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Simple Summary: The individual birth weight (IBW) of pigs is an important trait regarding its
relevance to mortality at weaning, sow prolificacy, and growth performance. This study investigates
the variance component estimation, informative window regions, and the efficiency of genomic
predictions associated with IBW traits in Yorkshire pigs. The low heritability (0.13) is estimated on
the basis of a full model including individual genetic, sow genetic, and common environmental
effects. Two common window regions of the genome are identified under three different genotyping
platforms found within the ARAP2 and TSN genes concerning the IBW trait. The genomic prediction
ability is improved using deregressed estimated breeding values including parental information as a
response variable despite Bayesian methods and genotyping platforms for the IBW trait in Korean
Yorkshire pigs.

Abstract: This study estimates the individual birth weight (IBW) trait heritability and investigates the
genomic prediction efficiency using three types of high-density single nucleotide polymorphism (SNP)
genotyping panels in Korean Yorkshire pigs. We use 38,864 IBW phenotypic records to identify a
suitable model for statistical genetics, where 698 genotypes match our phenotypic records. During our
genomic analysis, the deregressed estimated breeding values (DEBVs) and their reliabilities are
used as derived response variables from the estimated breeding values (EBVs). Bayesian methods
identify the informative regions and perform the genomic prediction using the IBW trait, in which
two common significant window regions (SSC8 27 Mb and SSC15 29 Mb) are identified using the three
genotyping platforms. Higher prediction ability is observed using the DEBV-including parent average
as a response variable, regardless of the SNP genotyping panels and the Bayesian methods, relative to
the DEBV-excluding parent average. Hence, we suggest that fine-mapping studies targeting the
identified informative regions in this study are necessary to find the causal mutations to improve the
IBW trait’s prediction ability. Furthermore, studying the IBW trait using a genomic prediction model
with a larger genomic dataset may improve the genomic prediction accuracy in Korean Yorkshire pigs.

Animals 2020, 10, 2219; doi:10.3390/ani10122219 www.mdpi.com/journal/animals

http://www.mdpi.com/journal/animals
http://www.mdpi.com
https://orcid.org/0000-0002-6145-8862
https://orcid.org/0000-0003-2682-5177
https://orcid.org/0000-0002-6934-398X
http://www.mdpi.com/2076-2615/10/12/2219?type=check_update&version=1
http://dx.doi.org/10.3390/ani10122219
http://www.mdpi.com/journal/animals


Animals 2020, 10, 2219 2 of 11

Keywords: individual birth weight; single nucleotide polymorphism; genome-wide association
studies; genomic prediction; Yorkshire pigs

1. Introduction

Litter size and birth weight have been used as representative traits of sow productivity [1].
However, pigs have been selectively bred to focus only on litter size to improve sow productivity [2].
According to the 2019 Korean pig industry report of the Korea Animal Improvement Association (KAIA),
the total number of living piglets per litter has increased from 10.5 to 12.1 in the past 10 years, indicating
that sow prolificacy has improved. However, it has led to an increase in the occurrence of intra-uterine
growth restriction due to the lack of available capacity, oxygen, and nutrients in the uterus and, in turn,
causes the birth weight variation to increase [3,4]. Owing to this association, weaning mortality is a major
issue for continuously improving sow prolificacy, as it is known to affect the early growth performance.
One of the most representative traits is individual birth weight (IBW) in piglets [5–8], where IBW reflects
the individual abilities of the offspring that are affected by genetic factors and the intrauterine nutritional
supply. Hence, improving the genetic progress of IBW is crucial for understanding the genetic control
of the indicators [9]. However, previous studies have reported that the heritability of the birth weight
is low, ranging from 0.09 to 0.21 [10–12]. Therefore, it is a worthwhile endeavor to identify which genes
underlie this heritability effect on birth weight. Several studies have reported numerous genetic effects
on birth weight [5], where they analyzed 14,226 Yorkshire and 12,313 Landrace sows and identified
candidate genes using genome-wide association studies (GWAS) such as SKOR2, SMAD2, VAV3,
and NTNG1. Moreover, candidate genes such as MYOG, MSTN, and DBH have been reported to affect
birth weight [13–15]. Genomic selection (GS) methodology also has been widely applied in livestock
species, including dairy cattle [16], poultry [17], beef cattle [18], sheep [19], and pigs [20], using genomic
information obtained from commercial single nucleotide polymorphism (SNP) genotyping platforms
such as Illumina (https://www.illumina.com/products/by-type/microarray-kits/porcine-snp60.html),
Neogen GeneSeek (https://genomics.neogen.com/en/ggp-porcine), and Affymetrix (https://genomics.
neogen.com/en/affymetrix-axiom-porcine-array). Regarding the birth weight trait in pigs, a previous
study [21] identified 17 genomic regions associated with birth weight, whereas another study [22] found
12 SNPs that were significantly associated with piglet uniformity, in which 27 differentially selected
regions that were associated with the birth weight of piglets were detected by another study [23].
However, to the best of our knowledge, this is the first study to focus on assessing IBW for estimating
variance components by observing the direct and maternal genetic effects as well as applying genomic
analysis in the Korean pig industry. Therefore, the objective of this study is to focus on the Korean
Yorkshire pigs to (1) estimate their IBW trait variance components and heritability, (2) identify the
informative regions through GWAS, and (3) compare the genomic prediction abilities of two methods
under two response variables using three SNP genotyping platforms.

