder containing the manifest file, smali file,

etc.

After studying Android security mechanism strategy, the declaration permissions are

extracted from the Android Manifest.xml file by the Python program. Then, some custom per-

missions are removed and Android system permissions are retained.

The SVOA is calculated by the TF-IDF algorithm and saved as a feature set. The relevant

definitions are shown as follows:

LetW be a set of Apks, denoted as:

W ¼ fa1; a2; . . . ; ar; . . . ; ajWjg; ð6Þ

where ar represents the rth Apk inW. Let U be a set of permissions inW, denoted as:

U ¼ fp1; p2; . . . ; ps; . . . ; PjUjg; ð7Þ

where ps represents the sth permission in U.

Let V represent the number of permissions that appear in Apk, denoted as:

V ¼ fjV1j; jV2j; . . . ; jVrj; . . . ; jVjWjjg; ð8Þ

where |Vr| represents the number of permissions appear ar.
Definition 4: (Permission Frequency: PF) The frequency of a permission (ps) in the Apk

(ar) is given by

PFsr ¼
P
ðps2arÞ

freqðps; arÞ
P
ðar2wÞ

freqðps;wÞ
; ð9Þ

where ∑(ps2ar) freq(ps, ar)) is the number of the permission (ps) occurrences in (ar). ∑(ar2w)

freq(ps, w) is total number of a permission (ps) inW.

Definition 5: (Permission Frequency of all: PFOA), PFOA denoted as:

PFOAs ¼ log
jWj

js : ps 2 arj
; ð10Þ

Fig 2. The model of the proposed system.

https://doi.org/10.1371/journal.pone.0238694.g002

PLOS ONE A detection method for android application security

PLOS ONE | https://doi.org/10.1371/journal.pone.0238694 September 11, 2020 7 / 19

https://doi.org/10.1371/journal.pone.0238694.g002
https://doi.org/10.1371/journal.pone.0238694


where |W| is total number of ApksW. |s: ps 2 ar| is number of the Apks with permission ps in

it.

Definition 6:(Permission’s Value: PV), Value of permission (ps) in the Apk (ar), denoted

as:

PVs ¼ PFðsrÞ � PFOAs; ð11Þ

the larger the value of PVs, the more important ps is in ar. This makes it easier to distinguish ar
from other Apks.

Definition 7:(Sensitivity Value of Apk: SVOA), Sensitivity value of the Apk (ar).

SVOAr ¼
XjVr j

s¼1

PVs; ð12Þ

where |Vr| is the total number of the permissions in ar.
Step 3. Machine learning classification.

The dataset are trained and tested by Naive Bayes (NB), Bayesian Network (BN), J48, Ran-

dom Tree (RT), Random Forest (RF) and K-Nearest Neighbor (K-NN) machine learning clas-

sification algorithms. The test method uses Percentage Split test method and K-fold cross-

validation test method.

Step 4. Experimental results evaluation and analysis.

Using the True Positives Rate, False Positives Rate, Precision, F-Measure, Accuracy, Recall

and AUC indicators to evaluate the experimental results of each machine learning. Selection

an optimal model to detect and analyze malware.

5 Evaluation and discussion

This section mainly includes the datasets, experimental methods and parameters, evaluation

system, experimental results and discussion.

Fig 3. The process of calculating permission’s SVOA.

https://doi.org/10.1371/journal.pone.0238694.g003
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5.1 Datasets

In this section, the datasets used in the experiment are introduced, which includes 15489 Apks

(6070 benign samples and 9419 malware samples). The datasets collected from October 2012

to June 2018.

Benign samples includes 6070 Apks. They are collected in Yingyongbao [53] and Wandou-

jia [54]. There are some errors during the download and decompilation. We got 6,070 usable

Apks out of 6,500. We used malware detection tools (VirusTotal [55] and Virscan [56]) to scan

and confirm that these Apks are benign samples.

