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ABSTRACT The surfaces of plants are colonized by a rich diversity of microbes
but are largely unexplored. Here, we present the draft genome sequences of five
Pseudomonas spp. isolated from cultivated cranberry fruit surfaces. Although the isolates
represent four different species, their genomes all contain conserved iron sequestration
and uptake genes.

The genus Pseudomonas (Gammaproteobacteria) is widely recognized as being among
the most diverse and ubiquitous bacterial taxa, with 242 currently validated species

(https://lpsn.dsmz.de/genus/pseudomonas). Members of the genus include human, animal,
and plant pathogens (1–4), inhabit diverse habitats (5–8), and play important roles in plant
growth, development, and protection from disease (9–11). We recently demonstrated that
Pseudomonas spp. isolated from cranberry plants produce volatile organic compounds that
inhibit the growth of several types of plant-associated fungi and Phytophthora cinnamomi
(12). Despite their ubiquity and importance, little is known about the Pseudomonas spp. that
inhabit the surfaces of plant organs or what their functional roles are in those niches.
Recently, we explored the bacteria colonizing the surfaces of cranberry plants (Vaccinium
macrocarpon Ait.) (13–17). The ability to analyze and compare the genomes of these nonpa-
thogenic commensal bacteria is providing new insights into the relationships between
plants and their microbiomes and may yield new methods for controlling fungal infections
that lead to crop loss.

Bacteria were isolated from berries that were aseptically collected in August 2010 from
commercial cranberry bogs. Berries were vortexed in sterile water, and the water was
plated on King’s medium B (KMB) agar containing 50mg ml21 each of cycloheximide and
ampicillin. Single colonies that fluoresced under long-wave UV light were transferred to
fresh medium, colony purified 3 times, and stored at 280°C in 34% glycerol. Isolates were
placed in the genus Pseudomonas by phenotype and 16S rRNA gene sequences amplified
with 27F and 1525R primers using BLAST (18). Taxonomic placement was verified using
the Type (Strain) Genome Server (Fig. 1) (19). Isolates were recovered from frozen storage,
streaked onto KMB agar, and inoculated into overnight KMB broth cultures for genomic
DNA (gDNA) isolation with a DNeasy blood and tissue kit (Qiagen). Genomic DNA libraries
(KAPA HyperPlus library preparation kit) were analyzed for fragment size with an Agilent
TapeStation and quantified by quantitative PCR (qPCR) (KAPA library quantification kit)
with a QuantStudio 5 system (Thermo Fisher Scientific) before sequencing (Illumina MiSeq
2 � 250-bp flow cell). Raw reads were assembled using Unicycler1 with SPAdes and Pilon
version 1.23 for polishing within the PATRIC Comprehensive Genome Analysis pipeline
version 3.6.8 with default settings (http://patricbrc.org) (20) (Table 1). The compiled ge-
nome sequences were annotated using RASTtk (21).
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Isolate MWU349 is Pseudomonas protegens sensu lato, but the other isolates were
not assigned to a specific taxon (Fig. 1). MWU354 and MWU347 are members of the
same nova species but are not clonal isolates. As an indication of the importance of
iron sequestration in the berry surface microenvironment (22), each of the isolates has
multiple siderophore-related genes, including nonribosomal peptide synthases for the
production of pyoverdine-like siderophores. TonB-dependent hemin receptors, iron
siderophore sensor proteins, pyoverdine chromophore precursor synthase PvdL, and
the iron dicitrate transport protein FecA are conserved across all of the isolates.

Data availability. The Pseudomonas sp. strain MWU318, MWU341, MWU347,
MWU349, and MWU354 genome sequences have been deposited in GenBank under
BioProject number PRJNA691338. This whole-genome shotgun project has been de-
posited at DDBJ/ENA/GenBank under the whole-genome sequence (WGS) and SRA
accession numbers in Table 1.
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FIG 1 Genome BLAST Distance Phylogeny (GBDP) tree. A phylogenetic tree was constructed with the Type (Strain) Genome Server (19), which produces a
GBDP tree by approximating intergenomic relatedness using the MASH algorithm among all type strain genomes in the TYGS database and by extracting
and comparing 16S rRNA gene sequences with 12,670 type strains using BLAST as a proxy to identify the 50 closest type strains to calculate precise
distances. The tree itself was constructed using FastME version 2.1.4 to infer a balanced minimum evolution tree with branch support (23). The tree
represents only the Pseudomonas spp. most closely related to the described isolates. Bootstrap support values are shown at the nodes. Nodes without
values have 100% bootstrap support. Isolates described in the text are in bold font. Isolates MWU347 and MWU354 are the same species, MWU347/
MWU354, MWU318, and MWU341 represent new species, and MWU349 is P. protegens.
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