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Abstract: The qualitative properties of solutions of a hereditary model of motion of aqueous solutions
of polymers, its modification in the limiting case of short relaxation times, and a similar second grade
fluid model are studied. Unsteady shear flows are considered. In the first case, their properties are
similar to those of motion of a usual viscous fluid. Other models can include weak discontinuities,
which are retained in the course of fluid motion. Exact solutions are found by using the group analysis
of the examined systems of equations. These solutions describe the fluid motion in a gap between
coaxial rotating cylinders, the stagnation point flow, and the motion in a half-space induced by plane
rotation (analog of the Karman vortex). The problem of motion of an aqueous solution of a polymer
in a cylindrical tube under the action of a streamwise pressure gradient is considered. In this case,
a flow with straight-line trajectories is possible (analog of the Hagen-Poiseuille flow). In contrast to
the latter, however, the pressure in the flow considered here depends on all three spatial variables.

Keywords: dilute polymer solution; hereditary model; relaxation viscosity; second grade fluid

1. Introduction

It was found [1] that addition of a small number of polymers to water drastically decreases the
friction drag. This effect stimulated a large cycle of experiments aimed at studying the motion of
aqueous solutions of polymers in tubes and in the boundary layer in laminar and turbulent flows [2–9].
The main attention in those studies was paid to the influence of polymer additives on the flow
transition from the laminar to a turbulent state with an increase in the Reynolds number. An in-depth
analysis of those investigations can be found in Reference [10]. Various aspects of the dynamics
of aqueous solutions of polymers were discussed in a special issue of the “Processes” journal [11].
A model of motion of polymer solutions taking into account their relaxation properties was proposed
by Voitkunskii, Amfilokhiev, and Pavlovskii [12]. The sought functions in that model are the velocity
vector v and the fluid pressure p. The medium is assumed to be incompressible and to have a constant
density ρ and kinematic viscosity ν. The external forces are also assumed to have a potential character
because they can be included into the pressure gradient in this case. Under these assumptions,
the equations have the form

dv
dt

= −1
ρ
∇p + ν∆v +

κ

θ

t∫
−∞

exp
{

s− t
θ

}
d∆v
ds

ds (1)

divv = 0 (2)
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Hereinafter, the symbol d/dt means the operator of total differentiation with respect to time, so
that dv/dt = ∂v/∂t + v · ∇v. In deriving the momentum Equation (1), the authors used the following
variant of the hereditary model of the Maxwell type for the stress tensor P:

P = −pI + 2µD + 2
ρκ

θ

t∫
−∞

exp
{

s− t
θ

}
d
ds

D (s)ds (3)

Here µ = ρν is the dynamic viscosity, θ is the relaxation time, κ is the normalized relaxation
viscosity of dimension cm2 (hereafter we use the term “relaxation viscosity”), and D is the strain rate
tensor corresponding to the vector field v. The quantities θ and µ are assumed to be constant.

If a small amount of a polymer is added to water, the solution viscosity and density remain almost
unchanged, in contrast to its rheological properties. System (1), (2) contains two additional parameters:
θ and κ. The relaxation time of an aqueous solution of polyacrylamide with a concentration of 10−2

percent is of the order of 10−4 s. In the case of the relaxation viscosity coefficient, the authors of the
model did not provide its characteristic values, though one can assume that they are sufficiently small.
At the end of the paper, we will discuss the possibility of experimental determination of this parameter.