Malicious Apks are collected from Drebin dataset [57] and Virus share [58] from October

2010—August 2018. There are some errors during the download and decompilation. We got

9419 usable Apks out of 10897.

The information of the datasets is shown in Table 2. We divided the dataset into 5 datasets

for different experiments. In addition to Dataset4, the other 4 datasets consist of benign apps

and malicious apps. Dataset1 is used to select the optimal classifier and validation method.

Dataset2 and Dataset3 combined with Dataset1 are used to verify that the proposed approach

has good detection accuracy for different datasets sizes. Dataset4 is used to verify the detection

of malware families by the proposed approach. Dataset5 is used to verify the detection perfor-

mance of the proposed approach for currently unknown and new apps.

5.2 Experimental methods and parameter design

The parameters which are used by the classifiers are shown in Table 3.

The experimental method of this paper uses Percentage Slit and K-fold cross validation.

Percentage Split divides the experimental dataset into two parts according to a certain percent-

age, one for the training set and the other for the test set. K-fold cross validation randomly

divides experimental samples into K disjoint subsets, The K-1 subsets are used for training and

one subset is used for testing. The parameters used in the experimental method are shown in

Table 4.

Table 2. Information of datasets.

Name Source of Ben./Mal. Number of Ben./Mal. Total number

Dataset1 YingYongBao/Denbin-5 589/556 1145

Dataset2 YingYongBao/Denbin-0,1 2010/1984 3994

Dataset3 YingYongBao/Denbin-0, 1, 2, 3,4,5 5601/4530 10131

Dataset4 -/Denbin-malware_families -/4466 4466

Dataset5 WanDouJia/Virus Share 469/423 892

https://doi.org/10.1371/journal.pone.0238694.t002

Table 3. 5 classifier parameter settings.

Algorithm Parameter

Naive Bayes (NB) N/A
Bayesian Network (BN) K2

Random Tree (RT) m = log2(predictors)+1

J48 C4.5

Random Forest (RF) N = 100

K -Nearest Neighbor (K -NN) K = 9

https://doi.org/10.1371/journal.pone.0238694.t003
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5.3 Model evaluation metrics

Following evaluation metrics are selected to evaluate the proposed approach. The classification

algorithm evaluation terms are shown in Table 5. Here, the benign sample is positive and the

malicious sample is negative. Using “Actual” to indicate the actual apps situation and “Pre-

dicted” to indicate the predicted apps situation. Other evaluation indicators are defined as

follows.

Definition 8: (TPR) The TP Rate represents the true positive rate that is correctly classified

by the classifier. which is:

TPR ¼
TP

TPþ FN
ð13Þ

Definition 9: (FPR) FP Rate represents the false positives rate that is incorrectly identified

as Positive. which is:

FPR ¼
FP

FPþ TN
ð14Þ

Definition 10: (Precision) Precision is the number of positive samples detected that are

positive. In general, the higher the Precision, the better the classifier will work. which is:

Precision ¼
TP

TP þ FP
ð15Þ

Definition 11: (Recall) Recall is a measure of completeness, indicating the percentage of

positive tuples marked as positive. which is

Recall ¼
TP

TP þ FN
ð16Þ

Definition 12: (F-Measure) F-measure is the weighted harmonic mean of Precision and

Recall which is

F � Measure ¼
2� Precision� Recall
Precisionþ Recall

ð17Þ

Table 4. Experimental validation methods and parameters.

Name Parameter

K -fold cross validation K = 10

Percentage Split Percentage split = 66%

https://doi.org/10.1371/journal.pone.0238694.t004

Table 5. The classification algorithm evaluation terms.

