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Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many 
ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of 
the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that 
includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in 
habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system 
and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles 
of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. 
Recent findings in structural organization coupled with behavioral observations could help to understand the importance 
of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory 
organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities 
between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are 
connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in 
light of evolutionary trends, ontogenetic development, and ecological demands.

Keywords Anura · Frog · Nose · Olfactory organ · Olfactory bulb · Odor mapping · Transduction · Olfactory epithelium · 
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Historical perspective

In scientific research, amphibians have a long history of 
use as a model to reveal basic principles of physiology, 
including the sense of smell (Burggren and Warburton 
2007). The anatomy of the olfactory organs of amphibians 
has been investigated from the mid-nineteenth century 
when rich descriptions with highly detailed illustrations 
of their internal morphology became available (Ecker 
1864–1882). Extensive reports about the structure of 
both the cellular components of the olfactory epithelium 
(OE) and the connection to the anterior telencephalon are 
available from early investigations (Schultze 1856, 1863; 
Eckhard 1858; Babuchin 1872; Paschutin 1873; Brunn 

1875). Comprehensive work on different species by Max 
Schultze firmly established that the cellular organization 
of the amphibian olfactory system (OS) showed a high 
similarity to other vertebrates (Schultze 1856, 1863; 
reviewed by Zippel 1993). Thus, frogs were readily 
recognized as important models to understand general 
cellular organization and function of the vertebrate OS. 
Application of electron microscopy allowed to extend the 
morphological information about the cell types of the OS 
with ultrastructural details. This technical progress, for 
instance, revealed that the apical appendages of receptor 
neurons, i.e., cilia, are the cellular subcompartment of 
odor molecule binding and transduction (Bloom 1954). 
In particular, the physiology of receptor neurons in the 
OE was heavily investigated. Slow odor-evoked electrical 
signals were recorded in receptor neurons and the 
olfactory bulb (OB) was established as an important relay 
station for olfactory information (Ottoson 1956, 1971; 
Gesteland et al. 1965; Kauer 1974). Many underlying 
principles of vertebrate olfactory transduction and odor 
processing in general were derived from pioneering work 
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in anurans (Takagi and Shibuya 1960; Shibuya et  al. 
1962; Lancet 1986; Duchamp-Viret and Duchamp 1997; 
Schild and Restrepo 1998).

Despite the wealth of information gathered about OS 
structure and function, only little was known about the 
behavioral relevance of olfaction in anuran amphibians. Early 
attempts to study the role of olfaction in frogs and toads were 
unsuccessful and did not obviously support a prominent role 
in their lifestyle, e.g., in foraging (Risser 1914). Because 
of these early hindrances, olfactory research was notably 
delayed in anuran amphibians and not until much later, 
behaviors were identified that particularly depend on the 
sense of smell (Fig. 1). Instead, many researchers shifted their 
focus towards olfaction in urodele amphibians (salamanders), 
where the olfactory sense more obviously played a major 
role in their lifestyle. Intraspecific interactions via chemical 
communication emerged as a promising research field and 
have been very well studied over time (Woodley 2010, 2014, 
2015). Up to now, chemical communication in anurans 
has been investigated less but may play a more important 

role than appreciated so far (Belanger and Corkum 2009; 
Waldman 2016; Woodley 2010, 2014, 2015).

“Water‑to‑land” transition 
in evolution,development, and individual 
lifestyle

Anurans occupy a unique position in the vertebrate lineage 
as a group that is heavily exposed to the interface between 
terrestrial and aquatic environments (Reiss and Eisthen 
2008). This applies on multiple axes: (i) phylogenetically as 
a group sharing traits with the first tetrapods that conquered 
the terrestrial environment in evolution, (ii) ontogenetically 
with a development that includes aquatic and terrestrial 
stages connected via metamorphic remodeling, and (iii) 
individually with common changes in habitat during the 
individual lifecycle. In the following, we describe the 
specific challenges for the sense of smell, and thus the OS, 
along these three axes.

Fig. 1  Overview of anuran behaviors involving the sense of smell. 
Anurans use waterborne (blue arrows) and airborne (yellow arrows) 
odor molecules for a multitude of behaviors during different life-

stages. Based on the diversity of anuran habitats, odor-guided behav-
iors vary extensively between species
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Evolution: olfaction in water vs. olfaction in air

The evolutionary shift in the vertebrate lineage from 
an aquatic to a terrestrial environment is challenging in 
many physiological aspects and necessitated substantial 
adaptations, including modified respiratory mechanisms 
and sensory systems (Schoch 2014; Janes et  al. 2019). 
In amphibians, exposure of the olfactory surface to odor 
molecules is tightly coupled to oscillatory movements of 
the floor of the mouth (Bruner 1914; reviewed by Jørgensen 
2000). Thereby, two modes of respiratory movements can be 
identified, infrequent strong contractions to pump air into the 
lungs, and shallow contractions to circulate air or water into 
the nasal cavity to allow olfactory detection (Gargaglioni 
and Milsom 2007).

Depending on the medium that the OS is exposed to, 
different physical and chemical constraints apply before odor 
molecules can successfully interact with olfactory receptors 
on receptor neurons. Important factors that differ in the 
two environments are olfactory medium density, viscosity, 
diffusion speed, and solubility of odor molecules (Hemilä 
and Reuter 2008). Higher density and viscosity of water, 
coupled with a much lower diffusion speed in comparison to 
air, make transport of odor molecules to the sensory surface 
a formidable challenge in aquatic environments (Tierney 

2015). Aquatic organisms have evolved mechanisms to 
facilitate water displacement onto the olfactory sensory 
surface, including nostril structure, streamlined internal 
cavities, and actively beating cilia in the nasal cavities 
(Föske 1934; Cox 2008; Reiten et al. 2017).

The range of molecules mainly carried by water varies 
considerably from molecules carried by air and thus aquatic 
and terrestrial animals are generally exposed to very different 
classes of odorants (Hemilä and Reuter 2008). Water easily 
dissolves hydrophilic molecules, ranging from small organic 
molecules to large proteins, and thus makes them accessible 
to aquatic olfactory organs. In air, on the other hand, the 
volatility of odor molecules plays a decisive role in the 
ease of dispersion in the medium (Eisthen and Schwenk 
2008). Highly volatile molecules are distributed easily in 
air and are thus preferentially accessible to the olfactory 
organs of terrestrial animals. During tetrapod evolution, 
the OS segregated into subsystems and amphibians feature 
an accessory OS in addition to the main OS (Taniguchi 
and Taniguchi 2014). The accessory OS is made of the 
sensory epithelium of the vomeronasal organ (VNO), the 
accessory OB, and higher brain centers (Mohrhardt et al. 
2018). The VNO is fluid-filled, has no direct contact to the 
aerial environment and is thought to be specialized for the 
detection of odor molecules with lower volatility (Reiss and 

Fig. 2  Structure of the anuran main olfactory epithelia and the adap-
tations to aquatic and terrestrial environments. The cellular compo-
nents of a water-type (left) and air-type (right) olfactory epithelium 
are shown. While the water epithelium contains both ciliated and 
microvillous receptor neurons, only ciliated receptor neurons are 
found in the air type epithelium. The water epithelium has two types 

of supporting cells (ciliated and secretory), compared to only secre-
tory supporting cells in the air epithelium. Mucus in the water- and 
air-epithelium is mainly produced by secretory supporting cells and 
Bowman’s glands, respectively. Both epithelial types include a popu-
lation of basal stem cells near the basal lamina. OBP olfactory bind-
ing protein
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Eisthen 2008). Alternatively, molecules that cannot be freely 
distributed in the medium (i.e., hydrophobic molecules in 
aqueous medium and non-volatile molecules in air) can be 
sensed through direct physical contact with the olfactory 
organ or in particular the vomeronasal organ, e.g., by licking 
or touching (Hemilä and Reuter 2008).

Olfactory epithelia of both air and water specialized 
olfactory organs are lined with a thin mucus layer (Getchell 
and Getchell 1992). Consequently, odor molecules must 
overcome the mucus barrier to reach the olfactory receptors 
on receptor neurons. Certain mucus properties seem to be 
beneficial or even essential for air olfaction, as specialized 
mucus-secreting Bowman’s glands are found solely in air-
exposed OE (Fig. 2). In fishes and larval amphibians, the 
mucus is produced by various cell types of the OE (Getchell 
and Getchell 1992; Menco and Farbman 1992). In terrestrial 
vertebrates (and interestingly also in insects), the mucus 
contains so-called odorant binding proteins that facilitate 
mucus solubility of odor molecules and may also serve other 
functions as well (Pelosi 1994; Sun et al. 2018).

In conclusion, it seems plausible that air-exposed 
noses presented an evolutionary opportunity for early 
terrestrial organisms to specialize for the detection of 
volatile odor molecules. This seems to have led to the 
development of specialized olfactory surfaces that are 
preferentially tuned to odor molecules with certain 
chemical properties, such as volatility and solubility. 
These properties are more relevant than the carrier 
medium itself (Hemilä and Reuter 2008). Adaptation of 
the OS to these two environments is particularly evident 
in the OS of different stages of the anuran life cycle.

