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Abstract

Head and neck squamous cell carcinoma (HNSCC) is a common malignancy with high

mortality and poor prognosis due to a lack of predictive markers. Increasing evidence

has demonstrated small nucleolar RNAs (snoRNAs) play an important role in

tumorigenesis. The aim of this study was to identify a prognostic snoRNA signature of

HNSCC. Survival‐related snoRNAs were screened by Cox regression analysis

(univariate, least absolute shrinkage and selection operator, and multivariate). The

predictive value was validated in different subgroups. The biological functions were

explored by coexpression analysis and gene set enrichment analysis (GSEA). One

hundred and thirteen survival‐related snoRNAs were identified, and a five‐snoRNA

signature predicted prognosis with high sensitivity and specificity. Furthermore, the

signature was applicable to patients of different sexes, ages, stages, grades, and

anatomic subdivisions. Coexpression analysis and GSEA revealed the five‐snoRNA are

involved in regulating malignant phenotype and DNA/RNA editing. This five‐snoRNA

signature is not only a promising predictor of prognosis and survival but also a

potential biomarker for patient stratification management.
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1 | INTRODUCTION

Head and neck cancers include tumors from the oral cavity, pharynx, and

throat, and 90% of the tumors belong to squamous cell carcinoma. Being

the sixth most common cancer worldwide (Cai, Dodhia, & Su, 2017; Moy,

Moskovitz, & Ferris, 2017), over 600,000 cases of head and neck

squamous carcinoma (HNSCC) were diagnosed each year, from which

more than two‐thirds of them are from developing countries

(J. Moskovitz, Moy, & Ferris, 2018). Patients who were diagnosed with

HNSCC are approximately 60 years old, with incidence higher in males

than that in females (Polanska et al., 2014). HNSCC is responsible for

about 350,000 deaths each year, indicating that its high mortality rate as

well as poor prognosis a heavy burden for the whole society (Wilkie, Lau,

Vlatkovic, Jones, & Boyd, 2018). At present, the primary therapeutic

strategies treating HNSCC include surgical resection, radiotherapy,

chemotherapy, and biotherapy (J. M. Moskovitz, Moy, Seiwert, & Ferris,

2017). However, due to a lack of efficient early diagnostic tools such as

predictive markers, most of the HNSCC patients are diagnosed at late

stages, losing the best opportunity for early intervention. Furthermore,
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poor patient management and uneven medical resources distribution can

be found on HNSCC patients since very little is known about the patients’

prognosis after diagnosis. (Bunbanjerdsuk et al., 2019; Huang &

O'Sullivan, 2017; Xing, Zhang, & Tong, 2019). Thus, it can be concluded

that despite recent advances in therapeutic management of HNSCC, little

is improved in the overall survival (OS) of HNSCC patients due to the lack

of diagnostic and prognostic markers (Galot et al., 2018), which means

that it is currently quite urgent to identify and apply early diagnostic as

well as prognostic signature for HNSCC patients.

Over the past few years, noncoding RNAs, especially micro RNAs

(miRNAs) and long noncoding RNAs (lncRNAs), have been revealed

as promising biomarkers for the diagnosis and prognosis of diseases,

including various cancers (He et al., 2018; G. Liu et al., 2018; Xing, Zhang,

& Chen, 2019). However, another class of noncoding RNAs, small

nucleolar RNAs (snoRNAs), have rarely been considered as biomarkers

for cancers due to the long‐time common belief that they only perform

housekeeping functions. snoRNAs are small RNAs of 60–300 nucleotides

in length and are mainly found in the nucleolus (Williams & Farzaneh,

2012); they are one of the best‐characterized classes of noncoding RNAs,

and their function in rRNA biogenesis has been well documented

(Romano, Veneziano, Acunzo, & Croce, 2017). Growing evidence has

demonstrated that snoRNAs also play an important role in the

carcinogenesis of multiple tumors(Mei et al., 2012). Dong et al have

indicated that the mutation or downregulation of snoRNA U50 is

associated with a malignant phenotype and identified snoRNA U50 as a

candidate tumor‐suppressor gene in prostate cancer (Dong et al., 2008).