Pavlovskii [13] replaced Equation (3) with the following equation:

P = −pI + 2µD + 2ρκ
dD
dt

(4)

Equation (4) is a simplified version of Equation (3): asymptotic expansion with respect to the
parameter θ → 0 is performed in the integral term, and only the first term of this expansion is retained.
As a result, the following momentum equation is obtained:

dv
dt

= −1
ρ
∇p + ν ∆v + κ

d∆v
dt

(5)

One more possible modification of the model of the model of motion of diluted aqueous solutions
of polymers is to introduce an objective derivative of the tensor D [14]. In this case, the last derivative
in the right-hand side of Equation (5) is replaced by the expression 2Div(d̃D/dt), where

d̃D
dt

=
∂D
∂t

+ (v · ∇)D + DW −WD

W is the antisymmetric part of the tensor ∇v. As a result, we obtain a system of equations
consisting of Equation (2) and

dv
dt

= −1
ρ
∇p + ν∆v + 2κDiv

(
d̃D
dt

)
(6)

Replacement of the total derivative of the tensor D with respect to time by the objective derivative
in Equations (2) and (5) is caused by the necessity of turning the behavior law (4) to a tensor-invariant
form [14].

It is of interest to note that Equation (6) coincides with the momentum equation in the so-called
second grade fluid model [15–17] with a special choice of parameters of this model. An analogy with
the alpha-model of turbulence can be also traced [18,19]. In that model, the momentum equation has
the form

dv
dt

= −1
ρ
∇p + ν∆(1− α2∆)v + α2Div

(
d̃D
dt

)
(7)

Here α is a small parameter with the length dimension.
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The correctness of the boundary-value and initial-boundary-value problems for models of motion
of aqueous solutions of polymers was analyzed in [20–25]. Much more attention was paid to the
second-grade fluid (see [26] with a long list of references dealing with this topic). In particular, a
number of exact solutions for this model have been studied [27–30]. As for the Pavlovskii model, a
systematic study of its exact solutions began in paper [31]. The present paper contains new examples
of exact solutions for both of these models. Their analysis shows that the qualitative properties of
solutions described by mentioned models may differ from the solutions of the Navier-Stokes equations
even at moderate Reynolds numbers.

Together with the above-mentioned models, there are alternative models in dynamics of dilute
polymer solutions, particularly, the so called Oldroyd-B model; see monograph [32] and the references
presented there.

2. Theoretical-Group Properties of Considered Models

Similar to the classical Navier-Stokes equations, the equations of model (2), (5) and two other
models described in Section 1 possess many properties of symmetry. The largest Lie group admitted
by system (2), (5) was calculated in Reference [31]. The basis of its infinitesimal operators is described
by the formulas

X0 = ∂t, Xkl = xk∂xl − xl∂xk + vk∂vl − vl∂vk ; k, l = 1, 2, 3; k < l,

Φ = ϕ ∂p, Ψk = ψk∂xk +
.
ψk∂vk − ρxk

..
ψk∂p; k = 1, 2, 3.

Here ϕ and ψk are arbitrary functions t of the class C∞. The presence of arbitrary functions
in the coefficients of the operators Φ and Ψk is typical for many models of incompressible media
(ideal and viscous fluids [33], and also the incompressible viscoelastic Maxwell model [34]).
Assuming consecutively that Ψk = 1 and Ψk = t, we obtain the translation operators Xk = ∂xk

and the Galilean translation operators Yk = t ∂xk + ∂vk along the axes xk (k = 1, 2, 3). In the limiting
case (κ = 0), system (2), (5) transforms to the Navier-Stokes equations, and the admitted group of
symmetries is extended owing to the stretch transformation with the operator

Z = 2t∂t +
3

∑
1
(xi∂xi − vi∂vi )− 2p∂p.

It is of interest that the symmetry groups admitted by all three systems where the momentum
equation has the form (5), (6), or (7) coincide with each other.

Concerning the initial model (1), (2), it is rather difficult to calculate its group properties directly.
Nevertheless, the integro-differential Equation (1) can be reduced to a differential equation because the
kernel of the Volterra operator is degenerate. Let us differentiate Equation (1) with respect to t and
eliminate the arising integral term from the resultant relation. Thus, we obtain

θ
∂

∂t
dv
dt

+
dv
dt

= − θ

ρ

∂∇p
∂t
− 1

ρ
∇p + νθ

∂∆v
∂t

+ ν∆v + κ
d∆v
dt

. (8)

Equation (8) does not admit the Galilean transformation, though translation over the coordinates
xk and time, addition of an arbitrary function of time to pressure, and correlated rotations in the
coordinate and velocity spaces in its group of symmetries are still possible.