Ontogenetic development

A unique characteristic shared by most anuran amphibians 
is their biphasic life cycle featuring morphologically 
distinct tadpole and frog stages that are highly adapted 
for vastly different lifestyles, mostly connected to aquatic 
and terrestrial habitats (McDiarmid and Altig 1999; 
Handrigan and Wassersug 2007; Elinson and Pino 2012). 
The underlying body plan of anuran larval stages is quite 
dissimilar to adult stages and serves as foundation for a 
large ecological diversity of tadpole subtypes (Altig and 
Johnston 1989; Roelants et al. 2011). The OS of tadpoles 
and frogs specifically evolved to suit the prevailing 
aquatic or terrestrial environment, respectively.

A shared characteristic of free living tadpoles is a body plan 
with specialized feeding apparatus to exploit an aquatic habitat 
with rich primary food sources (Wassersug 1989). The aquatic 
habitat is however not uniform and tadpoles have radiated into 
several microhabitats (McDiarmid and Altig 1999; Roelants 
et al. 2011). In an attempt to describe morphology as a function 

of habitat, Altig and Johnston (1989) have sub-categorized 
several ecomorphological guilds of tadpoles. They primarily 
describe feeding related types e.g., the benthic type, which relies 
on rasping off vegetation from the ground, carnivorous tadpoles 
or filter feeders, but also categorized classes of tadpoles living 
in still water (lentic) vs. streams and rivers (lotic) (Altig and 
Johnston 1989). The temporary nature of most tadpole habitats 
in terms of food/water supply and predatory risk also favors a 
rapid transition to the adult stage via metamorphosis.

Metamorphosis is a shared evolutionary strategy for 
amphibians reflecting a broad range of larval adaptations 
to environmental parameters in parallel to and largely 
independent adaptations of adult stages (Fritzsch 1990; 
Reiss 2002). During metamorphosis, many tissues 
undergo drastic changes and the OS is remodeled to 
satisfy the demands of terrestrial olfaction (Dodd and 
Dodd 1976; Hansen et  al. 1998; Gascuel and Amano 
2013; Jungblut et  al. 2017). This includes general 
modifications of OE properties, like the emergence of 
mucus-producing Bowman’s glands (Taniguchi et  al. 
1996; Hansen et al. 1998; Jermakowicz et al. 2004; Wang 
et al. 2008). In line with this, no odorant binding proteins 
have been found in tadpoles (just like in fish), but 
expression only begins in the developing air nose during 
metamorphosis (Millery et  al. 2005). Other changes 
are a shift in receptor neuron subtypes with different 
morphologies, transduction machinery, olfactory receptor 
protein expression, and odor sensitivities (Taniguchi 
et al. 1996; Hansen et al. 1998; Jungblut et al. 2011; 
Dittrich et al. 2016; Syed et al. 2017). Thus, the pre- and 
postmetamorphic OS each are very likely tuned to fulfil 
distinct important tasks in an ecological context.

Individual lifestyle

Anurans are a highly diverse group that has conquered 
many ecological niches and the OS contributes to detection 
of food sources and predators, orientation, alarm signaling, 
and intraspecific interactions (Fig. 1). Interestingly, tadpole 
and adult stages have undergone separate evolutionary 
modifications to their individual environmental parameters 
(Fritzsch 1990; Reiss 2002). The distinct habitats of larval 
and adult anurans demand different tunings and adaptations 
of their sensory systems (Duellman and Trueb 1994; Wells 
2007a). While the adult frog has to establish a complex 
long-term relationship with its environment to successfully 
reproduce, the anuran tadpole is a temporary inhabitant 
of freshwater ecosystems with the sole goal to make it to 
metamorphosis unscathed (McDiarmid and Altig 1999; 
Wells 2007a). This dictates the major challenges a tadpole 
has to face: feeding to optimize growth while evading 
the risk of predation, both of which heavily involve the 
animal’s sense of smell (Hoff et al. 1999).
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Role of olfaction in larval anurans

While tadpoles were traditionally viewed as being 
herbivorous or feeding on degraded organic materials, 
this dogma is presently challenged and tadpoles are 
mostly regarded as opportunistic omnivores (Hoff et al. 
1999; Altig et al. 2007). Tadpoles of species breeding 
in small and often ephemeral ponds in bromeliads with 
a low availability of food rely on trophic eggs provided 
by their mothers (Weygoldt 1980; Schulte 2014) or 
resort to cannibalism in the event of food shortage 
(Crump 1983; Poelman and Dicke 2007; Masche et al. 
2010). Additionally, some ranid tadpoles, e.g., show 
that members of the same species can be facultatively 
carnivorous (Schiesari 2004) or herbivorous (Pryor and 
Bjorndal 2005), suggesting spatiotemporal changes in 
feeding ecology. Data on foraging behavior in anuran 
tadpoles is mostly inferred from the morphology of their 
mouthparts and buccopharyngeal space (Orton 1953; 
Wassersug 1980; Altig and Johnston 1989; McDiarmid 
and Altig 1999). The presence of keratinized mouthparts 
enables some tadpoles to rasp off nutritional particles 
from the vegetation or other animals, which are then 
filtered by special branchial food traps (Orton 1953; 
Wassersug 1972; Altig and Johnston 1989). In obligate 
filter feeding tadpoles, such as most pipid species, the 
buccopharyngeal space is enlarged to optimize food 
entrapment (Wassersug 1972; Seale 1982). While these 
mechanisms are well described, almost no reports on the 
sensory correlates of tadpole foraging are known.

Tadpoles are generally considered severely nearsighted 
(Mathis et al. 1988; Hoff et al. 1999) and often inhabit 
murky, heavily vegetated, shaded, or turbulent water with 
low visibility (McDiarmid and Altig 1999; Wells 2007a), 
so foraging based solely on visual cues is quite improbable. 
In one of the only experimental studies on the matter, 
it was shown that Rana temporaria tadpoles prioritize 
chemical (olfactory) cues over visual cues to detect food 
sources (Veeranagoudar et al. 2004). In contrast to the lack 
of chemical food cues, the absence of visual food cues did 
not alter foraging behavior (Veeranagoudar et al. 2004). 
Considering the high variability of freshwater habitats 
and the associated trophic diversity, it seems likely that 
a lot remains to be discovered about olfaction-mediated 
foraging behavior (Altig and Johnston 1989; Alford 1999).

During the search for food, tadpoles are making themselves 
susceptible to predation. Conversely, extended periods of hiding 
without feeding will delay growth and eventually metamorphosis 
(Lima and Dill 1990). Several levels of predation risk assessment 
are thus in place and mostly chemical in nature (Chivers 
and Smith 1998; Ferrari et al. 2010; Hettyey et al. 2015). 
Upon detection of a predator-odor, anuran tadpoles generally 
decrease activity and display increased refuge-seeking behavior 

(Petranka et al. 1987; Hews 1988; Kats et al. 1988; Stauffer and 
Semlitsch 1993; Manteifel 1995; Griffiths et al. 1998; Hoff et 
al. 1999; Marquis et al. 2004). This behavior has been shown 
to vary according to the species and the predator. For instance, 
tadpoles of the midwife toad Alytes muletensis showed predator-
avoidance in response to odors emitted by a sympatric snake 
species, but not to an allopatric species (Griffiths et al. 1998). 
Similarly, tadpoles of several species behaviorally responded to 
the presence of their native larval dragonfly predator, but not to 
the presence of a novel crayfish predator (Nunes et al. 2013). The 
same study also shows that not only the familiarity of a predator 
but also its diet has an effect on tadpole behavior. Tadpoles 
responded with an avoidance behavior also to the novel exotic 
predator, if it had already successfully fed conspecific tadpoles 
(Nunes et al. 2013). Such postdigestive chemical alarm cues 
have been described in multiple sources and it is predicted, that 
stronger antipredator behaviors are elicited when closely related 
species or conspecifics are preyed on (Wilson and Lefcort 1993; 
Chivers and Mirza 2001; Marquis et al. 2004; Schoeppner and 
Relyea 2005; but see Scribano et al. 2020).

Alarm cues of conspecifics are not necessarily 
released after being eaten by a predator but have also 
been shown to be emitted from the skin via damage in 
bufonid tadpoles (Eibl-Eibesfeldt 1949; Kulzer 1954; 
Pfeiffer 1966). The alarm cues (Schreckstoff) were first 
described in fishes (v. Frisch 1942) and have been shown 
to be present in most bufonid species (Kulzer 1954; Hews 
1988), while being absent, e.g., in pipids (Pfeiffer 1966). 
Mechanical crushing of conspecifics also elicited fright 
reactions in cane toad Chaunus (Bufo) marinus tadpoles 
(Hagman and Shine 2008) and the red-legged frog Rana 
aurora (Wilson and Lefcort 1993). In ranid tadpoles, 
it has also been shown that peptide-cues can even be 
actively secreted by skin cells upon predator attack as 
an alarm substance for conspecifics (Fraker et al. 2009). 
In addition to these attack- or capture-related cues, Rana 
aurora tadpoles have been shown to release disturbance-
cues upon detection of predators in their vicinity 
(Kiesecker et al. 1999). The major component of this 
disturbance-signal is probably a high concentration of 
ammonia-excretion via the urine (Kiesecker et al. 1999), 
which seems to function as a general alertness-signal 
not only to conspecifics but also across prey species 
in the same ecosystem (Manteifel and Kiseleva 2011). 
A persistent exposure to predator alarm cues has been 
shown to even induce morphological changes (Buskirk 
and Relyea 1998; Schoeppner and Relyea 2005) or 
change tadpole life history and lead to, e.g., premature 
hatching (Chivers and Mirza 2001).