Another study focused on SNORA42, an H/ACA box snoRNA encoded at

1q22, whose expression is frequently increased in non‐small‐cell lung
cancer (NSCLC; Testa et al., 1997), while the small interfering RNA

(siRNA)‐induced downregulation of SNORA42 in NSCLC cell lines was

able to induce apoptosis and reduce colony formation in vitro and was

observed to inhibit tumor formation in a mouse model (Mei et al., 2012).

Additionally, another study found that SNORA42 also acts as an

oncogene in colorectal cancer(Okugawa et al., 2017). SNORA21 appears

to have potential as a prognostic biomarker in colorectal cancer according

to Yoshida et al. (2017). Recently, a systematic pan‐cancer analysis of the
expression of snoRNAs in human cancer has highlighted significant roles

of snoRNAs in the development and implementation of biomarkers or

therapeutic targets for cancer (Gong et al., 2017). Considering the small

size and stability of snoRNAs, as well as the accumulating evidence of its

potential role in multiple tumors, snoRNAs are gaining increasing

attention in the field of oncology and have the potential to serve as

biomarkers for diagnosis, prognosis and therapeutic targets.

In our study, we were the first to perform a series of machine

learning analyses to explore and construct a prognostic signature based

on snoRNAs to predict the survival of HNSCC patients in 510 HNSCC

patients. We identified prognosis‐related snoRNAs using univariate

regression analysis. Then, we performed dimensionality reduction for

significant prognosis‐related snoRNAs through the least absolute

shrinkage and selection operator (LASSO) regression and multivariate

regression and constructed a five‐snoRNA‐based prognostic signature.

Finally, we assessed the clinical utility of this prognostic model and

explored its potential functions. Our findings provide new insights into

the clinical significance of snoRNAs and provide a promising biomarker

for predicting and evaluating the clinical outcome of HNSCC patients.

2 | MATERIALS AND METHODS

2.1 | Data acquisition and preprocessing

We use the public database UCSC Xena (https://xenabrowser.net/

datapages/) to download the head and neck squamous cell

carcinoma (HNSCC) protein‐coding genes (PCGs) expression data

in the form of fragments per kilobase of transcript per million

fragments mapped (FPKM). After being transformed into log2

(FPKM + 1), the PCGs with average expression value >1 were

retained. For the snoRNA expression profile of the TCGA HNSCC

cohort, we downloaded the gene annotations (hg19) of 403 and

1,457 snoRNA genes from UCSC Genome Browser and GENCODE,

respectively, and merged them as 1,524 unique snoRNA genes.

HNSCC miRNA‐seq BAM files were downloaded from the Cancer

Genomics Hub (CGHub; https://cghub.ucsc.edu). We kept the high‐
quality samples with ≥50% QC‐passed reads and ≥80% reads

mapped to human genome and the latest bam files if duplicated. We

then mapped the reads to snoRNA genes and quantified the

expression of snoRNAs as reads per kilobase per million (RPKM).

snoRNAs with an average RPKM > 1 across samples in HNSCC were

defined as detectable snoRNAs (SNORic; http://bioinfo.life.hust.

edu.cn/SNORic; Gong et al., 2017). The expression data of snoRNA

were then log2 (RPKM + 1) transformed for corresponding analysis.

The corresponding clinical follow‐up information of HNSCC is also

coming from UCSC Xena and the samples with survival time less

than 30 days were removed.

2.2 | Construction of the prognostic model

Five hundred and ten HNSCC patients were involved in the

construction of the predictive model after samples without clinical

information were excluded, and they were randomly divided into

training and testing sets (7:3). Survival related snoRNAs were

identified using the HNSCC patients accompanied by the snoRNA

expression profile as well as their clinicopathological features. Next,

the snoRNAs with a p < .05 were screened out as candidate

snoRNAs which were passed on for LASSO regression. LASSO is a

popular method for regression analysis with high‐dimensional

features (Sauerbrei, Royston, & Binder, 2007), which has been

widely used in the Cox proportional hazard regression model for

survival analysis with high‐dimensional data (Tibshirani, 1997).

LASSO Cox regression analysis was performed to select the most

powerful prognostic markers from the candidate snoRNAs identi-

fied from the training set, which was then used for the multivariate

Cox regression analysis to identify the possibilities of snoRNAs as

independent prognostic markers from the most powerful snoRNAs.