Positive (Predicted) Negative (Predicted)

Positive (Actual) True Positive (TP) False Negative (FN)

Negative (Actual) False Positive (FP) True Negative (TN)

https://doi.org/10.1371/journal.pone.0238694.t005
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Definition 13: (Accuracy) Accuracy is the percentage of tuples that are correctly classified

by the classifier. which is:

Accuracy ¼
TPþ TN

TP þ FPþ TN þ FN
ð18Þ

Definition 14: (Area Under Curve (AUC)) is defined as the Area Under ROC Curve. The

ROC curve does not clearly indicate which classifiers perform better. But AUC can better eval-

uate the classifier. The greater the AUC, the better the classifier.

In fact, Recall = TPR, which is currently assigned to the positive sample category, the true

positive sample as a percentage of all positive samples, also called the recall rate (how many

positive sample ratios are recalled). Accuracy is the percentage of all samples that are correctly

predicted for the correct sample, and represents the differentiating ability of a classifier (where

the differentiating ability is not biased to positive or negative examples). Precision—recall is

actually two evaluation indicators, but they are generally used simultaneously. Ideally, both are

high, but generally high accuracy and low recall, or low recall and high accuracy. In cases

where both requirements are high, it can be measured in terms of F−Measure.

5.4 Extraction and analysis of permissions

We extracted and analyzed permissions in the dataset1. The top 20 most-used system permis-

sions statistics are shown in Table 6.

It can be seen from the Table 6, more dangerous permissions types are used in malicious

apps than benign apps, such as SEND_SMS, RECEIVE_SMS, READ_SMS, CALL_PHONE,

etc. However, some normal permissions have high usage rates in both benign and malicious

apps, such as ACCESS_ NETWORK_STATE, READ_PHONE_STATE, VIBRATE,

ACCESS_WIFI_STATE, INTERNET, GET_TASKS, WRITE_EXTERNAL_ STORAGE, etc.

Table 6. The top 20 most-used system permissions in benign apps and malicious apps.

Benign Malicious

1.ACCESS_NETWORK_STATE 1.INTERNET

2.INTERNET 2.READ_PHONE_STATE

3.WRITE_EXTERNAL_STORAGE 3.WRITE_EXTERNAL_STORAGE

4.READ_PHONE_STATE 4.ACCESS_NETWORK_STATE

5.ACCESS_WIFI_STATE 5.SEND_SMS

6.WAKE_LOCK 6.RECEIVE_BOOT_COMPLETED

7.VIBRATE 7.ACCESS_WIFI_STATE

8.GET_TASKS 8.RECEIVE_SMS

9.ACCESS_COARSE_LOCATION 9.WAKE_LOCK

10.WRITE_SETTINGS 10.READ_SMS

11.READ_EXTERNAL_STORAGE 11.ACCESS_COARSE_LOCATION

12.CHANGE_WIFI_STATE 12.ACCESS_FINE_LOCATION

13.ACCESS_FINE_LOCATION 13.VIBRATE

14.CAMERA 14.WRITE_SMS

15.MOUNT_UNMOUNT_FILESYSTEMS 15.READ_CONTACTS

16.SYSTEM_ALERT_WINDOW 16.CHANGE_WIFI_STATE

17.RECEIVE_BOOT_COMPLETED 17.INSTALL_PACKAGES

18.READ_LOGS 18.RESTART_PACKAGES

19.RECORD_AUDIO 19.GET_TASKS

20.CHANGE_NETWORK_STATE 20.CALL_PHONE

https://doi.org/10.1371/journal.pone.0238694.t006
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Therefore, it is not feasible to distinguish between malicious and benign apps based solely on

the used number of dangerous permissions.

The number of system permissions used in each benign and malicious apps (dataset1) is

shown in Fig 4.

It can be obtained from Fig 4, the number of apps’ permissions for in dataset1 is less than

135 (all system permissions declarated by google). Fig 4 shows that the malicious apps use

fewer permissions than the benign apps. The benign apps use an average of 35 system permis-

sions per app in the dataset1. However, malicious apps use an average of 10 system permis-

sions per app. This is different from K. Tam et al. [20] study: After the statistical analysis of

million apps from 2010 to 2014, it is found that malicious apps use 12.99 permissions on aver-

age, and benign apps use 4.5 permissions on average. There are several reasons for this phe-

nomenon. Firstly, different samples are used. Secondly, as time goes by, the functions of apps

become more and more comprehensive, so more permissions are invoked. Accordingly, it is

also not feasible to distinguish between malicious or benign apps based solely on the number

of permissions used.