Both foraging as well as predator-avoidance in tadpoles 
are supported and facilitated by various forms of social 
behavior and most of these behaviors also probably rely on 
the sense of smell (McDiarmid 1978; Roche 1993; Hoff et al. 
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1999; Roland and O’Connell 2015). The most obvious social 
behavior observable in many tadpole species is schooling 
(Waldman 1991; Hoff et al. 1999). Tadpole aggregations 
can be situational/asocial (e.g., due to a common food 
source) or social due to identifying and associating with 
conspecifics (Wassersug 1973; Waldman 1991; Hoff et 
al. 1999). Tadpoles that generally form larger groups like 
the Cascade frogs Rana cascadae (Blaustein and O’Hara 
1982) or the American toad Bufo americanus (Waldman and 
Adler 1979) were shown to identify kin and preferentially 
associate with siblings over non-siblings (Waldman and 
Adler 1979; Blaustein and O’Hara 1982). Conversely, 
species that do not generally form schools failed to display 
kin recognition (Fishwild et  al. 1990). Kin recognition 
did not rely on vision or sound and putatively is conveyed 
via waterborne odor cues (Blaustein and O’Hara 1982; 
Waldman 1985; Eluvathingal et al. 2009). A nasal occlusion 
of Bufo americanus tadpoles completely eradicated kin-
recognition, which suggests that olfaction is required for this 
social behavior (Waldman 1985). A possible genetic basis 
for kin recognition in tadpoles of the African Clawed frog 
Xenopus laevis is the self-referent recognition of peptides of 
the major histocompatibility complex (MHC 1) (Villinger 
and Waldman 2008). Similarly, in rodents MHC peptides are 
involved in mate recognition (Leinders-Zufall 2004).

The recognition of kin can have various advantages for 
the individual tadpoles (Roche 1993; Hoff et al. 1999). 
Grouping together signifies that the time and resources 
spent in vigilance to detect predators is shared (O’Hara 
and Blaustein 1981), which means the individual can 
more efficiently concentrate on feeding and have a better 
chance to survive predation risks (Roche 1993). In times of 
food scarcity, groups of siblings produce differently sized 
individuals to ensure survival of at least some tadpoles, while 
all tadpoles are smaller in non-sibling groups (Blaustein 
and Waldman 1992). Concerning cannibalistic tadpoles, 
kin recognition facilitates predation of non-related tadpoles 
over kin (Roche 1993). In the polymorphic spadefoot toad 
Scaphiopus bombifrons, which often displays a herbivorous 
and a carnivorous tadpole morphotype, carnivorous tadpoles 
preferentially preyed on non-siblings unless they were very 
hungry (Pfennig et al. 1993).

In addition to the chemical basis of kin recognition, there 
is some evidence that there is also chemical communication 
between some tadpoles and their parents (Kam and Yang 
2002). Breeding in small temporary ponds comes with the 
advantage of less predation but also lower food abundance 
(Wassersug et  al. 1981). This favored the evolution of 
parenting behavior and food provisioning in many tropical 
frog species (Wells 2007a; Brown et al. 2008; Roland and 
O’Connell 2015; Schulte et al. 2020). In the Taiwanese tree 
frog Chirixalus eiffingeri, tadpoles become more active 
when exposed to water conditioned by a female frog (Kam 

and Yang 2002), possibly in the anticipation of trophic 
eggs laid by the female. The visual presence of a female 
frog did not elicit the same response, suggesting chemical 
communication as the trigger for the behavior of tadpoles 
(Kam and Yang 2002).

Role of olfaction in adult anurans

After a tadpole successfully survives until metamorphosis 
and transforms into a juvenile frog, a new and complex 
sensory interaction with the environment starts (Wells 
2007a). The historical notion that anuran behaviors like 
foraging or mating choice are unimodally relying on vision 
or vocalization/audition has been replaced by a more 
integrative approach (Starnberger et al. 2014a). Complex 
behavior results from information perceived through 
multiple sensory channels, including olfaction, that can 
either be complementary or redundant (Ferguson 1971; 
Sinsch 2006; Starnberger et al. 2014b). While visual motion 
detection is still considered the major player in anuran 
foraging behavior, other senses like olfaction or tactile 
senses can modulate (Michaels et al. 2018) or functionally 
replace visual input (Kramer 1933; Altner 1962; Shinn and 
Dole 1978, 1979a).

Olfactory-guided prey approach and feeding-
related behaviors like tongue protrusions have been 
demonstrated in terrestrial species like the leopard 
frog Rana utricularia (Shinn and Dole 1978) and some 
bufonid species (Heusser 1958; Shinn and Dole 1979a, 
1979b). In pipid frogs, which inhabit murky waters, 
olfaction has been suggested to play a role in detecting 
prey when it is still far away (Kramer 1933; Altner 1962), 
while water perturbations and vibrations caused by prey 
animals are the proximate stimuli inducing foraging 
behavior (Kramer 1933; Elepfandt et al. 2016). While it 
is vital to find food sources, it is equally important for 
anurans to evade predation themselves.

Vision seems to be the most important sense to detect 
predators (Kramer 1933; Heinen 1994; Wells 2007b); 
however, several instances of olfactory-mediated predator 
avoidance behaviors are documented (Flowers and Graves 
1997; Gonzalo et al. 2006; Hamer et al. 2011). Juvenile 
bufonids were shown to detect and avoid odors from garter 
snakes, their natural predator (Flowers and Graves 1997), 
and the presence of snake odors were shown to influence 
pond choice in juveniles of the Iberian green frog Rana 
perezi (Gonzalo et  al. 2006). Adult great barred frogs 
Mixophes fasciolatus were generally shown to be attracted 
to odors of conspecifics to form aggregations (Hamer 
et al. 2011). When snake odors were mixed to the odors of 
conspecifics, their attraction was decreased, suggesting that 
they would rather aggregate with conspecifics if there was 
no risk of predation (Hamer et al. 2011). Eat, while not eaten 
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is a credo relevant for all frogs. Adult anurans however have 
occupied a range of diverse habitats and behaviors which 
involve different sensory modalities to a different degree and 
for different behavioral tasks (Wells 2007a).

Even though most anurans forage and move on land, 
their reproductive success heavily depends on the presence 
of water. Anuran species living in temperate climatic 
regions like the common toad Bufo bufo mostly rely on 
permanent bodies of water for breeding and usually return 
to their home pond, even when other ponds are in their 
proximity (Heusser 1960). Orientation behavior in anurans 
involves many different senses working in an at least 
partially redundant manner (for review, see Ferguson 1971; 
Sinsch 2006). Field studies showed that toads navigated 
to their home pond after spatial displacement even when 
visual and magnetic senses were experimentally impaired 
(Jungfer 1943; Sinsch 1987). Anosmic frogs however 
showed difficulty in locating their home ponds (Sinsch 
1987; Ishii et  al. 1995). Choice assay studies further 
supported the idea that natal pond odors are preferred 
over odor cues from other ponds (Grubb 1973a, 1973b, 
1975, 1976; Forester and Wisnieski 1991), although 
olfactory-guided orientation was not demonstrated for 
all examined species (Grubb 1973b). As shown for other 
animals like salmon or turtles, a growing body of evidence 
suggests, that anurans also learn to recognize pond odor 
via imprinting during larval stages (Ishii et  al. 1995; 
Ogurtsov and Bastakov 2001; Ogurtsov 2007). Tadpoles 
raised in water containing an artificial chemical marker 
were able to recognize the marker in a binary choice 
assay after metamorphosis, while non-imprinted juveniles 
were indifferent to the cue (Ogurtsov 2007). Whether the 
learned home-odor is perceived as attractant also depends 
on the life stage of the frogs or their seasonal change in 
behavior (Sinsch 1988; Reshetnikov 1996; Shakhparonov 
and Ogurtsov 2003). After the start of dispersal phase 
from their home pond, juvenile wood frogs Lithobates 
sylvaticus (Popescu et al. 2012) and the green toad Bufo 
viridis (Shakhparonov and Ogurtsov 2003) temporarily 
showed no preference for the odor of their home pond.

While most frogs living in temperate regions usually 
deposit their eggs in big clutches and barely provide 
parental care, many tropical frogs breed in ephemeral water 
bodies in bromeliads and guard their eggs or shuttle their 
tadpoles to new pools if food resources are scarce (Brown 
et al. 2008; Roland and O’Connell 2015). To avoid food 
competition and predation in these small water bodies, 
poison dart frogs belonging to the genus Ranitomeya were 
shown to inspect the oviposition site before laying their eggs 
(Weygoldt 1980; Brown et al. 2008; Schulte et al. 2011). In 
a choice experiment, parental Ranitomeya variabilis were 
demonstrated to recognize the presence or absence of other 
anuran larvae in small water pools using their chemical senses 

(Schulte et al. 2011). Since already present tadpoles could 
potentially feed on the eggs, they avoided deposition in pools 
containing chemicals from other tadpoles. Furthermore, they 
did not shuttle larval tadpoles to pools containing chemical 
cues from cannibalistic tadpoles, while they did not avoid 
pools containing cues from non-cannibalistic tadpoles 
(Schulte et al. 2011). Other than the examination of potential 
oviposition sites, odors were also hypothesized to play a role 
in detecting novel bromeliad pools for the brilliant-thighed 
poison frog Allobates femoralis (Pašukonis et al. 2016).