2. Materials and Methods

2.1. Descriptive Statistics of the Phenotype and Pedigree

Here, the IBW trait was recorded between 2005 and 2020 in the GGP farm in Korea. The pedigree
and phenotypic records of 76,108 and 38,864 Yorkshire pigs, respectively, were used to estimate
the variance components and the genetic parameters to identify the most optimal statistical model.
The average and standard deviation of IBW were 1.372 ± 0.284 kg, ranging from 0.60 kg to 2.70 kg.

2.2. Genotypic Data Editing and Imputation

A total of 3858 Korean Yorkshire pig genotypes were used as a reference set across three SNP
genotyping platforms of Illumina porcineSNP60 v2 (Illumina, Inc., San Diego, CA, USA) and Axiom

https://www.illumina.com/products/by-type/microarray-kits/porcine-snp60.html
https://genomics.neogen.com/en/ggp-porcine
https://genomics.neogen.com/en/affymetrix-axiom-porcine-array
https://genomics.neogen.com/en/affymetrix-axiom-porcine-array
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porcine55K and Axiom porcine660K (Affymetrix, Inc., Santa Clara, CA, USA), which consisted of
61,565, 55,372, and 658,692 SNP markers, respectively. Quality control measures of the SNP markers
and animals included the exclusion of unmapped SNPs, sex chromosome SNPs, SNPs with a poor
call rate (<0.90), and duplicate SNP map-positions. Additionally, animals with a poor call rate (<0.90)
were excluded, as well as animals that did not have a registration number and animals with a poor
call rate for duplicate genotypes within and among genotyping platforms. Consequently, the number
of available SNP markers was 47,567, 52,398, and 539,459 across the 55K, 60K, and 660K SNP panels,
respectively, using the Sscrofa 11.1 mapping information. This resulted in 429, 2,579, and 406 animals
across the 55K, 60K, and 660K SNP panels, respectively, which were used in the GWAS and genomic
prediction modeling. Briefly, the imputation process of the three SNP genotyping platforms was
performed separately as follows: all the genotypes were imputed to their respective SNP genotyping
panels using the FImpute v2.2 software [24] with default settings. Then, we accepted the three different
non-missing genotypes in the imputed 55K, 60K, and 660K data that consisted of 3414 animals.

2.3. Estimating the Variance Components and the Genetic Parameters

2.3.1. Model Definition

To establish an optimal statistical model for estimating the variance components and the genetic
parameters of the Yorkshire pigs’ IBW, four animal models that considered the maternal genetic
effects, the common environmental effects, and the animal genetic effects, in addition to the fixed
and covariance effects were used. The birth weight of each individual was used as a response
variable, in which the first model (Equation (1)) applied an animal model that only considered the
individual genetic effect, whereas the second model (Equation (2)) considered the maternal genetic
effect, and the third model (Equation (3)) considered the common environmental effect that occurs
during the pregnancy of full-siblings. Finally, the fourth model (Equation (4)) applied a full model
that included the sow genetic effect and the common environment effect as well as the individual
genetic effect. During this statistical model, the effects of sex, parity of dam, and contemporary group
(farm-year-season) were included as fixed effects. To correct the IBW, which is a response variable,
the litter size of dams was applied to each model as a covariate term effect, in which the variance
components and the genetic parameters were estimated by fitting all the models using the restricted
maximum likelihood (REML) procedure that was implemented in the statistical software R using the
ASReml v4.1 package [25]. The four statistical models were as follows:

Equation (1): Animal model with a direct additive genetic effect:

y = Xb + Zaua + e (1)

Equation (2): Animal model with a direct additive genetic effect and a maternal genetic effect:

y = Xb + Zaua + Zmum + e (2)

Equation (3): Animal model with a direct additive genetic effect and a common litter effect:

y = Xb + Zaua + WC + e (3)

Equation (4): Animal model with a direct additive genetic effect, a maternal genetic effect, and a
common litter effect:

y = Xb + Zaua + Zmum + Wc + e (4)

where, y is the vector of observations (IBW); X, Za, Zd, W are known incidence matrices that relate the
observations to fixed and random effects; b is the vector of fixed effects; ua is the vector of direct additive
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genetic effects; um is the vector of maternal genetic effects; c is the vector of common non-genetic effects;
and e is the vector of the residuals.

2.3.2. The Likelihood Ratio Test

To determine the most suitable model for estimating the genetic parameters, the log-likelihood
values (LogL) of the four different models were compared.

The Chi-Square statistical test (x2) was used accordingly [26] and was calculated as follows:

x2 = −2
(
LogLreducedmodel − LogL f ullmodel

)
where, LogLreducedmodel is the log-likelihood of a simpler model, and LogL f ullmodel is the log-likelihood of
a more complete model.

2.4. Deregressed Estimated Breeding Values of the Response Variables in Genomic Analysis

The genetic parameters, the estimated breeding values (EBVs), and the reliability of each individual
were estimated by a single-trait animal model accompanied by a full model (Equation (4)) using
the ASReml v4.1 package in R [25]. Two types of deregressed estimated breeding values (DEBVs),
which were (1) a combination of deregression and adjustment for ancestral information (DEBVexcPA),
and (2) the parent average EBV (PA) added back to the DEBVs (DEBVincPA) [27], were estimated
based on these EBVs and their reliabilities in terms of their response variables in the genomic analysis.
A detailed description of these DEBVs was provided [20]. Moreover, the weighting factor (wi) of each
individual in the genomic analysis also was calculated by applying a previously proposed model [27].
Finally, the individuals with a reliability of less than 0.01 were removed, and the 678 registered
Yorkshire pigs with their genomic and phenotypic data were used in the genomic analysis.

2.5. Statistical Method for Estimating SNP Effects

Two Bayesian methods, BayesB [28] and BayesC [29], used different π values of 0.99 when using
medium-density genotyping platforms and 0.999 when using a high-density genotyping platform.
The weighting factors were used to estimate the SNP marker effects using the GenSel4R software [30]
for genomic analysis in the GWAS and genomic prediction. The two Bayesian methods were fitted
using the following equation:

yi = µ+
k∑

j=1

Zi ju jδ j + ei

where, yi is the response variable (DEBVs); µ is the population mean; k is the number of markers;
Zi j is the allelic state (−10, 0, and 10 in GenSel4R) of the jth marker of the ith individual; u j is the SNP
maker effect at locus j in an individual; and δ j indicates the presence or absence (0 or 1) of the SNP
marker in the model. To estimate the effect and the SNP marker variance, which were estimated by the
posterior mean and included the posterior distributions of the parameters and the effects obtained
using the Gibbs sampling, the initial 10,000 iterations out of a total of 110,000 Markov chain Monte
Carlo (MCMC) iterations were excluded as a part of the burn-in period with a thinning interval of five
iterations. All the genomic analyses were performed using the GenSel4R software [30].