Meanwhile, a risk score model was also constructed from this step.
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The patients were divided into two groups, according to the median

score. A Kaplan–Meier survival curve was plotted to analyze the

difference between the two groups, while receiver operating

characteristic (ROC) analysis was used to evaluate the efficiency

of the predictive model, and AUC values were calculated to validate

the performance of the prognostic predictors. To combine some

basic clinicopathological information with the risk score model, a

nomogram was plotted to predict the 1‐, 3‐, and 5‐year survival

probabilities of HNSCC patients. All of these processes were

performed by R software (version 3.5.1).

2.3 | Correlation analysis of the five snoRNAs and
annotation of their function

To determine the coexpression relationships between the

five‐snoRNAs and PCGs, the Pearson’s correlation coefficients

were calculated, and the PCGs positively or negatively correlated

with the five snoRNAs were considered as snoRNA‐related PCGs

(we chose the top 300 correlated PCGs with adjusting p < .05 for

each snoRNA) which were used to make functional annotation

prediction for snoRNA(Fan & Liu, 2016; F. Liu, Xing, Zhang, &

Zhang, 2019; R. Liu et al., 2017). To get further insight into the

function of top 300 snoRNA‐related PCGs for each snoRNA, the

Database for Annotation, Visualization, and Integrated Discovery

(DAVID, https://david.ncifcrf.gov/) was employed to perform the

gene ontology enrichment analysis (Huang da, Sherman, &

Lempicki, 2009). The gene lists of top 300 PCGs were uploaded,

then analysis was run with default parameters and we got the

results of the biological process (BP) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway. The annotation term with

p < .05 is regarded as of statistical significance and the results were

presented by dotplot (ggplot2 package in R) like our previous

studies did (Xing, Zhang, Feng et al., 2019; Zhang, Feng, Du et al.,

2018; Zhang, Feng, Li, Guo, & Li, 2018).

2.4 | Gene set enrichment analysis analysis

The mRNA expression data from HNSCC in this study was obtained

from the public database TCGA‐GDC (https://portal.gdc.cancer.gov/),

and was downloaded as raw count. The expression data was

preprocessed according to the following procedure. First, we keep

the genes with count larger than 1 in at least 50% of the samples.

Next, the expression value was normalized using the R package

edgeR, which was then transformed into log2 (expression value +1),

and genes with the average value >1 were kept for gene set

enrichment analysis (GSEA) analysis. GSEA software (Version:3.0;

http://software.broadinstitute.org/gsea/index.jsp) and R package

clusterProfiler(Yu, Wang, Han, & He, 2012) were employed to

perform GSEA analysis between high and low‐risk groups to

determine how the hallmark phenotypes and pathways differ

between them. According to the five‐snoRNA signature, patients

were ranked in descending order by risk score. The first 25% and last

25% of the patients were used to perform GSEA. Two annotated

gene set files (h.all.v6.2.entrez.gmt and c2.cp.kegg.v6.2.entrez.gmt)

were selected as the reference gene set to characterize the

differences between the two groups according to the mRNA

expression profile.

3 | RESULTS

3.1 | Clinical characteristics of the patients

A total of 567 samples from the TCGA HNSC cohort were

downloaded from the TCGA database, from which normal samples,

samples without clinical follow‐up, as well as samples with overall

survival time less than 30 days were excluded, thus 510 HNSCC

samples were obtained for this study (Table 1). Five hundred and ten

samples were further randomly divided into a training set and testing

set at the ratio of 7:3 (357 and 153). The study workflow is

demonstrated in Figure 1.