Homing and navigating behaviors in anurans are often 
closely related to finding a mate and reproduction. While it has 
been shown that chemical communication among salamanders 
is probably the major sensory channel to facilitate reproduction 
(Houck 2009; Woodley 2015), vocal communication was long 
considered the only mode of communication and mate-finding 
in anurans (Starnberger et al. 2014a). However, in the course of 
the last 20 years, the involvement of both waterborne (Wabnitz 
et al. 1999; Pearl et al. 2000) and airborne chemicals (Poth 
et al. 2012; Starnberger et al. 2013) in frog communication 
has been demonstrated. A peptide produced by the parotoid 
and rostral glands of the males of the magnificent tree frog 
Litoria splendida called splendipherin attracts females of the 
same species and was the first identified frog sex pheromone 
(Wabnitz et al. 1999). Similarly, male dwarf African clawed 
frogs (genus Hymenochirus) use secretions of their skin glands 
(breeding glands) to attract females (Pearl et al. 2000). In the 
Australian terrestrial toadlet Pseudophryne bibronii, odors 
from both sexes can act as attractants (Byrne and Keogh 
2007). Female odors were furthermore shown to increase 
calling behavior in male frogs, thus this species probably uses 
a bi-modal communication system (Byrne and Keogh 2007). 
A tri-modal system involved in mate recognition and courtship 
is suggested for the African reed frogs (Hyperoliidae) 
(Starnberger et al. 2014b). Males of this family have gular 
glands on their often colorful vocal sacs, which produce sex 
and species-specific chemical cocktails (Starnberger et al. 
2013; Menke et al. 2016, 2018; Melnik et al. 2019). The 
exact interplay between visual, auditory, and chemical cues in 
mating behavior are however not fully understood. A similar 
cocktail of chemicals was obtained from the femoral glands 
of male mantellid frogs endemic to Madagascar (Poth et al. 
2012; Menke et al. 2016). Some volatile compounds also 
showed effects on the behavior, presumably linked to mating 
(Poth et al. 2012). Apart from mostly sex-attractant pheromone 
systems, odorous peptides from the mountain chicken frog 
Leptodactylus fallax (King et al. 2005) and the Australian 
toadlet Pseudophryne bibronii (Byrne and Keogh 2007) were 
demonstrated to initiate fighting behavior between males of 
the respective species, possibly during the onset of mating 
behavior.

While in some species, pheromone-mediated 
communication might be complementary to vocalizations, 
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species living in noisy environments might rely more 
heavily on olfaction to find reproductive partners (Asay 
et al. 2005). The coastal tailed frog Ascaphus truei lacks 
a tympanic membrane and vocal cords in addition to 
being nocturnal and living near noisy fast-moving streams 
(Noble and Putnam 1931; Metter 1967; Asay et al. 2005). 
In consequence, chemical cues seem to be the major 
mediator to find and recognize mating partners (Asay et al. 
2005). Since habitat and reproductive modes in anurans 
vary extensively (Wells 2007a), the occurrence of thus far 
unknown, species-specific ways of chemical communication 
are awaiting their discovery.

The anuran olfactory system

Based on the ecological and behavioral data presented 
above, both waterborne and airborne odorants play a vital 
role in the life of anuran amphibians. However, there is a 
huge knowledge gap between the ecology and the neuronal 
circuits involved. The peripheral organ is the by far best 
studied part of the anuran OS and detailed information about 
the anatomy, the morphological neuron types and olfactory 
receptor expression is available. For a comprehensive review 
and a comparative inspection of the olfactory periphery of 
different anuran species, we refer the reader to Jungblut 
et al. (2020) that is included in the same special issue as this 
article. The following part of this review aims at describing 
the general properties of the anuran OS on multiple levels 
and putting them into an evolutionary context. We will 
particularly focus on cellular, molecular, and circuitry 
features that are potentially important adaptations for 
olfaction in air vs. water environments.

Segregation into functional subsystems

The general organization of the OS in all groups of the 
vertebrate lineage is astonishingly similar. They are all 
composed of (i) a peripheral OE, which is part of the 
olfactory mucosa and functions as detection site of odor 
molecules, (ii) an OB serving as a first relay center of the 
system, and (iii) several terminal processing centers, i.e., 
olfactory cortices (Ache and Young 2005; Eisthen and 
Polese 2007; Illig and Wilson 2009; Taniguchi et al. 2011). 
The anatomy, cellular composition, and functioning of the 
first two stages of the OS differ only slightly between species 
(Graziadei 1971; Taniguchi and Taniguchi 2014; Bear et al. 
2016). The third stage, i.e., the cortical area, on the other 
hand, is more variable between vertebrate groups. One 
reason for this may be that the homology of cortical areas of 
non-mammalian vertebrate lineages and the ones identified 
in mammals is still unclear (Illig and Wilson 2009).

In contrast to the singular OS present in fishes, 
consisting of a single OE and an undivided OB, the OS 
in most tetrapods is generally defined by anatomically 
segregated olfactory subsystems (Figs. 3 and 4). Chief 
among them, the main OS consists of the main OE 
and the main OB and the accessory OS is made of the 
epithelium of the VNO and the accessory OB (Trotier 
and Doving 1998; Munger et al. 2009; Bear et al. 2016; 
Fleischer et  al. 2020). These two subsystems feature 
distinct molecular and functional characteristics and 
are considered ancestral traits of the tetrapod lineage 
(Taniguchi et al. 2011; Taniguchi and Taniguchi 2014). 
The initial idea of the VNO as an exclusively pheromone-
detecting apparatus in addition to the odorant-detecting 
main OE proved oversimplified in the light of modern 
neurobiology (Eisthen 1992, 1997). It is now clear that 
social olfactory cues can be also detected by the main 
OE and that the main and accessory OS can even serve 
parallel, partly overlapping functions (Mohrhardt et al. 
2018). A promising hypothesis is that the two systems are 
instead tuned for distinct physicochemical properties of 
odor molecules, like volatility and solubility (Holy 2018).

Since an anatomically distinct VNO was only found 
in terrestrial tetrapods, it was first considered an 
adaptation to life on land (Bertmar 1981). This theory 
proved inconclusive though, because the VNO is also 
present in the aquatic larvae of amphibians (Fig. 3) and 
a primordial VNO is already present in earlier diverging 
vertebrates, like lungfish (Eisthen 1992; González et al. 
2010; Nakamuta et al. 2012; Chang et al. 2013). In all 
three extant amphibian lineages, the VNO seems to be an 
ancestral trait in larval as well as adult animals (Schmidt 
and Wake 1990; Eisthen 1992; Jermakowicz et al. 2004; 
Benzekri and Reiss 2012; Jungblut et al. 2012). A notable 
exception is the proteid family of urodele amphibians 
that have secondarily lost the VNO (Eisthen 2000). In 
caecilians, the VNO is connected to tentacles on the head 
of the animals and is supposedly used during burrowing 
and diving, while the main nasal cavity remains closed 
(Schmidt and Wake 1990). It is hypothesized that the 
caecilian VNO at least partially assumes the role of a 
water nose, while the main OS seems mainly involved 
in volatile odorant detection (Schmidt and Wake 1990).

In urodele and anuran amphibians, the main OS is thought 
to detect both waterborne and airborne odorants (Reiss and 
Eisthen 2008). The main OE of urodeles consists of a single 
cavity that differs morphologically in aquatic and terrestrial 
species or between aquatic and terrestrial life-stages within 
individuals (Różański and Żuwała 2019). The peripheral 
olfactory organ of adult anurans is generally more complex, 
exhibiting an interconnected chamber system that has been 
described in detail for many species (Fig. 4; Föske 1934; 
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Helling 1938; Paterson and Hindle 1951; Jermakowicz et al. 
2004; Jungblut et al. 2011, 2017; Benzekri and Reiss 2012; 
Nowack and Vences 2016; Quinzio and Reiss 2018). A large 
medial diverticulum is known as the principal cavity (PC) 

(Föske 1934; Bloom 1954; Reese 1965; Menco 1980; Mair 
et al. 1982; Reiss and Eisthen 2008) and serves as an air 
nose. The presence of an elevated ridge on the floor of the 
PC (eminentia olfactoria) was hypothesized to be a feature 