The presence of a group of symmetries of the examined systems of equations allows one to construct
their invariant solutions. Simple examples of such solutions are provided in the next Section. In Section 4,
we construct a partially invariant (in the sense of Ovsiannikov [35]) solution of system (2), (5).



Polymers 2018, 10, 684 4 of 13

3. Motions with Straight-Line or Circular Trajectories

System (2), (8) is nonlinear and belongs to none of the classical types. There are no results on
solvability of general initial-boundary-value problems for this system. Additional difficulties are
induced by the presence of a small parameter at the highest derivative with respect to time in Equation
(8) and degeneration of this equation at the solid boundary of the flow region where the no-slip
condition v = 0 is imposed. Nevertheless, there is a class of problems where the condition v · ∇v ≡ 0
is satisfied. In this case, Equation (8) transforms to a linear equation. Moreover, degeneration at the
solid boundary is absent in the transformed equation.

As the first example of such problems, let us consider plane unsteady motion of an unbounded
fluid with straight-line trajectories. The pressure in this flow is assumed to be constant. The velocity
field has the form v = (u(y, t), 0), where the function u satisfies the equation

θ
∂2u
∂t2 +

∂u
∂t

= (νθ + κ)
∂3u

∂2y∂t
+ ν

∂2u
∂y2 . (9)

Let us consider the Cauchy problem for this equation:

u = u0(y), ut = u1(y), t = 0, y ∈ R. (10)

Here u0 and u1 are specified functions of y satisfying the natural conditions of smoothness and
decreasing as y→ ±∞ . Problem (9), (10) reduces to the integral equation

u(y, t) =
1

2β
√

πt

∞∫
−∞

u0(η) exp

{
− (y− η)2

4β2t

}
dη

+
1

2β
√

π

t∫
0

∞∫
−∞

[
σu(η, τ) + γσe−γτ

τ∫
0

eγςu(η, ς)dς + u1(η)e−γτ

]
exp

{
− (y− η)2

4β2(t− τ)

}
dηdτ√
t− τ

(11)

where the following notations are introduced: β = ν(1 + φ), φ = κθν−1, γ = [θ(1 + φ)]−1 and σ = φγ.
Equation (11) was derived in Reference [36], where the conditions of its unique solvability in

suitable Holder weight classes were also indicated. It is convenient to use the iterative process of
solving this equation for the numerical solution of the Cauchy problem (9), (10).

Assuming that θ = 0 in Equation (9), we obtain the equation

∂u
∂t

= κ
∂3u

∂2y∂t
+ ν

∂2u
∂y2 . (12)

which describes stratified flows in the Pavlovskii model (2), (5). Only one initial condition is required here:

u = u0(y), t = 0, y ∈ R. (13)

The Cauchy problem (12), (13) reduces to the integral equation

u(y, t) = −ν

t∫
0

∞∫
−∞

G(y, η)u(η, τ)dηdτ + ν

t∫
0

u(y, τ)dτ + u0(y), (14)

where

G(y, η) =

{
1
2 κ−1/2 exp(−κ−1/2y) exp(κ−1/2η), y > η,
1
2 κ−1/2 exp(κ−1/2y) exp(−κ−1/2η), y < η

}

is the Green function of the operator L = −κ d2

dy2 + 1 with the conditions G(y, η)→ 0 as y→ ±∞ .
Equation (14) is specific in the following way: it is the Volterra equation with respect to t and the
Fredholm equation with respect to y.
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The classical solution of problem (12), (13) satisfies the integral identity

∞∫
−∞

[u2(y, t) + κu2
y(y, t)] dy + 2ν

t∫
0

∞∫
−∞

u2
y(y, τ)dτ =

∞∫
−∞

[u2
0(y) + κu′20(y)] dy. (15)