2.6. Genomic Prediction Accuracy under Five-Fold Cross-Validation

During this study, a five-fold cross-validation method was used to estimate the genome accuracy,
and the k-means clustering method was used for cross-validation. The reference set with both
phenotypes and genotypes was divided into the training and validation sets, in which the relatedness
was configured to be as small as possible through the k-means clustering method [31]. The clustering
results using 1959 elements of the pedigree information related to the genotyped animals are presented
in Table 1, which was successfully partitioned, whereby the values of amax and ai j within the groups
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were relatively higher than the values of amax and ai j between the groups. Additionally, the genomic
accuracy was calculated using the simple correlations between the direct genomic values (DGVs) via
the summation of the SNP effects of the genotyped animals in each validation set and their response
variables r(ŷ, y), where ŷ is a vector of DGVs of the corresponding animals in y, and y is a vector of
one of the response variables (DEBVexcPA or DEBVincPA) of the validation set.

Table 1. Relationship comparisons among Korean Yorkshire pigs within and across clusters.

Clusters No. of Animals inBreC 1 amax_within
2 amax_between

3 aij_within
4 aij_between

5

1 99 0.028 0.524 0.393 0.243 0.061
2 133 0.015 0.497 0.344 0.177 0.047
3 192 0.008 0.446 0.348 0.043 0.032
4 145 0.014 0.441 0.409 0.089 0.050
5 109 0.001 0.476 0.402 0.132 0.031

Avg. 0.013 0.477 0.379 0.137 0.044
1 inBreC = the average of inbreeding coefficients within each cluster. 2 amax_within = the average of amax (the
maximum of relationships [aij] for each animal) values within each cluster. 3 amax_between = the average of amax values
between the clustered groups. 4 aij_within = the average of aij (relationships) values within each cluster. 5 aij_between
= the average of aij values between clustered groups.

3. Results and Discussion

3.1. Heritability and the Optimized Model

Using the four models, the optimal model for IBW was found through the likelihood ratio test,
in which the estimated variance component and genetic parameter result of each model, as well as
the comparison result for identifying the most optimal model, are summarized in Table 2. As shown,
the heritability estimates of the IBW trait with their associated standard errors were found to be
0.500 (0.013), 0.212 (0.018), 0.322 (0.017), and 0.130 (0.019) per statistical model (Equations (1)–(4)).
These results are similar to a recent report [9] when using the full model (Equation (4)) with an estimated
IBW heritability in the Yorkshire and Landrace pigs of 0.15 and 0.05, respectively, while including
the maternal, common litter, and direct additive effects. Regarding the case of birth weight, it was
estimated that the maternal effect, which included the common environmental effect, had a fairly high
variance component and, as a result of the likelihood ratio test, the full model (Equation (4)) included
all the maternal effects and, hence, was identified to be the most optimal model. Moreover, the analysis
result was the same as the simulation result, in which the most accurate variance components and
genetic parameters can be estimated when the model considers not only the direct additive genetic
effects but, also, the maternal genetic and environmental effects [32]. Through the results of this study,
the most optimal statistical model for estimating the birth weight of Yorkshire pigs was identified,
after which the genetically superior individuals in terms of their birth weights could be selected
through the genetic parameters and breeding values that were estimated by the optimal model.

Table 2. Estimates of the variance components, the direct heritability (h2), the standard error (SE),
the log-likelihood values (LogL), and the likelihood ratio test (LRT) values when comparing the four
models of the individual birth weight trait in Korean Yorkshire pigs.

Model 1
Variance Components 2

h2
± SE LogL 3 LRT 4 Model

Comparison5 P 6
σ2

a σ2
m Wc σ2

e σ2
p

Equation (1) 0.036 - - 0.036 0.072 0.50 ± 0.013 2156.38 3678.84 1 vs. 4 <0.0001
Equation (2) 0.015 0.018 - 0.039 0.071 0.21 ± 0.018 3140.04 2695.18 2 vs. 4 <0.0001
Equation (3) 0.022 - 0.020 0.027 0.069 0.32 ± 0.017 5581.12 254.1 3 vs. 4 <0.0001
Equation (4) 0.009 0.010 0.017 0.030 0.065 0.13 ± 0.019 5835.22

1 Equation (1). Direct additive genetic effect; Equation (2). Direct additive genetic effect and maternal genetic effect;
Equation (3). Direct additive genetic effect and common litter effect; Equation (4). Direct additive genetic effect,
maternal genetic effect, and common litter effect (full model). 2 σ2

a = direct additive genetic variance; σ2
m = maternal

genetic variance; Wc = common litter variance; σ2
e = residual variance; σ2

p = phenotype variance. 3 LogL = Log
likelihood value. 4 LRT = x2 test statistic for the likelihood ratio test. 5 Model comparison = Equations (1)–(3) vs.
Equation (4). 6 P = p-value.
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3.2. GWAS of the Individual Birth Weight Trait