Fig. 3  Anatomical, cellular, and molecular characteristics of the 
olfactory system in larval anurans. Above: Schematic coronal 
section of the left olfactory organs in the nose are shown for an 
archaeobatrachian (Ascaphus truei), a mesobatrachian (Xenopus 
laevis) and a neobatrachian tadpole (Rhinella arenarum). The main 
olfactory system (blue) consisting of the principal cavity epithelium 
(PC), the lateral appendix (la), and the buccal exposed epithelium 
(bexOE) differs between the species, while all three have an 
anatomically separate vomeronasal organ (VNO; purple). The boxes 
on the left show the types of receptor neurons present in each organ. 
Middle: The respective axonal projections of the receptor neurons 
and their glomerular targets in the olfactory bulb show an anatomical 
segregation into glomerular clusters. Only the left hemisphere is 
shown. While the VNO projects to the accessory olfactory bulb 
(AOB, purple), the main olfactory epithelium projects to four 

clusters in the ventral main olfactory bulb (MOB; shades of blue). 
The respective projection targets of the bexOE and the la within the 
glomerular array are still unclear. Below: The putative molecular 
components linked to the above described olfactory subsystems 
are summarized based on data from the genus Xenopus and might 
show some inter-species variation that still needs to be uncovered. 
A anterior, AC adenylate cyclase, AOB accessory olfactory bulb, 
bexOE buccal exposed olfactory epithelium, cAMP 3′,5′-cyclic 
adenosine monophosphate, D dorsal, L lateral, la lateral appendix, M 
medial, MOB main olfactory bulb, OR OR type olfactory receptor, 
P posterior, PC principal cavity, PLC phospholipase C, TAAR trace 
amine-associated receptor, TRPC2 transient receptor potential 
channel 2, V ventral, V1R type 1 vomeronasal receptor, V2R type 2 
vomeronasal receptor, VNO vomeronasal organ
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Fig. 4  Anatomical, cellular, and molecular characteristics of the 
olfactory system in adult anurans. Above: Schematic coronal 
section of the left olfactory organs in the nasal cavities are shown 
for an archaeobatrachian (Ascaphus truei), a mesobatrachian 
(Xenopus laevis), and a neobatrachian frog (Rhinella arenarum). 
The main olfactory epithelium in adult anurans is segregated into a 
water- (blue) and an air-portion (yellow). While a major part of the 
principal cavity (PC) is lined with an air-type epithelium, the water-
type epithelium is situated in different anatomical structures in the 
depicted species: anterior portion of the PC (aPC), middle cavity 
(MC), and recessus olfactorius (RO). The MC is non-sensory in 
most anurans. All species possess a vomeronasal epithelium in the 
VNO (purple). The boxes on the left show the types of receptor 
neurons present in each of the three epithelia. Middle: The respective 
axonal projections of the receptor neurons and their glomerular 
targets in the olfactory bulb show an anatomical segregation. Only 
the left hemisphere is shown. Due to incomplete comparative data, 
the scheme depicts the connectivity only for the genus Xenopus. 

While the VNO projects to the accessory olfactory bulb (AOB), the 
water-portion of the main olfactory epithelium (MC) projects to at 
least four clusters on the ventral surface of the main olfactory bulb 
(vMOB; shades of blue). The air-portion connects to the dorsal MOB 
(dMOB). Below: The putative molecular components linked to the 
above described olfactory subsystems are summarized based on data 
from the genus Xenopus and might show some inter-species variation 
that still needs to be uncovered. A anterior, AC adenylate cyclase, 
AOB accessory olfactory bulb, aPC anterior principal cavity, cAMP 
3′,5′-cyclic adenosine monophosphate, D dorsal, dMOB dorsal main 
olfactory bulb, L lateral, la lateral appendix, M medial, MC middle 
cavity, MOB main olfactory bulb, OR OR type olfactory receptor, P 
posterior, PC principal cavity, PLC phospholipase C, pPC posterior 
principal cavity, RO recessus olfactorius, TAAR trace amine-
associated receptor, TRPC2 transient receptor potential channel 2, V 
ventral, V1R type 1 vomeronasal receptor, V2R type 2 vomeronasal 
receptor, vMOB ventral main olfactory bulb, VNO vomeronasal 
organ
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correlated with a more terrestrial lifestyle in some anurans 
(Helling 1938; Quinzio and Reiss 2018).

Most anurans additionally exhibit a segregated portion 
of the main OE dedicated to aquatic olfaction, the adult 
water nose (Fig. 4; Reiss and Eisthen 2008). Some fully 
aquatic anurans such as the pipid Xenopus laevis have a 
sensory epithelium in the lateral diverticulum also known 
as middle cavity (MC) (Helling 1938; Eisthen 1992). 
The MC of most other anurans is not lined with sensory 
epithelium and does not serve an olfactory function (Scalia 
1976; Belanger and Corkum 2009). The putative water 
noses of many other adult anurans are not located in their 
MC, but rather reside in other parts of the peripheral 
olfactory organ, e.g., the recessus olfactorius (Fig. 4) and 
the anterior part of the PC (Helling 1938; Benzekri and 
Reiss 2012; Jungblut et al. 2020).

The larval main OE mostly consists of a single olfactory 
surface in the PC, which bears striking morphological 
similarities to the adult water noses (Fig.  3; Hansen 
et al. 1998; Syed et al. 2017; Jungblut et al. 2020). In some 
species that employ a grazing lifestyle, the ventral part of the 
main OE is lining the roof of the buccal cavity (Benzekri and 
Reiss 2012; Jungblut et al. 2017). Due to their direct exposure 
to food contents, these patches of OE could be an adaptation 
to the specific ecomorphotype of some tadpoles; however, 
no physiological or molecular data is available on the matter.

Due to the lack of physiological evidence determining the 
function of air noses and water noses in amphibians, most 
studies thus far have concentrated on the cellular composition 
of the various types of epithelia (Fig. 2). Only a few studies 
have focused on the expression of olfactory receptor proteins 
that hint towards a function related to water or land-based 
olfaction and they are limited to very few species.

Cellular adaptations of the peripheral olfactory 
organ to different environments

The olfactory mucosae of all vertebrates are basically made 
of an OE and an adjacent lamina propria (Graziadei 1971; 
Salazar et al. 2019). All OE, independent of the medium in 
which they operate (water or air), comprise three main cell 
types: (i) supporting cells (SCs), (ii) basal cells, and (iii) 
receptor neurons (Fig. 2; Graziadei 1971; Eisthen and Polese 
2007; Taniguchi and Taniguchi 2014). The composition of 
the lamina propria, on the other hand, partly differs in water 
noses and air noses. Bowman’s glands are present only in 
air noses, where they are mainly involved in the production 
of olfactory mucus (Getchell et al. 1988).

All vertebrate OE (water noses, air noses, and 
the VNO) comprise character istic types of SCs 
(Taniguchi and Taniguchi 2014). These cells form a 
sort of intraepithelial scaffold that constitutes a largely 

impermeable barrier (apical tight junctions) between the 
epithelium and the external world (Steinke et al. 2008; 
Liang 2020). Generally, SCs have apically located somata 
and expand basal processes through the epithelium that 
terminate at the basal lamina (Rafols and Getchell 1983; 
Chen et al. 2014). SCs carry out a myriad of important 
functions that go well beyond structural and maintenance 
tasks. They actively regulate the ionic environment of the 
OE and the mucus layer (Getchell and Getchell 1992) 
and they are involved in mucus production (Getchell 
et al. 1988). Notably, SCs can also influence olfactory 
signal transduction in receptor neurons, and are generally 
involved in several epithelial modulatory mechanisms 
(Lucero 2013). Two major types of SCs are known: 
ciliated and secretory SCs (Eisthen 1992).

In anuran amphibians, water- and air-type OE as well as 
the epithelium in the VNO are endowed with characteristic 
sets of SCs (Fig. 2). While water-type epithelia exhibit both 
secretory and ciliated SCs, air noses only have secretory and 
VNOs only ciliated SCs (Hansen et al. 1998; Benzekri and 
Reiss 2012; Nowack et al. 2013). Secretory SCs are thought 
to be involved in mucus production similar to goblet cells in 
fish OEs (Getchell and Getchell 1992) and ciliated SCs may 
be important for fluid movement across the surface of the 
epithelium (Eisthen 1992). The distribution of the two SC 
types is however not uniform among amphibians. In some 
salamander species, both the main and the accessory OS are 
endowed with both types of SCs, while other salamanders 
and the single examined caecilian species were shown to 
lack ciliated SCs (Jones et al. 1994; Różański and Żuwała 
2019). A clear functional association of the various SC types 
with aquatic, aerial or vomeronasal olfaction can thus not be 
clearly stated for all extant amphibians and awaits functional 
verification.

Basal cells are the stem cells of the vertebrate peripheral 
OS (Fig. 2; Graziadei 1971; Brann and Firestein 2014). 
Receptor neurons of both, the main OE and the epithelium 
of the VNO (Brann and Firestein 2014) are periodically 
replaced by new neurons. There is evidence that also SCs 
(Schwob and Jang 2006; Leung et  al. 2007) and cells 
of Bowman’s glands (Schwob and Jang 2006) can be 
substituted from the pool of basal cells. Basal cells have been 
found in all vertebrates investigated so far (Hassenklöver 
et al. 2009; Taniguchi and Taniguchi 2014). This supports 
the hypothesis that all olfactory epithelia are equipped with 
a local stem cell pool to replenish diminishing receptor 
neurons independently of the surrounding medium (air or 
water).