3.2 | Prognostic values of snoRNAs

Using univariate Cox proportional hazards regression analysis, the

survival‐related snoRNAs were screened from training set, from

which 113 snoRNAs were identified using p < .05 as the cut‐off. The

TABLE 1 Clinical characteristics of patients in head and neck
squamous cell carcinoma cohort in this study

Alive

(n = 297)

Dead

(n = 213)

Total

(n = 510)

Gender

Female 67 71 138

Male 230 142 372

Age
Mean (SD) 59.55 (11.1) 62.77 (12.7) 60.9 (11.9)
Median [MIN, MAX] 60 [19, 85] 63 [24, 90] 61 [19,90]

Anatomic sub

Oral cavity 184 149 333

Other 113 64 177

Clinical stage
Stage I 14 7 21
Stage II 54 40 94
Stage III 60 44 104
Stage IVA 151 111 262
Stage IVB 5 4 9
Stage IVC 2 5 7
NA 11 2 13

Grade

G1 39 23 62

G2 170 127 297

G3 68 55 123

G4 7 0 7

GX 10 7 17

NA 3 1 4
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top 20 significant survival‐related snoRNAs were demonstrated by

the Forest plot (Figure 2a).

3.3 | Construction of the prognostic snoRNA
signature for HNSCC

A predictive model was constructed from 113 survival‐related snoRNAs

using LASSO regression, and 19 snoRNAs with nonzero coefficients were

selected with the minimum criteria (Figure 2b,c). These 19 snoRNAs were

then passed on for multivariate Cox proportional hazards regression

analysis, and snoRNAs with p< .05 were used for the predictive model

construction. A five‐snoRNA (SNORD114‐17: ENSG00000201569,

SNORA36B: ENSG00000222370, SNORD78: ENSG00000212378, U3:

ENSG00000212182, and U3: ENSG00000212195)‐based risk model

(Figure 2d) was eventually obtained, and a risk score formula was

established according to their expression levels and coefficients. The five‐
snoRNA risk score of each patient was calculated, and the patients were

stratified into high‐ and low‐risk groups according to the median risk

score.

F IGURE 1 Flowchart of this study. PCG, protein coding genes; TGCA, The Cancer Genome Atlas; snoRNA, small nucleolar RNA
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3.4 | Predictive value of the five‐pseudogene
signature

To reveal the potential prognostic value of the five‐snoRNA signature,

Kaplan–Meier survival analysis was performed on the training set, and

patients in the high‐risk group had a significantly worse prognosis

(p< .0001; Figure 3a). Besides, ROC analysis was performed to evaluate

the accuracy of this signature in predicting the 1‐, 3‐, and 5‐year survival
(Figure 3b), the respective areas under the ROC curve (AUCs) were

0.674, 0.704, and 0.66, indicating a high sensitivity and specificity of this

signature. SNORD114‐17, SNORD78, and U3 (chr2) were upregulated in

the high‐risk group, which means that it is a risk factor for HNSCC, and

the other three were downregulated in the high‐risk group, indicating

that they act as protective factors (Figure 3c). In addition, a higher risk

score was related to shorter overall survival, more death events, and

higher expression levels of the five signature snoRNAs (Figure 3d). To

further evaluate the predictive performance of the snoRNA signature, it

was applied to the testing set and the whole set, and similar results were

obtained (Figure 4a,b). In conclusion, this five‐snoRNA signature‐based
risk model can well distinguish high‐risk patients from low‐risk patients

with HNSCC, indicating its prognostic significance for HNSCC.

3.5 | Predictive performance of the five‐snoRNA
signature in different subgroups

To identify other likely contributors such as sex, age, clinical stage,

histological grade, and other clinical features on patient survival, the

F IGURE 2 (a) The forestplot demonstrated the top 20 (20/113) significant survival‐related small nucleolar RNA (snoRNAs) using univariate
cox analysis. (b) The tuning parameter (lambda) selection in the least absolute shrinkage and selection operator (LASSO) model used 10‐fold
cross‐validation via minimum criteria. Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard
error of the minimum criteria (the 1‐SE criteria). A lambda value of 0.029 was chosen (lambda.min) according to 10‐fold cross‐validation. (c)
LASSO coefficient profiles of the 113‐survival related snoRNA. (d) Forestplot exhibited the results of multivariate cox analysis. Five significant
snoRNAs in multivariate cox analysis were screened out (p < .05) as candidates for the risk model construction
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patients were also grouped according the above variables and then we

applied the five‐snoRNA signature to the different subgroups. Since

differences between different subgroups might influence the perfor-

mance of the prognostic biomarkers. When it comes to sex subgroups,

there were 372 males and 138 females in the HNSCC cohort, which did

not differ significantly in terms of the risk score distribution (Figure 4c).