However, for this problem to be solved, there is no need to consider the function u as twice
continuously differentiable with respect to y it is only sufficient that this function, as well as the function
uy, should be quadratically summable along the entire y axis for all t > 0. This offers a possibility
of proving the theorem of existence and uniqueness of the generalized solution of problem (12), (13),
where the function uy has discontinuities at one or several points. Figure 1 illustrates the evolution of the
solution to the Cauchy problem (12), (13) with the initial function u0(y) = exp{−c|y|}. Calculations were
performed for the following values of the parameters: κ = 0.25 · 10−3 cm2, c = 0.5 cm−1, ν = 10−2 cm2/s.
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Identity (15) reveals one more specific feature of Equation (12): relaxation viscosity is no longer a
smoothing factor for solutions of this equation. The smoothness of the solution of the Cauchy problem
with respect to the variable y remains the same as the smoothness of the initial function, whereas its
smoothness along the variable t increases with time.

Let us now consider the problem of a shear flow of a second-grade fluid (2), (6). The equation
for the function u here has the previous form (12), but the pressure starts to depend on y and t.
Postulating that p→ 0 as y→ ±∞ , we obtain the relation

p = ρκu2
y. (16)

Equation (16) shows that the inclusion uy ∈ L2(R) does not guarantee the continuity of pressure.
However, if u0 ∈ Ck(R), k = 1, 2, . . . , then the solution of the Cauchy problem (12), (13) has the same
smoothness along the variable y. This ensures the continuity of the function p.

Let us return to Equation (9) and recall that the value of θ is small. One can say that Equation (9)
is a singular perturbation of Equation (12). For the solutions of the Cauchy problems (9), (10) and
(12), (13) to be close to each other, it is necessary to correlate the initial function u1 in condition (10)
with the value of the derivative of ut of the solution of problem (12), (13) calculated at t = 0. Figure 2
demonstrates the results of numerical solution of problem (9), (10) and problem (12), (13) with the
initial functions u0(y) = exp

{
−dy2} and u1(y) = ν( f (y)− u0(y)), where f (y) is the solution of the

boundary problem
−κ f ′′ + f = u0 , f (y)→ 0 as y→ ±∞ .
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Figure 2. Behavior of solutions to problem (9), (10) and problem (12), (13) with the initial function
u0(y) = exp

{
−dy2} for d = 0.3.

Let now the fluid fill the half-plane y > 0 whose boundary is a solid surface that performs
oscillations along the x axis with a velocity V cos ωt. The problem of determining the velocity u(y, t)
is similar to the classical Stokes problem in viscous fluid mechanics [37]. In the model proposed by
Pavlovskii, its solution has the form u = VRe[exp(iω t− ky)]. The quantities k and ω are related by
the dispersion expression

k2 =
ωνi− κω2

ν2 + κ2ω2 . (17)

We are interested in the root of Equation (17) with a positive real part,

Rek =

(√
1 + γ2 + γ

)1/2
(1 + γ2)

−1/2
√

ω

2ν
. (18)

where γ = κω/ν. The parameter γ is a natural similarity criterion in problems of polymer solution
motion under periodic external actions. In the limit, as γ→ 0 , Formula (18) yields the known value
for the distance from the oscillating plane l0 = (2ν/ω)1/2 at which the amplitude of oscillations of
the fluid velocity decreases by a factor of e [37]. The penetration depth lκ for the polymer solution
is weakly affected by the relaxation viscosity if the frequency of oscillations ω is not very high.
However, as γ→ ∞ , Equation (18) predicts that Rek = κ−1/2 + O(γ−1).

The solution of the Stokes problem for the hereditary model of motion of an aqueous solution of a
polymer (1), (2) leads to the following dispersion relation:

k2 =
ω(1 + θ2ω2)

(
ν(1 + θ2ω2) + κθω2)i− κω2(1 + θ2ω2)

(ν(1 + θ2ω2) + κθω2)
2 + κ2ω2

.