Vertebrate receptor neurons typically have a bipolar 
morphology, an apical dendrite that ends in a characteristic 
knob-like structure that bears either cilia or microvilli, and 
extend an axon towards the OB (Schild and Restrepo 1998; 
Ache and Young 2005). Generally, the cilia are non-motile 
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(Falk et al. 2015), but in some non-mammalian species, 
motile olfactory cilia have been described (Lidow and 
Menco 1984). Olfactory receptor proteins, the binding sites 
of odor molecules, are located on these apical appendages 
(cilia and microvilli) (Glezer and Malnic 2019). So far, five 
different families of vertebrate olfactory receptor proteins, 
all of them being G-protein coupled receptors (GPCRs), 
have been identified. These are olfactory receptors proper 
(OR-type), vomeronasal receptors of type 1 and type 
2 (V1Rs and V2Rs), trace amine-associated receptors 
(TAARs), and formyl peptide receptors (FPRs; so far only 
confirmed in rodents) (Buck and Axel 1991; Dulac and 
Axel 1995; Herrada and Dulac 1997; Matsunami and Buck 
1997; Ryba and Tirindelli 1997; Liberles and Buck 2006; 
Rivière et al. 2009; Liberles et al. 2009). A sixth family of 
proteins serving as olfactory receptors that are not coupled to 
G-proteins, the so-called membrane-spanning 4A receptors 
(MS4As), have recently been shown to be co-expressed with 
guanylate cyclase-D (GC-D) in a third morphological type 
of receptor neuron, so far only found in the rodent main OE 
(Greer et al. 2016).

Vertebrate receptor neurons possess two different main 
transduction cascades, a cyclic monophosphate (cAMP)-
dependent one expressed in ciliated receptor neurons and 
a phospholipase C (PLC)-dependent one in microvillar 
receptor neurons (Munger et  al. 2009; Manzini and 
Korsching 2011; Bear et al. 2016; Spehr 2017; Mohrhardt 
et al. 2018). While the cAMP-dependent cascade is coupled 
to OR-type olfactory receptors and TAARs and relies on 
the G-protein Gαolf, the PLC-dependent one is coupled to 
vomeronasal receptors and FPRs (Munger et al. 2009; Bear 
et al. 2016; Mohrhardt et al. 2018) and relies on different 
G-proteins (mainly Gαi and Gαo). These two pathways show 
different degrees of anatomical segregation in the various 
vertebrate lineages and olfactory relay stations. In mammals, 
the cAMP-dependent and the PLC-dependent transduction 
mechanisms are partitioned between the main OE and the 
VNO, respectively (Munger et al. 2009). Contrastingly, in 
most fishes, the two transduction cascades coexist in their 
singular OE (Olivares and Schmachtenberg 2019).

The most common configuration of the olfactory 
periphery in amphibians (both larval and adult) consists of 
microvillous receptor neurons arranged in the VNO and both 
microvillous as well as ciliated receptor neurons in the main 
OE (Figs. 3 and 4; Eisthen 1992; Saint Girons and Zylberberg 
1992; Eisthen et al. 1994; Hansen et al. 1998; Manzini and 
Schild 2010; Różański and Żuwała 2019). In the pipid frog 
Xenopus laevis, the microvillar receptor neurons in the larval 
and adult VNO express V2Rs (Hagino-Yamagishi et al. 2004; 
Syed et al. 2013) and rely on Gαo and TRPC2 for signal 
transduction similar to the salamander and mammal VNO 
(Gliem et al. 2013; Sansone et al. 2014; Kiemnec-Tyburczy 
et al. 2012). However, Gαolf expressing receptor neurons have 

additionally been found in the VNO of adult Bufo japonicus 
and the red legged salamander (Hagino-Yamagishi and 
Nakazawa 2011; Nakada et al. 2014; see also Jungblut et al. 
2020). So far, sulfated steroids are the only odor molecules 
that have been shown to stimulate vomeronasal receptor 
neurons in larval anurans (Sansone et al. 2015).

In adult anurans, the air-type portion of the main OE in the 
PC consists of only ciliated receptor neurons (Fig. 4; Föske 
1934; Bloom 1954; Menco 1980; Mair et al. 1982; Eisthen 
1992; Hansen et al. 1998). Receptor neurons in the adult PC 
epithelium in Xenopus generally express Gαolf (Nakada et al. 
2014) and OR-type genes related to the mammalian class II 
olfactory receptors have been found (Freitag et al. 1995). In 
rodents, these receptors are responsive to hydrophobic, small 
volatile chemicals like aldehydes, alcohols or ketones (Saito 
et al. 2009). Similarly, OR-type receptors have been found to 
be distributed in distinct zones in the main OE of the tiger 
salamander (Marchand et al. 2004), putatively responding to 
small volatile odorants (Kauer 2002). However, also some 
members of the V1R family were found to be expressed 
in the adult PC of Xenopus (Date-Ito et  al. 2008). The 
expression of TAARs in the adult PC has not been verified 
yet and the V2Rs expressed in the larval PC progressively 
vanish from the PC during development (Syed et al. 2017). 
Especially in the aquatic Xenopus, the question whether the 
“air-system” is biologically relevant is poorly addressed so 
far. Out of the water, they have been observed in the wild to 
search for new ponds and lakes thus putatively using their 
sense of smell for orientation (Kramer 1933; Du Plessis 
1966; Measey 2016).

In the various water-type epithelia of anurans (both in 
tadpoles and adults), both types of receptor neurons are 
intermingled (Figs. 3 and 4; Hansen et al. 1998; Benzekri 
and Reiss 2012; Nowack et al. 2013). In the main OS (PC) of 
larval Xenopus laevis, there are two well-described parallel 
olfactory processing streams with underlying differences 
in cellular machinery (Manzini and Schild 2010). On 
the level of the main OE, these streams are only partially 
segregated, but they are almost fully segregated only in 
the OB (see below). One stream, likely made of ciliated 
receptor neurons expressing OR-type olfactory receptors (or 
possibly TAARs), relies on Gαolf and the cAMP-dependent 
intracellular signaling pathway and is mostly tuned to detect 
aldehydes, ketones, and alcohols (Gliem et al. 2013). The 
second stream, on the other hand, is presumably linked to 
microvillar receptor neurons with vomeronasal receptor 
expression, relies on Gαo/Gαi and the PLC-dependent 
intracellular signaling pathway and is tuned to amino acid 
odorants (Manzini et al. 2002; Manzini and Schild 2003; 
Gliem et al. 2013). In stark contrast to mammals, in Xenopus 
laevis, an ancient clade of V2Rs and the whole V1R-family 
are exclusively expressed in the larval main OE (Fig. 3; 
Date-Ito et al. 2008; Syed et al. 2013; Gliem et al. 2013; 
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Sansone et al. 2014). The water nose of postmetamorphic 
Xenopus (MC) seems to be a molecular copy of the PC found 
in larvae, with a similar set of receptor genes, transduction 
elements and odorant sensitivities recorded (Fig. 4; Syed 
et al. 2017). In the absence of molecular data for the water 
noses of other species (e.g., recessus olfactorius), it remains 
unclear whether their molecular setup is comparable to the 
water noses in Xenopus (Fig. 4).

The olfactory bulb, the first relay station 
of the olfactory pathway

In vertebrates the axons of receptor neurons break through 
the basal lamina of the OE, coalesce to form the olfactory 
nerve, and terminate in so-called glomeruli in the OB, 
the first relay center of the OS (Nagayama et al. 2014). In 
mammals, birds, reptiles, and amphibians the OB is made 
of six more or less discernible layers: (i) the olfactory nerve 
layer, (ii) the glomerular layer, (iii) the external plexiform 
layer, (iv) the mitral cell layer, (v) the internal plexiform 
layer, and (vi) the granule cell layer (Shepherd 1972; 
Taniguchi and Taniguchi 2014; Nagayama et al. 2014). In 
fishes, on the other hand, solely four clearly discernable OB 
layers exist (Olivares and Schmachtenberg 2019). In the OB, 
the olfactory information is substantially processed before 
it is relayed to higher olfactory structures, the olfactory 
cortices (Cleland and Linster 2019).

Within glomeruli, the axons of receptor neurons form 
excitatory synapses with projection neurons, i.e., mitral 
cells and tufted cells, and so-called juxtaglomerular 
cells (Munger et al. 2009; Crespo et al. 2019). The main 
types of juxtaglomerular cells are: (i) periglomerular 
cells, (ii) short-axon cells, and (iii) external tufted cells 
(Nagayama et  al. 2014; Kosaka and Kosaka 2016). 
Within the glomerular modules, a first main processing 
step of the olfactory information takes place. A second 
processing step happens in deeper layers of the OB, 
mainly in the external plexiform layer and projection 
neuron layers. There, mitral cells and tufted cells 
mainly form characteristic interactions with granule 
cells, at so-called dendro-dendritic synapses (Shepherd 
et al. 2007; Nagayama et al. 2014). The signal can be 
modulated further by other intrinsic bulbar systems, e.g., 
an endocannabinoid and a purinergic system (Harvey 
and Heinbockel 2018; Rotermund et al. 2019). Several 
extrinsic neuromodulatory projections terminate in the OB 
and additionally modulate the bulbar output of projection 
neurons (Rothermel and Wachowiak 2014; Harvey and 
Heinbockel 2018). Like receptor neurons in the OE, also 
bulbar interneurons are constantly replaced by newly 
formed neurons that arise from a pool of neuronal stem 
cells located in the walls of the lateral cerebral ventricles 
(Lledo et al. 2005; Takahashi et al. 2018).