There exist many approaches for detecting Android malapps by extracting permissions.

Some researchers analyzed the risks of individual permissions and collaborative permissions

[41]. There are also some researchers extract permissions as [27] well as some other features

[25] and use machine learning to detect malapps. Pemissions are the most commonly used

and effective static feature in Android malicious apps detection. Although there are malicious

behaviors in the apps code, these API calls still require permissions. So in Android malicious

detection, permissions are more popular and effective than other features.

5.5 Performance of detection

In this section, we evaluate the performance of our method with 6 machine learning classifiers

and 2 validation methods on different datasets.

The experimental results of Percentage Split and 10-fold cross validation are shown in

Table 7.

It can be seen from Table 7 that in addition to the Random Tree classifier, the results (TPR,

FPR, Precision, Recall, F-Measure, Accuracy) of 10-fold cross validation are superior to those

Fig 4. Benign and malicious apps’ permissions number.

https://doi.org/10.1371/journal.pone.0238694.g004
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of Percentage Split. Therefore, 10-fold cross validation is used in the Android malware detec-

tion system for model selection.

It can be seen from Table 7 that comparing the experimental results of each machine learn-

ing classifier, the performance of J48 in the case of 10-fold cross validation (TPR, FPR, Preci-

sion, Recall, F-Measure(F-M), Accuracy) are better than other machine learning classifiers.

Among them, TPR reached 98.8%, precision reached 98.8%, and Accuracy was 98.07%. In

terms of speed, the algorithm is also efficient, as it took only 0.02s to train the model.

The AUC of six classifiers (NB,BN,RT,J48,RF and K-NN) under 10-fold Cross Validation is

shown in Fig 5.

Table 7. Calculation results for two models—Percentage Split and 10-fold cross validation.

Model Classifier TPR FPR Precision Recall F-M ACC Time

10-fold cross validation BN 0.913 0.085 0.917 0.913 0.913 91.27% 0.04s

NB 0.911 0.088 0.912 0.911 0.911 91.09% 0.01s

J48 0.988 0.012 0.988 0.988 0.988 98.70% 0.02s

RF 0.914 0.083 0.918 0.914 0.914 91.44% 0.26s

RT 0.555 0.47 0.695 0.555 0.445 55.54% 0.01s

K-NN 0.908 0.091 0.909 0.908 0.908 81.7% 0.01s

Percentage Split BN 0.918 0.079 0.922 0.918 0.918 91.00% 0.05s

NB 0.905 0.093 0.908 0.905 0.905 90.48% 0.07s

J48 0.946 0.051 0.95 0.946 0.946 94.60% 0.02s

RF 0.918 0.079 0.922 0.918 0.918 91.77% 0.21s

RT 0.918 0.079 0.922 0.918 0.918 91.71% 0.02s

K-NN 0.897 0.103 0.898 0.897 0.897 79.5% 0.02s

https://doi.org/10.1371/journal.pone.0238694.t007

Fig 5. AUC of different classifiers.

https://doi.org/10.1371/journal.pone.0238694.g005
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It can be seen from the Fig 5, the AUC of all other classifiers except RT are higher than 0.9.

Where NB and J48 can reach 0.954. Therefore, under 10-fold Cross Validation, the AUC of

J48 is 0.954, indicating that the classification performance of the J48 is good.

The proposed detection method is verified with different datasets. The experimental results

are shown in Table 8. With the increase of the scale of the datasets, the accuracy of the pro-

posed approach is improved. For datasets with different sizes, the detection accuracy is all

higher than 98%. For dataset3 the detection accuracy achieve up to 99.5%. The training and

testing time only 0.05s. Therefore, the proposed approach is beneficial for large-scale datasets.