At a fixed frequency ω and a small value of the parameter θω, the roots of this equation are close
to the roots of Equation (17). In what follows, we confine ourselves to considering exact solutions in
the Pavlovskii model. For steady flows, this is justified by the fact that Equation (8) after multiplication
by θ and limiting transition θ → 0 turns to a steady variant of Equation (5). Concerning unsteady
problems, the influence of the initial data on the flow evolution can be expected to attenuate with time
if the process dynamics is determined by the boundary conditions of the problem.

The above-described solutions of the Cauchy and Stokes problems in models (2), (8) and (2), (5)
are the simplest examples of invariant solutions of the corresponding systems of equations. One more
example of the invariant solution is an analog of the classical Couette problem of polymer solution
motion in a gap between coaxial rotating cylinders. The inner cylinder of radius R1 rotates with an
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angular velocity Ω(t). The outer cylinder of radius R2 does not move. The polar coordinates on the
plane are denoted by r and ϕ, whereas vr and vϕ are the corresponding components of the velocity
vector. The motion is assumed to be planar and rotationally symmetric. In this case, only one velocity
component differs from zero: vϕ = v. System (2), (5) reduces to one equation for the function v:

∂v
∂t

= ν

(
∂2v
∂r2 +

1
r

∂v
∂r
− v

r2

)
+ κ

∂

∂t

(
∂2v
∂r2 +

1
r

∂v
∂r
− v

r2

)
, R1 < r < R2, t > 0. (19)

The boundary conditions for Equation (19) follow from the no-slip condition:

v(R1, t) = Ω(t), v(R2, t) = 0, t ≥ 0. (20)

Moreover, the initial condition is imposed:

v(r, 0) = v0(r), R1 ≤ r ≤ R2. (21)

Equation (19) admits separation of variables, which allows one to construct the solution of problem
(19)–(21) in the form of the Fourier series in Bessel functions and to study its qualitative properties.
One of them is obvious: if the condition Ω(t)→ Ω∞ = const is satisfied as t→ ∞ , then the flow is
stabilized and transforms to the classical Couette flow [37]. The results of the numerical solution of the
problem (19)–(21) are presented in Figure 3 for

Ω(t) =

{
1− cos(ω t), t ≤ π/ω,
2, t ≥ π/ω,

and v0(r) = 0, ν = 10−2 cm2/s, ω = 2 s−1.
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aqueous solution of a polymer was studied in Reference [39] (plane steady problem), Reference [36] 
(plane unsteady problem), and Reference [40] (axisymmetric steady flow). 

Another example of the partially invariant solution of system (2), (5) is described as 
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Figure 3. Behavior of the Couette problem solutions to (a) problem (19)–(21), κ = 0.25 · 10−2; (b) usual
fluid, κ = 0.

4. Motion in a Half-Space Induced by Plane Rotation

In the previous Section, we constructed invariant solutions of systems (2), (8) and (2), (5). The set
of exact solutions can be extended by seeking for their partially invariant solutions in the sense of
Ovsiannikov [35]. Such an example for Navier-Stokes equations is the solution of an unsteady problem
of motion near the stagnation point [38]. The problem of a stagnation point flow of an aqueous solution
of a polymer was studied in Reference [39] (plane steady problem), Reference [36] (plane unsteady
problem), and Reference [40] (axisymmetric steady flow).
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Another example of the partially invariant solution of system (2), (5) is described as

vr = r f (z), vϕ = rg(z), vz = h(z), p = p(z), (22)

where vr, vϕ and vz are the projections of the velocity vector onto the axes of the cylindrical coordinate
system r, ϕ, z. The functions f , g and h are found from the system

f 2 − g2 + h f ′ = ν f ′′ + κ( f f ′′ + h f ′′′ ), 2 f g + hg′ = νg′′ + κ( f g′′ + hg′′′ ), 2 f + h′ = 0, (23)

The function p is found a posteriori; the equation for this function is not derived. Let us require
the no-slip conditions

f (0) = 0, g(0) = Ω, h(0) = 0, (24)

to be satisfied on the plane z = 0 rotating with an angular velocity Ω = const around the z axis.
Moreover, the functions f and g should tend to zero as z→ ∞ .