To identify the most informative 1 Mb window regions (over 0.5% of the additive genetic variance)
as well as the significant SNP markers, we based our estimations on the model frequency within
these window regions that were used in the GWAS analysis of the IBW trait across three commercially
developed porcine SNP genotyping platforms (Illumina porcine60v2, Axiom porcine55K, and Axiom
porcine660K). We employed the BayesB method with a large value of π (medium-density: 0.99 and
high-density: 0.999) with DEBVincPA acting as a response variable in the Yorkshire pigs. The results of
these association studies of the IBW trait are summarized in Table 3, which include the informative
regions and the SNP markers that are presented in Figure 1 in the form of circular Manhattan plots across
the three genotyping platforms. Considering the Axiom55K and Illumina60K panels, four informative
windows were detected, respectively, whereas in Axiom660K panel, two windows were detected.

Table 3. Summary of GWAS in each genotyping platform with the significant 1 Mb windows that were
associated with the individual birth weight (IBW) trait in Korean Yorkshire pigs.

Genotyping
Platform SSC_Mb GV (%) 1 Informative

SNP
Position

(Mb)
Genetic
Effect

Model
Frequency

Region
Annotation Gene Annotation 2

Axiom Porcine
55K

8_27 3.17

AX-116342380 27.89 −0.004 0.104 Intronic ARAP2
AX-116690854 27.84 0.002 0.056 Intronic ARAP2
AX-116342258 27.44 −0.002 0.050 Intergenic ARAP2(dist = 333210)
AX-116342267 27.48 −0.002 0.050 Intergenic ARAP2(dist = 333210)
AX-116342268 27.48 −0.001 0.049 Intergenic ARAP2(dist = 333210)

15_29 2.95
AX-116536263 29.71 0.005 0.118 Intronic TSN
AX-116674286 29.64 0.004 0.093 Intergenic TSN(dist = 37022)
AX-116536281 29.78 −0.003 0.074 Intronic NIFK

8_26 0.96 AX-116690835 26.54 0.002 0.067 Intergenic ARAP2(dist = 1271371)

3_8 0.57 AX-116718059 8.28 0.003 0.061 Intergenic PVRIG(dist = 49034),
ZCWPW1(dist = 41321)

Illumina 60K

15_29 3.31

DBWU0000855 29.71 0.006 0.1299 Intronic TSN
H3GA0044096 29.64 0.004 0.0934 Intergenic TSN(dist = 37022)
ALGA0084705 29.73 −0.002 0.0649 Intronic NIFK
ALGA0084700 29.82 -0.001 0.0525 Intronic CLASP1

8_27 2.91

ALGA0047127 27.89 −0.005 0.1284 Intronic ARAP2
ALGA0047120 27.86 0.002 0.0726 Intronic ARAP2
ALGA0047098 27.48 −0.002 0.0636 Intergenic ARAP2(dist = 294518)
ALGA0047102 27.52 0.001 0.0557 Intergenic ARAP2(dist = 256059)

8_26 1.24 INRA0029430 26.50 0.002 0.0783 Intergenic ARAP2(dist = 1271371)
7_9 0.41 ALGA0107233 9.29 0.001 0.0493 Intronic PHACTR1

Axiom porcine
660K

8_27 3.16

AX-116342374 27.87 0.001 0.021 Intronic ARAP2
AX-116342286 27.54 −0.001 0.016 Intergenic ARAP2(dist = 229771)
AX-116342230 27.31 0.001 0.012 Intergenic ARAP2(dist = 456854)
AX-116342377 27.88 0.001 0.012 Intronic ARAP2

15_29 2.89

AX-116762423 29.65 −0.001 0.023 Intergenic TSN(dist = 22517)
AX-116744904 29.65 0.001 0.022 Intergenic TSN(dist=22517)
AX-116536258 29.71 −0.001 0.014 Intronic NIFK
AX-116536264 29.72 −0.001 0.012 Intronic NIFK
AX-116536266 29.73 0.001 0.012 Intronic NIFK

1 GV(%) = Percentage of additive genetic variance explained by SNP markers within each 1 Mb window region;
2 ARAP2 = The gene annotations include ArfGAP with RhoGAP domain ankyrin repeat and PH domain 2,
TSN = Translin, NIFK = nucleolar protein interacting with the FHA domain of MKI67, PVRIG = PVR related
immunoglobulin domain containing, ZCWPW1 = zinc finger CW-type and PWWP domain containing 1, and CLASP1
= the cytoplasmic linker-associated protein 1.