Besides, the high‐risk patients also had significantly shorter OS in both

the male and female groups (Figure 5a,b), which means that the

five‐snoRNA signature was independent of sex. There was also no

significant difference in the risk score distribution of younger (≤60 years,

N=251) and older (>60 years, N=259) patients (Figure 4c). Similarly, in

between this subgroup, the low‐risk patients had significantly longer

F IGURE 3 (a) The Kaplan–Meier plot of the overall survival (OS) for high‐risk and low‐risk patient cohorts divided by the five‐small nucleolar
RNA (snoRNA) signature in the training data set (N = 357). The OS differences were determined by the two‐sided log‐rank test. (b) Receiver
operating characteristic analysis for the five‐snoRNA signature in predicting the patients of 1, 3, and 5 years OS in the training set. (c) Boxplot

displayed the expression status of the five snoRNAs between high risk and low‐risk group which was divided by the median risk score. (d) The
distribution of the risk score, patients’ survival status as well as snoRNA expression signature in the training set. A shorter survival time, more
dead events and the expression value of five snoRNAs ascended or decreased with the elevation of the risk score. AUC, areas under the ROC

curve
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F IGURE 4 (a) The Kaplan–Meier plot of the overall survival (OS) for high‐risk and low‐risk patient cohorts divided by the five‐small nucleolar
RNA (snoRNA) signature in the testing set (N = 153). The OS differences were determined by the two‐sided log‐rank test. (b) The Kaplan–Meier
plot of the OS for high‐risk and low‐risk patient cohorts divided by the five‐snoRNA signature in the whole set (N = 510). The OS differences
were determined by the two‐sided log‐rank test. (c) The dotplot exhibited the distribution of risk score based on the five‐snoRNA signature in

different subgroups including genders, ages, anatomic subdivisions, grade and clinical stages. The risk score is not different in between gender,
age, grade, and stage groups (p > .05). However, significant differences were observed between anatomic subdivisions (p < .05). ANOVA, analysis
of variance
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overall survival (Figure 5c,d), indicating the independence of the five‐
snoRNA signature in age subgroups. As for histological grade subgroups,

the patients were divided into grade 1/2 and grade 3/4 groups. And

significantly shorter OS was observed in grade 3/4 subgroup compared to

the grade 1 and 2 patients. Risk score distribution also did not differ

significantly among these groups (Figure 4c). Regardless of tumor grade,

overall survival was significantly different between the high‐ and low‐risk
groups (Figure 5e,f), indicating that the five‐snoRNA signature was an

independent predictor of histological grade. According to the clinical

stage, patients were stratified into the clinical Stage I/II and Stage III/IV

groups, and similar risk scores were also observed (Figure 4c). Besides,

the patients in the high‐risk group had a significantly poorer prognosis

than the low‐risk group in both the Stage III/IV and Stage I/II subgroups

(Figure 5g,h), indicating good performance of the five‐snoRNA signature

in stage subgroups. Based on anatomic neoplasm subdivision, patients

were divided into the oral cavity and other groups. However, significant

differences were observed between anatomic subdivisions (p< .05;

Figure 4c). Likewise, the OS was significantly different between the

high‐ and low‐risk groups regardless of subdivision (Figure 5i,j), indicating

its independence. In a nutshell, the five‐snoRNA signature can be applied

to HNSCC patient subgroups stratified based on clinical‐pathological
features and is an independent prognostic signature for HNSCC.

3.6 | Nomogram and calibration

A multivariate Cox proportional hazard regression model was con-

structed to combine some clinicopathological features (age, anatomic

subset, sex, clinical stage, and histological grade) with the five‐snoRNA
signature for prediction of patients prognosis of 1‐, 3‐, and 5‐year survival
probability. A nomogram was plotted to visualize this model with an

assigned score for each term (Figure 6). It can also be concluded that the

five‐snoRNA signature is independent of other clinicopathological

features in predicting the patient’s survival.