While most of the available information about the 
vertebrate OB comes from studies in rodents, it is generally 
assumed and very likely that the basic mode of functioning 
is very similar in most vertebrates. The amphibian OB 
shares many organizational features with other vertebrate 
classes, and these do not change substantially during 
development (Byrd and Burd 1991; Nezlin et al. 2003). 
Subtle differences from the mammalian OB include missing 
glial borders around the glomerular neuropil and a more 
scattered occurrence of projection neurons in non-distinct 
layers (Scalia et al. 1991a; Byrd and Burd 1991; Kratskin 
et al. 2000; Rössler et al. 2002; Nezlin et al. 2003).

The OB of species with more than one peripheral OE, 
i.e., with more than one olfactory subsystem, is divided 
in subsystem-specific compartments that processes solely 
information of that specific subsystem (Munger et al. 2009). 
In both larval and adult amphibians, the VNO and the 
main OE generally project to the main and accessory OB, 
respectively (Figs. 3 and 4; Schmidt et al. 1988; Schmidt 
and Wake 1990; Manzini and Schild 2010; Jungblut et al. 
2012). Exceptionally, receptor neurons in the ventral main 
OE of the fire belly newt Cynops pyrrhogaster also project 
to glomeruli in the accessory OB (Nakada et al. 2014). Apart 
from the dichotomy between the main and accessory OS, the 
glomerular projections in caecilians and urodeles have so 
far not been further subdivided into discernable glomerular 
clusters (Schmidt et al. 1988; Schmidt and Wake 1990). 
However, it was shown, that the ventral and dorsal portions 
of the main OE in the fire belly newt differentially project 
to different parts of the glomerular array in the main OB, 
hinting towards a further compartmentalization (Nakada 
et al. 2014).

In anurans, the most detailed account on the structural 
organization of glomeruli is provided for larvae from the 
genus Xenopus (Nezlin et al. 2003; Gaudin and Gascuel 
2005; Manzini et al. 2007a, 2007b). Generally, the axons 
of receptor neurons terminate in four clearly segregated 
glomerular clusters in the main OB (Fig. 3; Weiss et al. 
2020a) that can further be subdivided (Gaudin and Gascuel 
2005). The PLC-dependent processing stream is mainly 
amino acid-sensitive and supposedly relies on V1Rs, 
V2Rs (and possibly TAARs), and Gαi/ Gαo. The cAMP-
dependent stream is sensitive to alcohols, amines and 
ketones and probably relies on OR-type olfactory receptors 
(and possibly TAARs) and Gαolf. The two streams are 
only partially segregated in the olfactory periphery (see 
above), but are almost fully segregated at the level of the 
main OB (Fig. 3; Manzini and Schild 2010; Syed et al. 
2013; Gliem et al. 2013; Bear et al. 2016). While axons 
of the PLC-dependent receptor neurons terminate almost 
exclusively in the lateral glomerular cluster, axons of the 
cAMP-dependent receptor neurons mostly terminate in the 
medial and dorsal glomerular clusters (Gliem et al. 2013). 
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These two streams are distinguishable in tadpoles, but it 
remains to be shown how the projections are shaped after 
the metamorphic climax. It is plausible that at least the 
coarse functional organization of the ventral main OB and 
its putative behavioral output remains unaffected by the high 
amount of cell death and the system-restructuring happening 
during metamorphosis (Fig. 4; Dittrich et al. 2016; Syed 
et al. 2017). Intriguingly, an amino-acid sensitive lateral 
stream was found in the OS of most fishes and was shown to 
be related to feeding behavior in the carp (Hamdani 2001). A 
feeding-related behavioral effect of amino acids in Xenopus 
is still not clear (Terni et al. 2017).

A recent study in six distantly related anuran species of four 
families (Pipidae, Hylidae, Bufonidae, Dendrobatidae) suggests 
that the glomerular organization of anuran larvae is highly 
conserved (Weiss et al. 2020a). Major neuropilic clusters in the 
main OB that were originally identified in Xenopus (Gaudin 
and Gascuel 2005; Manzini et al. 2007a) are also present in the 
surveyed species, indicating strong developmental constraints 
despite ecological diversity. Although the general organization 
is similar, volume differences between the glomerular clusters 
hint towards a functional emphasis or reduction on certain 
parts of the olfactory network (Weiss et al. 2020a). Whether 
these volume differences could be related to the presence 
or absence of projections originating in the ventral/buccal 
exposed epithelium (also see Jungblut et al. 2020) remains 
completely unexplored so far (Fig. 3).

Despite the enormous number of anatomical accounts 
of amphibian noses, little attention has been paid to the 
neuronal circuits involved in the respective water and air 
systems of adult amphibians. The main OB of adult anurans 
is usually described as a laminar neuronal structure fused 
at the interhemispheric midline (Herrick 1910; Scalia et al. 
1991a; Leveteau et al. 1992; Jiang and Holley 1992; Eisthen 
and Polese 2007). In most studies, no distinction between 
projection targets originating in the water or air noses has been 
made. This could possibly be due to a relatively small size 
of the water-nose in comparison to the air nose in terrestrial 
anurans and consequently a neglect to focus on the glomerular 
portions innervated by the water nose. Xenopus laevis is an 
aquatic frog equipped with a substantial water nose in the MC, 
but putatively terrestrial ancestors (Wells 2007a; Reiss and 
Eisthen 2008). The presence of a well-developed aerial OS 
implies that the adult Xenopus is well adapted also to smell on 
land (Föske 1934). During metamorphic remodeling, newly 
generated receptor neurons residing in the PC epithelium no 
longer project to the glomeruli in the ventral main OB, but to a 
dorso-medial target region (Reiss and Burd 1997; Gaudin and 
Gascuel 2005). While during premetamorphic stages receptor 
neurons axons solely project to the glomerular clusters in the 
ventral main OB, the de novo formed dorsal main OB grows 
extensively until the end of metamorphosis (Fig. 4; Gaudin 
and Gascuel 2005).

Apart from the size differences, the dorsal “air-bulb” 
differs significantly from the ventral main OB in its wiring 
properties. It has been occasionally noted, that some receptor 
neuron axons projecting to the dorsal main OB of Xenopus 
innervate contralateral glomeruli (Ebbesson et al. 1986; 
Leveteau et al. 1992; Reiss and Burd 1997). It is known 
from different studies using soybean agglutinin, that 
receptor neurons of the adult Pipa and Xenopus MC project 
to ventrally located glomeruli of the main OB (Key and 
Giorgi 1986; Franceschini et al. 1992; Meyer et al. 1996). 
The glomeruli of the ventral main OB after metamorphosis 
closely resemble the glomerular organization in the 
premetamorphic tadpole of Xenopus laevis (Figs. 3 and 
4; Gaudin and Gascuel 2005). It remains to be shown if 
the functional odor map described in previous work by our 
group (Manzini et al. 2002; Manzini and Schild 2010; Gliem 
et al. 2013) is retained in glomeruli of the “water-bulb” after 
metamorphosis.

Recent results from Dendrobates tinctorius could help 
understand whether the ventral main OB projections might 
be habitat dependent in adult anurans (Weiss et al. 2020a). It 
is known from dendrobatids that airborne olfaction plays an 
important role in orientation and homing behavior (Forester 
and Wisnieski 1991), but clear use of waterborne olfactory 
cues have not been described. While the glomerular clusters 
in the ventral main OB in Xenopus tropicalis remain 
morphologically intact during metamorphosis, the ventral 
main OB of postmetamorphic Dendrobates tinctorius shows 
signs of degeneration or vestigialization in comparison 
to larval animals (Weiss et al. 2020a). Even though the 
lateral glomerular cluster remains visible, the medial and 
intermediate glomerular clusters have almost disappeared. 
The most plausible reason for this degeneration could be the 
absence of the recessus olfactorius (see Jungblut et al. 2020), 
as described in Dendrobates tinctorius by Helling (1938). 
More comparative data will be needed to understand how 
the ventral “water-bulb” and its function are correlated to 
the presence or absence of the respective water-epithelia. 
It is tempting to assume that axonal projections originating 
in the recessus olfactorius target the same glomeruli in the 
ventral main OB that are innervated by the larval PC or the 
MC in Xenopus (Fig. 4). However, the projections targets of 
the recessus have not been described yet.

Glomerular wiring patterns

The formation of a glomerular map through axonal 
projections to the OB relies heavily on the expression 
of olfactory receptors expressed in the dendrites, but 
also the axons of receptor neurons (Barnea 2004; 
Mombaerts 2006). The central dogma in vertebrate 
olfaction concluded from experiments in rodents says 
that an individual receptor neuron (both in the main 
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OE and the VNO) expresses a single allele of a single 
gene from one of the olfactory receptor gene families 
(Chess et  al. 1994; Rodriguez et  al. 1999; Serizawa 
2003; Shykind et  al. 2004). Axonal projections of all 
receptor neurons expressing the same allele converge onto 
specific glomeruli (Ressler et al. 1994; Vassar et al. 1994; 
Mombaerts et al. 1996; Belluscio et al. 1999; Rodriguez 
et al. 1999). Individual receptor neuron axons in the main 
OB were shown to be unbranched prior to entering a single 
glomerulus (Klenoff and Greer 1998). This is true for the 
OS of rodents, zebrafish, and lamprey (Fig. 5; Klenoff 
and Greer 1998; Weiss et al. 2020b). Interestingly, in the 
rat accessory OB, up to 20% of receptor neuron axons 
bifurcate before entering a single or multiple glomerular 
structures (Larriva-Sahd 2008). Contrastingly, in the 
Xenopus laevis main OB and accessory OB, receptor 
neurons exhibit mostly a bifurcating axonal growth pattern 
with a frequently occurring multi-glomerular innervation 
(Fig. 5; Nezlin and Schild 2005; Hassenklöver and Manzini 
2013). On the presynaptic side, only 30% of receptor 
neuron axons in the Xenopus tropicalis tadpole main OB 
project to a single glomerulus, while the remaining 70% 
innervate at least two glomeruli (Weiss et  al. 2020b). 
This ratio is comparable in neobatrachians with differing 

lifestyles, namely Rhinella arenarum, Scinax granulatus, 
and Ranitomeya imitator (Weiss et al. 2020b).