Solution (22) is a generalization of the classical Karman solution of Navier-Stokes equations [41,42].
The theoretical-group nature of this solution was detected in [43]. It turned out that this is a steady
solution of a partially invariant submodel of Navier-Stokes equations with respect to a 5-parameter group
defined by the operators X1, X2, Y1, Y2, X12. The complete set of invariants of this group t, x3 = z, v3 = w,
p is insufficient for constructing the invariant solution. Nevertheless, we can construct a partially invariant
solution by assigning the invariant unknown functions w and p as the functions z and t. The conditions
of compatibility of the resultant overdetermined system yield equations for the “extra” functions u and v.
(The general procedure of obtaining partially invariant solutions was described in [35]).

As system (2), (5) also admits this group, the above-described algorithm can be applied to this
system. This procedure leads to a number of new solutions for this system, and one of them yields an
analog of the Karman vortex.

Let us note an important specific feature of problem (23), (24). The function h, which is a coefficient
at the higher derivatives in the first two equations of system (23), has a zero point of the second order
at z = 0. Therefore, the question about the existence of the solution of this problem is not trivial.
On the other hand, the parameter κ, which is also included into the coefficient at the higher derivatives,
is a small parameter. Expansion of the problem solution into a formal power series in the parameter
κ is regular and can be used as a basis of the algorithm for solving the problem numerically. This
statement is supported by comparison between asymptotic behavior at infinity of the Karman vortex
and solution (22). We have for the Karman vortex:

f = a0 exp(−c0ν−1/2Ω1/2z)[1 + o(1)], g = b0 exp(−c0ν−1/2Ω1/2z)[1 + o(1)]

h = h0 + O[exp(−c0ν−1/2Ω1/2z)], z→ ∞

with positive constants a, b, and c0 = (ν Ω)−1/2h0. Accordingly [42], (Ω/ν)1/2h0 = −0.886.
Asymptotics of problem (23), (24) solutions are following:

f = aκ exp(−dκν−1/2Ω1/2z)[1 + o(1)], g = bκ exp(−dκν−1/2Ω1/2z)[1 + o(1)],

h = hκ + O[exp(−dκν−1/2Ω1/2z)], z→ ∞,

where
cκ = (ν Ω)−1/2hκ , dκ =

1
2γcκ

[(1 + 4γc2
κ)

1/2 − 1], γ =
κ Ω
ν

. (25)

In view of (25), dκ → c0 as κ → 0 . The following hypothesis is likely: the Karman vortex
asymptotics for dilute polymer solutions as κ → 0 is uniform on the whole semi-axis z ≥ 0.
This hypothesis is confirmed by numerical solution of problem (23), (24) for small values of κ,
which are not presented here. Function dκ(γ) decreases monotonically with growth of parameter γ
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and dκ = γ−1/2[1 + O(γ−1)] as γ→ ∞ . If cκ = 1, which is close to c0, and γ = 3/4 then dκ = 2/3.
This means that the relaxation viscosity influence is significant for order one values of γ: functions f
and g decrease more slowly as z→ ∞ , when the parameter κ is increasing.

The absence of the boundary layer near the solid boundary as κ → 0 was previously detected in
the problem of polymer solution motion near the stagnation point [36,39,40].

5. Motions in Cylindrical Tubes

Let us first consider the motion of an aqueous solution of a polymer with a low concentration in a
cylindrical tube under the action of a given streamwise pressure gradient ∂p/∂z = c(t). If the arising
flow is described by the Pavlovskii model (2), (5), it is an unsteady analog of the Poiseuille flow [37,42].
However, this is not so if model (2), (6) is used.

The examined flow is invariant with respect to the group with the operator X = ∂z + c(t) ∂p

admitted by system (2), (5). The general view of this solution is

u = u(x, y, t), v = v(x, y, t), w = w (x, y, t), p = c(t)z + h(x, y, t). (26)

Here u, v and w are the projections of the velocity vector onto the x, y and z axes of the Cartesian
coordinate system. The symbols ∆ and∇ are the two-dimensional Laplacian and the gradient over the
variables x and y, whereas u is a two-dimensional vector with the components u and v. The subscripts
in expressions such as ux, vy mean partial derivatives with respect to the corresponding variables.