3.7 | Functional analysis of the predictive snoRNAs

To identify the protein‐coding genes co‐expressed with the snoRNAs,

correlation analysis was performed, using the top 300 co‐expressed
PCGs, followed by Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis, the function of the

predictive snoRNAs were determined. A network was presented to

demonstrate the relationship of the top 10 correlated PCGs of each

snoRNA (Figure 7a). The PCGs with the highest correlation with each

snoRNA were as follows: SNORD114‐17‐NNMT, SNORA36B‐CIRBP,
U3(chr2)‐CTNNBL1, and U3(chr17)‐ZNF101 (Figure 7b). The functions of

the snoRNAs as per GO biological processes (BP) and KEGG are shown in

Figure 8a,b; SNORA36B is involved in DNA template regulation,

SNORD114‐17 is involved in regulation of cell adhesion, invasion, and

metastasis, U3 (chr2) is related to RNA editing, and U3 (chr17) plays a

role in cell proliferation, and SNORD78 has multiple functions. In

addition, SNORD114‐17 is involved in several well‐known cancer‐related
pathways, such as PI3K‐AKT signaling and the ECM receptor, suggesting

that SNORD114‐17 may be an important regulator of the malignant

phenotype. Additionally, GSEA was performed to identify snoRNA‐
related hallmarks enriched in the high‐risk group. Several cancer‐related
processes, including EMT and angiogenesis, were significantly enriched in

the high‐risk group (Figure 8c). The KEGG pathways associated with

HNSCC, such as ECM receptor and focal adhesion, were significantly

enriched (Figure 8d). In a word, the five snoRNAs are associated with

tumor progression.

F IGURE 5 (a–j) Kaplan–Meier analyses of patients with head and neck squamous cell carcinoma in different subgroup cohorts, patients were

grouped based on their gender, age, subdivision, grade, and stage. Kaplan–Meier analysis with a two‐sided log‐rank test was performed to
estimate the differences in overall survival between the low‐risk and high‐risk patients
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4 | DISCUSSION

Patients with HNSCC frequently have a poor prognosis and a low

survival rate. Despite great improvements in diagnostic and therapeutic

methods, the survival rate of HNSCC is still low (Troiano et al., 2018).

Prognostic biomarkers can provide information about the probable

outcome of a cancer relative to disease progression, recurrence, or death

(Ballman, 2015). This information could greatly aid in patient stratifica-

tion, treatment management and monitoring disease status in clinical

practice, for example, offering personalized therapeutic schedules to

HNSCC patients who would benefit enormously (Nonaka &Wong, 2018).

The prognostic prediction would be very useful for clinicians to aid in

choosing the magnitude and type of therapeutic approach (surgery,

chemotherapy, radiotherapy, or a combination of these) on the basis of

the molecular profile of HNSCC (Troiano et al., 2018). In the past few

years, multiple molecular biomarkers have been proven to predict the

clinical prognosis in different kinds of cancers (Quan et al., 2018; Zhang,

Feng, Li, Liu et al., 2018; Zhu et al., 2016). In addition, combining several

biomarkers achieved higher sensitivity and specificity compared to

individual markers (Guo et al., 2018; Zhao, Sun, Zeng, & Cui, 2018).

Therefore, a predictive model based on several signatures for various

molecules, such as mRNA (Zhang, Feng, Li, Li et al., 2018), miRNA

(Wong et al., 2016), lncRNA (G. Liu et al., 2018), and methylation

(Shen et al., 2017), was found in HNSCC.

F IGURE 6 Nomograms combining

five‐small nucleolar RNA signature and
clinicopathological features to predict
1‐, 3‐, and 5‐years survival probability of

patients with head and neck squamous
carcinoma

F IGURE 7 (a) The network of five snoRNAs and their top 10 co‐expressed PCGs. The correlation analysis between snoRNAs and PCGs were

performed by Pearson correlation analysis. The interaction among PCGs was generated by the STRING database. Yellow dots represent
snoRNAs, red dots present positive correlated genes while blue dots represent negative corelated PCGs. The dot size represents a degree. (b)
The representative of corelated PCGs. The dotplots demonstrated the most correlated genes of each snoRNAs. HSNCC, head and neck

squamous carcinoma; PCG, protein coding genes, snoRNA, small nucleolar RNAs
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We focused on snoRNAs and used similar methods to identify and