We identified 10 significant SNPs in the four windows detected by the Axiom55K, which were the
same number of markers in the Illumina60K, whereas in the Axiom660K, we identified nine significant
SNPs in the two detected windows. To summarize, the most significant detected window in each panel
was on chromosome SSC8 at 27 Mb using the Axiom55K, on chromosome SSC15 at 29 Mb using the
Illumina60K, and on chromosome SSC8 at 27 Mb using the Axiom660K platform, which explained
3.17%, 3.31%, and 3.16% of the variance, respectively. Concerning the Axiom55K panel, the most
significant SNP marker (AX-116342380), which was based on the model frequency of the SNP markers,
was located on SSC8 at 27.89 Mb within the ARAP2 gene. These results were similar when using
the Axiom660K genotyping platform, in which the most significant SNP marker was AX-116342374,
which was located within the ARAP2 gene. Moreover, when using the Illumina60K genotyping
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platform, we found that the DBWU0000855 SNP marker located on SSC15 (29.71 MB) was the most
significant, which was located within the TSN gene. However, we also found the same informative
region (SSC8 at 27 Mb) using the two Axiom genotyping platforms with the Illumina60K genotyping
platform. Hence, across the three genotyping platforms, the highest percentage of additive genetic
variance (3.31%) was found in Illumina 60K, whereas the Axiom55K (3.17%) and Axiom660K (3.16%)
had similar values. Taken together, we identified consistent informative regions (SSC8 at 26 or 27 Mb
and SSC15 at 29 Mb) with same gene annotations (ARAP2 and TSN) in all platforms. Fine-mapping is
needed to identify causal variants for IBW in SSC8 at 26–27 Mb in the future. The ARAP2 (ArfGAP
with RhoGAP domain, ankyrin repeat and PH domain 2) gene is known to affect the actin cytoskeleton
through mediating RhoA [33]. Especially, β-actin has been reported as essential for embryogenesis
and has a critical role during cell migration in a mice knockout model [34]. Additionally, the TSN
(translin) gene is known to act as a modulator of mesenchymal cell proliferation and differentiation in
mice [35]. Taken together, we suggest that significant markers located in the ARAP2 and TSN genes
affect embryogenesis and cell proliferation in the fetus, resulting in the difference in porcine IBW.
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Figure 1. A circular Manhattan plot of the window variances of the individual birth weight trait using
the three genotyping platforms, where the (A) outer, (B) middle, and (C) inner radii reflect Axiom650K,
Illumina60K, and Axiom55K, respectively. The red horizontal lines and the red dots represent 0.5% of
the window variance and the windows above the 0.5% threshold, respectively. Genes corresponding to
the common significant windows across the genotyping platforms have been indicated outside of the
plot. The gene annotations include ArfGAP with RhoGAP domain ankyrin repeat and PH domain
2 (ARAP2), Translin (TSN), nucleolar protein interacting with the FHA domain of MKI67 (NIFK),
PVR-related immunoglobulin domain containing (PVRIG), zinc finger CW-type and PWWP domain
containing 1 (ZCWPW1), and the cytoplasmic linker-associated protein 1 (CLASP1).



Animals 2020, 10, 2219 8 of 11

3.3. Accuracy of the Direct Genomic Values

The genomic prediction accuracy of the studied IBW trait across the three genotyping platforms,
two response variables, and two Bayesian methods are summarized in Table 4. Applying BayesB
to estimate the genomic prediction accuracy using Axiom55K, Illumina60K v2, and Axiom660K
resulted in 0.188, 0.168, and 0.163 and 0.261, 0.224, and 0.223 for DEBV-excluding parent average
(DEBVexcPA) and DEBV-including parent average (DEBVincPA), respectively. A similar trend also was
observed when applying BayesC using Axiom55K, Illumina60K v2, and Axiom660K, which resulted
in 0.178, 0.157, and 0.150 and 0.252, 0.210, and 0.215 for DEBVexcPA and DEBVincPA, respectively.
These results indicated there was a 1% difference in the genomic prediction accuracy between BayesB
and BayesC, in which the difference among the genotyping platforms was the highest in Axiom55K,
followed by Illumina60K v2 and Axiom660K. Additionally, the difference between the DEBVexcPA and
DEBVincPA response variables was estimated to be 6.3%, which was higher on average when using
DEBVincPA across all genotyping platforms and Bayesian methods.