Substitution of Equation (26) into Equations (2), (5) yields the following system of equations

wt + u · ∇w = −ρ−1c(t) + ν∆w + κ(∆wt + u · ∇∆w), (27)

ut + u · ∇u = −ρ−1∇h + ν∆u + κ(∆ut + u · ∇∆u), (28)

∇ · u = 0. (29)

Let us use S to denote a bounded plane domain with a smooth boundary ∂S. The domain of the
flow is the cylindrical tube Q = {x, y, z : (x, y) ∈ S, z ∈ R}. We have to find a solution of system
(27)–(29) in the domain ω that satisfies the no-slip conditions on the domain boundary

w = 0, (x, y) ∈ ∂S, t > 0, (30)

u = 0, (x, y) ∈ ∂S, t > 0, (31)

and the initial conditions
w = w0(x, y), (x, y) ∈ S, t = 0, (32)

u = u0(x, y), (x, y) ∈ S, t = 0. (33)

If the function c involved into Equation (27) differs from zero, then system (27)–(29) cannot have
trivial solutions w = 0, u = 0, h = const. However, it has solutions where u = 0. In this case, the
function w is a solution of the initial-boundary value problem (30), (32) for the equation

wt = −ρ−1c(t) + ν∆w + κ∆wt. (34)

Let us use λk, k = 1, 2, 3, . . . , to denote the eigenvalue of the operator −∆ in the domain S with a
condition of the 1st kind and qk to denote the corresponding eigenfunction

∆ qk + λkqk = 0, (x, y) ∈ S; qk = 0, (x, y) ∈ ∂S.

It is well known that the system of the functions {qk} forms an orthonormalized basis in the
Sobolev space H1(S). The solution of problem (30), (32), (34) can be presented as the Fourier series
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w =
∞

∑
1

wk(t) qk(x, y),

whose coefficients are determined from the ordinary differential equations

(1 + κλk)
dwk
dt

= λkwk − ρ−1ekc(t), k = 1, 2, 3, . . . ; ek =
∫
S

qkdxdy

with the initial conditions
wk(0) =

∫
S

w0qkdxdy, k = 1, 2, 3, . . .

Let the following conditions be satisfied: w0(x, y) ∈ H1(S) and c(t) ∈ C[0, T]. Then problem
(30), (32), (34) has a unique generalized solution for all T > 0. Increasing the smoothness of the
functions w0, c and of the boundary of the domain S, we can prove that its generalized solution is the
classical solution. These statements are proved by means of standard considerations, which are not
discussed here.

Let us now assume that the function c is independent of t: c = −A = const. In this case,
the problem of steady motion of a polymer solution in a tube coincides with the classical problem of
hydrodynamics of a viscous fluid for determining the only nonzero velocity component w

µ ∆w = −A, (x, y) ∈ S; w = 0, (x, y) ∈ ∂S, (35)

where µ = ρν is the dynamic viscosity. If S is a circle of radius a, we obtain the classical
Poiseuille solution

w =
A
4µ

(a2 − r2), (36)

where r2 = x2 + y2.
Let us now consider the solution of system (2), (6) that is invariant with respect to the operators

∂z − A ∂p and ∂t. Its presentation has the form of Equation (26), where c = −A and the functions
u, v, w and h are independent of t. The set of solutions of this system still contains solutions where
u = (u, v) = 0. The functions w and h are found by solving the overdetermined system of equations
(35) and the equation

hx = ρκ (2wxwxx + wywxy + wxwyy), hy = ρκ (2wywyy + wywxx + wxwxy). (37)

It turns out that system (35), (37) is compatible. A corollary of Equation (37) is the relation
wx∆wy = wy∆wx. In turn, this relation implies that