The cellular and molecular identity of receptor neurons 
does not determine if the associated axon connects to single 
or multiple glomeruli as all patterns were observed both 
in olfactory organs populated with only ciliated and only 
microvillous receptor neurons, the adult main OE and the 
VNO (Jungblut et al. 2009, 2017; Hassenklöver and Manzini 
2013; Weiss et al. 2020a, 2020b). These deviations from the 
“standard” wiring model persist throughout larval development 
and are retained after metamorphosis (Hassenklöver and 
Manzini 2013; Weiss et al. 2020b). Axonal projection patterns 
with multiple connected glomeruli seem to be predominant 
in anurans, maybe even in amphibians as a whole, since it 
was also demonstrated in the Axolotl salamander (Weiss 
et al. 2020b). It is still unclear if similar axonal projection 
patterns are present also in other species, what advantages this 
organization provides for the OS and how it is connected to the 
different types of air–water interfaces that amphibians have to 
face, especially evolutionarily (Fig. 5).

On the postsynaptic side of the OB circuit, the projection 
neurons of the amphibian OB feature multiple apical 
dendrites (Imamura et al. 2020). This is strikingly different 
from the projection neurons in the mammalian main OS, 

Fig. 5  Comparison of glomerular wiring properties in the olfac-
tory bulb of vertebrates. Morphology and glomerular connectivity 
of single receptor neuron axons and projection neurons are shown. 
Occurrence of connections to multiple glomeruli are highlighted with 
an asterisk. In zebrafish (left), both receptor neuron axons and pro-
jection neuron dendrites show a uni-glomerular connectivity. Other 
fishes have multi-glomerular projection neurons, while the morphol-
ogy of the receptor neuron axons is still unknown. The predominant 
morphological type of both receptor neurons and projection neu-

rons in amphibians (both main and accessory olfactory system) are 
multi-glomerular, but uni-glomerular connectivity is also described. 
Reptiles similarly have multi-glomerular projection neurons; the mor-
phology of the receptor neuron axons is still unknown. In rodents, 
uni-glomerular connectivity is present in the main olfactory bulb 
(MOB), while the accessory olfactory bulb (AOB) generally exhibits 
multi-glomerular projection neurons and only occasional multi-glo-
merular receptor neuron axons. AOB accessory olfactory bulb, MOB 
main olfactory bulb
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but has also been described in fishes and reptiles as well as 
the accessory OB of mammals (Dryer and Graziadei 1994). 
In amphibians, these dendrites frequently connect to more 
than one glomerulus (Jiang and Holley 1992; Dryer and 
Graziadei 1994; Nezlin et al. 2003; Hawkins et al. 2017). 
Notably, the ratio of single to multi-glomerular connectivity 
is comparable to the ratio on the presynaptic side, as shown 
in multiple anuran species (Jiang and Holley 1992; Weiss 
et al. 2020b). It is thus likely that some fishes and reptiles 
also have bifurcating receptor neuron axons (Fig. 5).

The convergence ratio of receptor neuron to projection 
neurons in the OB in anurans is very low in comparison to, 
e.g., fish and mammals (Byrd and Burd 1991). In Xenopus 
laevis, a ratio of 5:1 in tadpoles and 34:1 in adult frogs has 
been estimated (Byrd and Burd 1991). It is conceivable 
that the limited number of receptor neurons converging on 
single projection neurons is either consequence or necessity 
of neurite bifurcations in the anuran OS. Based on the 
presented numbers in anurans, it is tempting to assume 
that uni-glomerular receptor neuron axons and uni-tufted 
projection neurons form a connectivity pattern similar to 
the main OS of rodents, while the multi-glomerular pattern 
is reminiscent of the rodent accessory OB (Del Punta et al. 
2002; Wagner et al. 2006). It is not clear, whether the uni-
glomerular and multi-glomerular channels are separate from 
each other, or whether a single glomerulus can be innervated 
by a multi-glomerular receptor neuron axon branch and a 
non-bifurcating axon. Individual projection neurons might 
receive information from the same olfactory receptor on 
their multiple dendritic tufts (homotypic input) or integrate 
between different glomerular inputs (heterotypic input). 
Support for the former was given by Del Punta et al. (2002), 
while Wagner et al. (2006) showed that the input was not 
necessarily from the same receptor allele, but from closely 
related receptors (selective heterotypic). This could facilitate 
coincidence detection of several chemicals or odorant 
blends. However, since these studies were conducted in the 
rodent AOB, it is difficult to say how much information they 
hold on the anuran OS.

Further studies will be necessary to understand, if the 
multi-glomerular pattern occurs contextually in receptor 
neurons expressing different receptors from putatively different 
receptor gene families. This will also help to understand, if the 
underlying odor processing is identical to the rodent accessory 
OB, or if the similarities are just coincidental.

Higher olfactory centers, the terminal olfactory 
processing centers

Our knowledge about how odors are identified and 
differentiated in the terminal olfactory processing centers, 
i.e., the olfactory cortices, is still limited and most available 
information comes from the mammalian system. In 

mammals, the axons of bulbar projection neurons terminate 
in one of the several higher and highly interconnected 
brain areas (Haberly 2001; Klingler 2017) that together 
are named olfactory cortex. These regions include (i) the 
anterior olfactory nucleus, (ii) the olfactory tubercle, (iii) 
the piriform cortex, (iv) the olfactory amygdala, and (v) the 
entorhinal cortex (Canavan et al. 2011; Cleland and Linster 
2019). Differently than in the other sensory systems the 
olfactory information on its way to the olfactory cortices 
bypasses the thalamus (Shipley and Ennis 1996). In non-
mammalian vertebrate species even less is known about 
cortical olfactory information processing (Illig and Wilson 
2009).

In anurans, the OB projections are divided into lateral and 
medial olfactory tracts targeting different regions within the 
pallium (Northcutt and Royce 1975; Scalia 1976). Olfactory 
projections of the main and accessory OS form distinct 
information channels on the level of the lateral pallium (Herrick 
1921; Northcutt and Royce 1975). Within the lateral pallium, the 
amygdaloid complex is an important target region for olfactory 
inputs and can be subdivided into three components: lateral, 
medial, and central amygdala (Marín et al. 1998; Moreno 
and González 2006, 2007; González et al. 2020). Projection 
neurons of the main and accessory OB mainly connect to 
the lateral and medial amygdala, respectively (Moreno et al. 
2005; González et  al. 2020). Interestingly, in the medial 
amygdala a co-innervation of main and accessory projection 
neurons is present indicating a convergence and integration 
of the information of these two systems at this level (Scalia 
et al. 1991b; Moreno and González 2003). It is also notable 
that some extrabulbar fibers originating from the OE project 
to deeper diencephalic brain regions by bypassing the OB 
(Hofmann and Meyer 1992; Pinelli et al. 2004; D’aniello et al. 
2008; Gaudin et al. 2013). Functional evidence about processing 
of olfactory information in higher olfactory centers is scarce and 
it is unknown how olfactory information from sensory epithelia 
for water or air is integrated. The differential projections of water 
and air noses to different compartments of the OB could also 
translate into segregated projections from the OB to higher brain 
centers. Unraveling these circuits could help to link detection of 
airborne and waterborne odor molecules to relevant behaviors.

Conclusion

Many of the data concerning the anuran OS, including cellular 
structure, neuronal circuitry, and function, have been derived 
from studies on Xenopus, a basal anuran. A specialized lifestyle 
and evolutionary distance among anurans make it difficult 
to accept its OS and glomerular projections as an “anuran 
blueprint” and additional comparative verification is necessary. 
Although the general organization of the anuran OS shares 
many characteristics with other vertebrates, there are clearly 
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some differences. Nevertheless, ecological specialization 
can have a high impact on the organization of the OS and it 
will be interesting to find out how different lifestyles shape 
it. Therefore, anuran amphibians offer a unique opportunity 
to investigate the adaptations of the sense of smell to the 
demands of the different environments air and water at an 
evolutionary, ontogenetic and lifestyle level. The information 
flow of olfactory-mediated behavior is composed of a specific 
odor molecule/blend, a detecting olfactory subsystem with 
specific molecular machinery (including olfactory receptor 
types), an olfactory bulb representation with associated 
neuronal processing and finally higher brain centers involved 
in generation of specific behavior. Unfortunately, much of this 
information is only partly available in observations connected 
to anuran olfaction. It would certainly be helpful if future 
studies were better structurally and functionally coordinated 
to understand this information flow as a whole. This could 
in the end help to understand the olfactory demands and 
neuronal processes that underlie optimized olfaction across 
the boundary between water and air.
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