Table 4. Comparisons of the genomic prediction accuracy with standard error among genotyping
platforms according to the Bayesian methods in each response variable.

Trait 1 Response
Variables 2

Genotyping
Platforms π 3 BayesB BayesC

IBW

DEBVexcPA
Axiom55K 0.99 0.188 (0.014) 0.178 (0.013)

Illumina60Kv2 0.99 0.168 (0.012) 0.157 (0.012)
Axiom660K 0.999 0.163 (0.013) 0.150 (0.013)

DEBVincPA
Axiom55K 0.99 0.261 (0.012) 0.252 (0.013)

Illumina60Kv2 0.99 0.224 (0.013) 0.210 (0.013)
Axiom660K 0.999 0.223 (0.012) 0.215 (0.013)

1 IBW = individual birth weight; 2 DEBVexcPA = DEBV-excluding parent average and DEBVincPA = DEBV-including
parent average; 3 π = distribution value.

Contrasting to our expectation, a high extent of linkage disequilibrium (LD) between SNP and
quantitative trait loci (QTL) via increasing marker density having the potential to improve prediction
accuracy [36,37] was not realized using a high-density genotyping platform such as Axiom porcine660K.
However, similar trends also were reported when comparing the prediction accuracy by the density
of the genotyping platforms [38–41]. Additionally, prediction ability on genotyping platforms relies
on the extent of causal variants such as QTL, when targeting economical traits, which is in contrast
to using dense genotyping platforms [36,42] such as 80K, 650K, and SEQ. However, with a higher
proportion of genetic variance using the Axiom porcine660K genotyping platform compared with other
medium-density platforms, the novel informative windows were not observed considering our GWAS
results, which means that the high-density platform had no additional informative SNPs associated
with the IBW trait compared with the medium-density platforms. Another potential reason for the lack
of improvements in the prediction accuracy when using a high-density genotyping platform is that it
could be affected by the ratio between the number of markers and the sample size [43]. Therefore,
a larger sample size may be more effective when using high-density genotyping platforms.

During the current study, we observed an increase in the genomic accuracy when using
DEBVincPA as a response variable as compared to DEBVexcPA across the SNP genotyping platforms
and Bayesian methods. These results are consistent with previous reports in terms of growth and
productive traits in Duroc pigs [40]. During our genomic prediction model, when DEBVexcPA was
used as a response variable, it had the advantage of avoiding double counting issues, but the genomic
accuracy was higher when DEBVincPA was used as the response variable. This can be explained
by accounting for the differences in PA among the genotyped animals when including PA after
deregressing from the EBVs [44]. Moreover, the obtained genomic prediction accuracy of the IBW
trait was relatively small compared to previous studies conducted on the exterior growth and the
productive traits of Korean pig populations [20,40]. However, these results were from a relatively
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small reference size; thus, continuous genetic evaluations using a larger reference size would increase
the genomic accuracy of the IBW trait.

4. Conclusions

During this study, we estimated a low heritability and identified candidate genes of the IBW
trait of Korean Yorkshire pigs; hence, applying genomic technology can rapidly improve this trait.
To realize this improvement, we evaluated and compared the genomic prediction ability across various
genotyping platforms, response variables, and Bayesian methods. Altogether, two common informative
1 Mb window regions were identified across the three genotyping platforms, where the prediction
ability was higher when using DEBVincPA as a response variable relative to using the other response
variable. Thus, we suggest that future fine-mapping studies should include target sequencing of
informative regions to identify the causal mutations and improve the prediction ability of IBW traits.
Furthermore, a genomic prediction model that encompasses a larger genomic dataset reflecting the
IBW trait may be useful in future genetic evaluations of Korean Yorkshire pigs.
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