∆w = F(w) (38)

with a certain function F. Together with Equation (35), this means that F = −A/µ = const. By virtue
of Equation (35), the solution of system (37) has the form

h = κ

(
ρ

2
|∇w|2 − Aw

ν

)
+ h0 (39)

h0 = const. In particular, by virtue of Equation (36), we obtain the following equation for a flow in a
circular tube of radius a:

h =
κ

8ρ

(
aA
ν

)2
(3r2 − 2a2) + h0 (40)

Thus, in contrast to the classical Poiseuille flow, the pressure in model (2), (6) depends on all spatial
variables. It should be noted that the equations of this model are identical to the equations of the
second-grade fluid model under the assumptions that α1 + α2 = 0 and α1 = κ (see [26] for more details).
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If we consider the invariant solutions (26) of system (2), (6), there are still such solutions where
u = 0, and the function w is determined from the linear Equation (27). However, the problem of
studying the overdetermined system (27), (38) does not have such a simple solution. This problem in
the general form has not been solved yet, but we can give two forms of the function c(t) at which this
system is compatible: c = B1 exp(k1t) and c = B2 cos(k2t) with constant values of B1, B2, k1 and k2.

6. Concluding Remarks

1. The phenomenological model of polymer solution motion formulated in Reference [12] contains
two additional parameters as compared to the classical Navier-Stokes equations: relaxation time θ

and relaxation viscosity κ. The first parameter can be found from experiments that are not dealing
with the laminar-turbulent transition. Unfortunately, we are not aware of any reliable methods of
determining the second parameter. The same problem persists if the simplified model (2), (5) is used.
However, it is not a priori preferable as compared to model (2), (6), where the convective derivative
of the tensor dD/dt is replaced by its objective derivative d̃D/dt. This dilemma could be resolved by
performing an experiment where the polymer solution flows in a sufficiently long round tube under
the action of a constant pressure gradient. In the first model, the classical Poiseuille flow is formed,
where the pressure is independent of the radial coordinate. In the second model, Equation (40)
predicts the difference in the pressures at the tube wall and at the tube axis: δ = 3κa2A2/8ρν2. It is
of interest that this effect is manifested in steady motion of the fluid.

2. Another specific feature of model (2), (6) is the absence of an unsteady analog of the Poiseuille
flow with an arbitrary dependence of the pressure gradient ∂p/∂z on time. Indeed, if the function
c(t) in Equation (27) has not special form, then system (27), (38) is incompatible. This means that
the solution of system (2), (6) of the form (26) cannot be obtained if the velocity components u
and v differ from zero, and the fluid particle trajectories are not straight lines.

3. The initial model of motion of weakly concentrated polymer solutions written in the differential
form (8), (2) contains a small parameter θ at the highest derivative with respect to time. The question
whether the solution of the initial-boundary-value problem for this system is close to the solution of
its limiting variant as θ → 0 (2), (5) is nontrivial in the general case. For stratified flows, which were
considered in Section 3, it is possible to ensure the absence of the boundary layer near the plane
t = 0 by means of correlating the initial data for the initial and limiting problems.

4. Another problem of a singular disturbance arises in models (2), (5) and (2), (6) if the parameter κ

has a small value. Here the main role belongs to the value of the similarity criterion γ = κω/ν,
where ω is the frequency of the external periodic action on the fluid (or the variable of dimension
1/s, which is the angular velocity of plane rotation in the problem considered in Section 4).
If the parameter γ is of the order of unity, then the qualitative differences in the behavior of the
solutions for diluted polymer solutions and usual fluid may be almost invisible. However, the
qualitative differences can be rather significant. This is demonstrated by the calculations of an
analog of the Couette flow at the initial stage of motion

5. It was noted above that mathematical problems associated with models of aqueous solutions
of polymers and second grade fluids are intensely studied. At the same time, problems of
hydrodynamic stability of flows in these media have not been studied to a sufficient level. As far as
we know, the problem of the Couette flow stability in such media has not been solved. It would
be of interest to calculate the critical Taylor number for this problem and to analyze its behavior as
κ → 0.
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