prove that snoRNA could also serve as a prognostic signature. snoRNAs

are a class of small (60–300nt) noncoding RNAs implicated in the

chemical modification of rRNA and are commonly known as house-

keeping genes. They have been known to function as a guide for the

posttranscriptional modification of rRNA, but in recent years, a new role

in the regulation of other cellular pathways has emerged (Scott & Ono,

2011) including the regulation of oncogenesis in different cancers (Gong

et al., 2017). Compared with the well‐characterized role of miRNAs in

biomarkers for early detection, recurrence and prognostication prediction

(Hayes, Peruzzi, & Lawler, 2014), little is known about the significance of

snoRNAs. Furthermore, the association between snoRNA expression and

their clinical impact as biomarkers for HNSCC has not been undertaken.

Therefore, we performed a systematic analysis of the potential role of

snoRNAs as prognostic predictors and provided the first evidence of

survival‐related snoRNAs. We made several important discoveries during

the course of this analysis. First, we identified 113 survival‐related
snoRNAs using univariate Cox analysis, most of which are protective

factors (83/113), which may play a role in tumor suppression. Second, we

identified a five‐snoRNA signature and established a scoring system that

was significantly associated with the OS of HNSCC patients. This

signature helped stratify low‐ and high‐risk groups and predicted the OS

of HNSCC patients with high sensitivity and specificity. The signature was

first constructed in the training set and then validated in the testing set

and whole set, suggesting that it was reliable. Two of the five snoRNAs,

SNORA36B, and U3 (chr17), are protective factors, and the other three

are risk factors. A previous study reported that SNORD78 greatly

upregulated in non‐small cell lung cancer tissues and inhibition of

F IGURE 8 (a) The gene ontology enrichment analysis for the five snoRNAs correlated PCGs were carried out using DAVID to reveal the
potential function of the five snoRNAs. The top five significant biological process terms for each snoRNA were shown. (b) The KEGG pathway

enrichment analysis for the five snoRNAs correlated genes were carried out in DAVID to reveal the potential pathways in which the five
snoRNAs are involved. The top five significant pathway terms for each snoRNA are shown. (c) GSEA enrichment analysis showed the
significantly enriched HALLMARK terms associated with the risk score. (d) GSEA enrichment analysis showed the significantly enriched KEGG

pathways terms associated with the risk score. DAVID, Database for Annotation, Visualization, and Integrated Discovery; GSEA, gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; PCG, protein coding genes, snoRNA, small nucleolar RNAs
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SNORD78 suppressed the proliferation of NSCLC cells via inducing G0/

G1 cell cycle arrest (D. Zheng et al., 2015), and Langhendries, Nicolas,

Doumont, Goldman, & Lafontaine (2016) revealed in a mouse xenograft

model that the tumorigenic potential of cancer cells was reduced in the

case of U3 suppression. As for SNORD114‐17 and SNORA36B, there are

no related reports in the cancer field. Third, to validate the universality in

different patients and extend the signature to various subgroups,

Kaplan–Meier survival analysis was performed in different subgroups.

We found that the five‐snoRNA signature was independent of other

potential predictors, including age, sex, anatomical subdivision, clinical

stage and histological grade, and the performance of predicting survival

was satisfactory. We visualized the snoRNA signature and the other

clinical information by a nomogram to simplify the use of this signature in

clinical practice. However, due to the incompletion of the clinical data, we

can get, rare patients have gone through chemotherapy or radiation

therapy before the samples were taken (most of patients history of

neoadjuvant treatment are NO), and most of them have gone through

chemotherapy or radiation therapy after the sample collection which

means these samples are almost not influenced by chemotherapy or

radiation therapy. So we can't analyze the influence of radiotherapy or

chemotherapy in the expression level of snoRNA, which in turn may

affect the results of the data analysis. Further studies with more

complete clinical information should be carried out. Finally, to further

understand the biological function and explore the underlying oncogenic

mechanism of the five snoRNAs, co‐expression analysis, and GSEA were

employed. The results showed that the five snoRNAs were involved in

some well‐known cancer‐related pathways, such as the PI3K/AKT and

ECM‐receptor. Some functions concerning DNA/RNA editing and cell

proliferation were also presented.