The method based on TF-IDF and machine learning can quickly and efficiently detect mal-

wares. Therefore, the proposed approach is suitable for classification of malicious apps.

5.6 Detection of malware families

In this section, the proposed approach is used to classify malicious families. The used dataset is

dataset4. All these malicious families are known, such as FakeInstaller, Opfake, GingerMaster,

DroidKungFu, BaseBridge, Iconosys, etc.

We implemented a classification experiment on the top 20 malicious families. The classifi-

cation results are shown in Table 9.

Table 9. Experimental results for different families.

Malware Family Number of samples FPR Precision AUC

FakeInstaller 925 0 100% 1

DroidKungFu 662 0 100% 1

Plankton 553 0 100% 1

Opfake 612 0 100% 1

GinMaster 338 0 100% 1

BaseBridge 315 0 100% 1

Iconosys 135 0 100% 1

Kmin 96 0 100% 1

FakeDoc 132 0 100% 1

Adrd 82 0.1% 96.4% 0.904

Geinimi 84 0.2% 88.9% 0.823

DroidDream 78 0 100% 1

Glodream 68 0 100% 0.98

MobileTx 69 0.1% 94.5% 0.938

ExploitLinuxLotoor 68 0 100% 1

FakeRun 61 0 100% 1

SendPay 59 0 100% 1

Gappusin 46 0 100% 1

Imlog 43 0 100% 1

SMSreg 40 0 100% 1

Weighted Avg. 4466 0 99.6% 0.993

https://doi.org/10.1371/journal.pone.0238694.t009

Table 8. Experimental results for different dataset.

Dataset Number of samples TPR FPR Precision Recall F-M ACC Time(s)

Dataset1 1145 0.988 0.012 0.988 0.988 0.988 98.70% 0.02

Dataset2 3994 0.991 0.021 0.991 0.991 0.991 99.10% 0.03

Dataset3 10131 0.995 0.021 0.995 0.995 0.995 99.50% 0.05

https://doi.org/10.1371/journal.pone.0238694.t008
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It can be seen from Table 9. For the top 20 malicious families, the detection accuracy of the

proposed method is higher than 88.9%. The detection precision of the other 17 families has

reached 100%, except for the three families of Adrd, Geinimi and MobileTx. According to

Table 9, when the proposed method classifies malicious families, the AUC of 16 families are 1

and the AUC of 3 families are greater than 0.9. Meanwhile, the weighted average value of the

AUC reached 0.993. Therefore, the proposed method also has a good effect on the classifica-

tion of malicious families.

Endroid [5], Droidsieve [18] and our method use the same datasets to detect malware fami-

lies. Endroid [5] dynamically extract features, whereas our method and Droidsieve [18] do it

statically. The accuracy of the proposed approach achieves up to 99.6% is higher than Droid-

sieve (98.2%) and Endroid (94.5%). At the same time, the proposed approach only uses per-

mission feature, while Droidsieve and Endroid use multiple features. They use multiple

features for detection, which complicates the detection system. In addition, the proposed

method also has a good detection accuracy for malware families.

5.7 Detection of unknown/ new apps

As described before, we have collected 892 real-world datasets (dataset5). The proposed

method is verified by using the dataset5. The detection results of unknown/ new apps are

shown in Table 10. According to Table 10, the detection precision can reach 93.3% and ACC

can reach 92.71%. It shows that our proposed method also has a high detection accuracy for

unknown and new apps.

5.8 Comparison with other approaches

The proposed approach also is compared with other state-of-the-art malicious detection meth-

ods that only use permissions features. SIGPID [27] is an approach that applies permission

ranking. We reimplemented their approach for comparison. Because the dataset used is differ-

ent, the results are different from theirs.