The overall survival of patients with HNSCC can be multifactorial and

cannot be solely determined by genomic and transcriptomic dysregula-

tion, and risk factors included TNM staging, primary site, histological

grade and treatment (Carrillo, Carrillo, Ramirez‐Ortega, Ochoa‐Carrillo, &
Onate‐Ocana, 2016). Since most of the conventional therapies treating

HNSCC can be very toxic, patient stratification using validated

biomarkers can be very important to improve treatment outcomes and

reduce toxicity and cost of HNSCC treatment (Alsahafi et al., 2019).

Nowadays, with the rapid development of high throughput RNA

sequencing, the transcriptomic alterations behind HNSCC have been

gradually revealed, and a large number of molecular signatures have been

developed to enhance the stratification of HNSCC. In our study, we aim

to construct a signature based on snoRNA alterations for the

classification of HNSCC patients in overall survival, which could probably

help with the treatment and follow‐up management of HNSCC patients.

For example, imagine two HNSCC patients with the same age, sex, stage,

and grade, whomight be classified into the same category which indicates

a certain prognosis. However, the prognostic outcome of them might not

be the same, and quantifying their prognosis can be tricky. In our study,

we integrated the risk score and other clinical risk factors to provide the

clinicians a quantitative approach to predict the prognosis of HNSCC

patients, a better way to both combine the snoRNA profile and

clinicopathological for overall survival prediction. We believe the

biomolecular signature will make great assistance for doctors in clinical

practice accompanied by the development of high‐throughput sequencing
technology.

There are some limitations and shortcomings in this study that

cannot be ignored. First, this study mainly focused on data mining

and data analysis, which are based on methodology, and the results

were not validated using experiments. For example, the snoRNA

co‐expressed PCGs as functional annotation prediction of snoRNA

is based on previous studies and is theoretically feasible. Experi-

ments are needed to confirm the predictive results and identified

the precise function and related pathways that the five snoRNAs

involved in. Further validation experiments are required to verify

the findings of this study. Second, the datasets we were able to

obtain were limited, as we could obtain only one The Cancer

Genome Atlas (TCGA) HNSCC data set that contained both HNSCC

patient miRNA‐seq data and clinical follow‐up information. If there

were other datasets that met with our requirements, these could

have been used to further validate our results. Additional datasets

should be included to obtain a better result. Third, when

constructing a snoRNA signature for prognosis, one must take it

into consideration of the application of such a model. Since

different methods of detecting snoRNAs might lead to different

results, the procedure of detection, quantification, and determina-

tion of transcriptomic activity of snoRNAs must be standardized

(Guglas et al., 2017). Last, miRNA‐seq is not designed for a full

snoRNA repertoire, as miRNA‐seq reads are too short (15–30 bp)

to distinguish snoRNA from snoRNA fragments (Krishnan et al.,

2016), which may have different biological functions. However, this

method has been applied in several studies (Gao et al., 2015;

Krishnan et al., 2016; L. L. Zheng et al., 2016) and is probably the

most appropriate way to quantify snoRNA expression profiles from

TCGA omics data. Thus, validating full‐length snoRNAs from

miRNA‐seq data for further investigation is necessary (Gong

et al., 2017). Therefore, the five newly found prognosis‐related
snoRNAs deserve more attention, and the next step for our

research is to validate our results using experiments. We hope that

these results could give other researchers inspiration for further

exploration.

Taken together, we identified a novel five‐snoRNA signature for

HNSCC that is a promising independent survival predictor and serves

as an important biomarker for guiding the clinical treatment of

HNSCC patients to improve patient management. In addition, our

findings provide new insights into the molecular mechanisms under-

lying HNSCC and present a promising new prognostic marker.

Therefore, our findings in the signature have very promising clinical

significance.

5 | CONCLUSIONS

In conclusion, this study highlighted the prognostic value of snoRNAs

and explored their underlying functions. Some prognosis‐related
snoRNAs have been revealed, and the survival of HNSCC patients

could be predicted by a risk model based on these snoRNAs, which

XING ET AL. | 8081



could serve as prognostic markers in clinical practice. These results

may provide new potential prognostic and therapeutic implications

for HNSCC patient management.
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