The comparison results are shown in Table 11. SIGPID using only 22 significant permis-

sions to classify different families of Apks. Compared with SIGPID, the F-M of our method is

99.8%, and the SIGPID is 98.7%. SIGPID takes 14 times as long to learn and test data as our

method. Our method has higher F-M and less training and learning time. Meanwhile, if we

only use the 24 dangers permissions (24 Dan-Per) of Google stated for detection. Its detection

accuracy rate is 83.7%, far lower than the proposed method.

Table 11. Comparison with other state-of-the-art detection approaches.

Methods Features Samples(Mal./Ben.) Classifier F-M ACC Time(s)

SIGPID Permission Dataset3 J48 98.7% 98.7% 0.7

24 Dan-Per Permission Dataset3 J48 83.7% 83.7% 0.9

Our method Permission Dataset3 J48 99.5% 99.5% 0.05

https://doi.org/10.1371/journal.pone.0238694.t011

Table 10. Experimental results for unknown dataset.

Dataset TPR FPR Precision Recall F-M ACC

Dataset5 0.927 0.067 0.933 0.927 0.927 92.71%

https://doi.org/10.1371/journal.pone.0238694.t010
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5.9 Open issues for future work

Despite the effectiveness of the proposed method, there are several open issues.

Firstly, permission has a good detection effect in static detection, but other features such as

API, Intent, etc. also have a good effect in Android security detection [59]. DroidSieve [18]

and Drebin [57] use multiple features (including permission, API calls, code structure and

invoked components) to detect malwares. The proposed method for android malware detec-

tion is based only on permissions. In future work, other features (such as API calls, intent, Net-

work address, etc.) should be considered. Meanwhile, our model based on apps’ permissions is

relatively small. According to our study, nearly half of the apps also used customized permis-

sions models. In the following studies, we will consider custom permissions.

Secondly, our method uses NB, BN, RT, J48, RF and K-NN six classifiers to analyze the

malicious detection effect of Android apps. Some ensemble learning methods [60, 61] and

deep learning methods [62] have a good effect on the classification. In the following research,

we will consider these learning methods.

Thirdly, identifier renaming, string encryption, Java reflection, packing and control flow

obfuscation technology are widely used in Android apps [18]. The obfuscation of apps affects

the detection effect. In the following work, we will consider the detection techniques for differ-

ent obfuscation methods.

Fourthly, Static analysis does not take care the environment and state of the app at runtime.

In some malicious Apks the permissions declared are not compatible with the permissions

used. The hybrid approach [63, 64] combines the advantages of static analysis and dynamic

analysis. It can be seen as the most comprehensive analysis because it analyzes both Android

application installation files and behaviors of the app at runtime. In future studies, we will con-

sider the combined use of dynamic and static detection methods.

6 Conclusions

In this paper, we discuss the importance of android system permission in android app’ secu-

rity. Only use dangerous permissions or the number of used permissions can’t accurately dis-

tinguish whether it is a malicious app or a benign app. We used text mining approach

(TF-IDF) to extract the system permission feature in the android app’s manifest.xml. The

extracted features(the sensitive values permissions) are trained and classified by the machine

learning algorithm. It is found that the accuracy of the proposed model is higher under the

10-fold cross-validation method and the J48 classifier. The TPR of the proposed method

reaches 2.1%; the precision reaches 99.5%, and the ACC reaches 99.5%. So the proposed

method has a high accuracy. Meanwhile, the training model only needs 0.05s with high effi-

ciency. According to experiments, the proposed method is also applicable to different sizes of

datasets. The detection accuracies of different sizes of datasets are all higher than 98%. The

proposed method is also suitable for large-scale malwares detection. For 20 common malware

families, the detection accuracy of the proposed method are 99.6%. The malware detection

accuracy is better than some state-of-the-art malicious detection methods. Meanwhile, the

method is effective for the unknown and new apps’ detection, and the accuracy of detection

reaches 92.71%. Therefore, the proposed method is simple, feasible and efficient for android

apps security detection.
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