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ABSTRACT
Fluoropyrimidine-based chemotherapy is an essential component of systemic chemotherapy for color-
ectal cancer (CRC). The immune response is implicated in chemotherapy-induced cytotoxicity. Here, we 
reported an immune risk (Imm-R) model for prognostic prediction in patients receiving fluoropyrimidine- 
based chemotherapy. Gene expression profiles and corresponding clinical information were collected 
from four data sets and divided into training set (n = 183) and validation set (validation set1: n = 34; 
validation set2: n = 99). The composition of 22 tumor-infiltrating immune cells (TIICs) populations was 
characterized with the CIBERSORT deconvolution algorithm. A prognostic Imm-R model for predicting 
overall survival was established by performing least absolute shrinkage and selection operator (LASSO) 
penalized COX regression analysis. T follicular helper cells and M0 macrophages were associated with 
better survival, while eosinophils were associated with worse survival. TIICs signature was constructed 
based on the above three immune cell types. Furthermore, a Imm-R model was created by integrating 
TIICs signature with immune-related genes (IRGs), which effectively in distinguishing CRC patients with 
poorer prognosis. The Imm-R model was associated with activation of the TGF-beta signaling and 
suppression of DNA damage. Results of this research provide new insights into the role of immunity for 
in fluoropyrimidine-based chemotherapy as well as a useful tools to predict the outcome of CRC patients 
receiving fluoropyrimidine-based chemotherapy.
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Introduction

Colorectal cancer (CRC) is the third most common cancer and 
a leading contributor to cancer-related mortality worldwide.1 

Although significant advances have been made in screening, 
diagnosis, and treatment of CRC, clinical outcome of CRC 
patients remains unsatisfactory. Radical resection is currently 
the only curative strategy for CRC. However, approximately 
50% of CRC patients who underwent curative resection devel-
oped recurrence within two years after surgery and half of these 
recurrences proved to be fatal.2 To prevent recurrence in and 
prolong survival, fluoropyrimidine-based chemotherapy, is 
recommended for all suitable patients with stage III disease or 
stage II disease with high-risk features3 after curative resection. 
Fluoropyrimidine-based combination chemotherapy, such as 
FOLFOX, CapeOX, or FOLFIRI, with/without biologics, is also 
recommended as the first-line treatment.4 However, the thera-
peutic benefit to patients is frequently compromised by the 
development of chemoresistance.5 Adjuvant chemotherapy 
improves survival in only 3% of patients with stage II CRC, 
and up to 15%–20% among those with stage III CRC.6 

Therefore, identifying high-risk CRC patients, those who 

received fluoropyrimidine-based therapy but with poor 
responses, may contribute to developing individualized 
treatment.7

Tumor-infiltrating immune cells (TIICs) are of various 
consist of the tumor immune microenvironment8 TIICs 
were composed of various types of immune cells, like 
T cell, macrophages, neutrophils etc. Different subtype of 
TIICs may exhibit either immune-promoting or immune- 
suppressing ability under various situation.9 The composi-
tion of the TIICs is tightly regulated by the immune inter-
actions between host and tumor,10 and reflects the intrinsic 
characteristics of tumor.11 Increasing evidence indicates that 
composition and abundance of TIICs are potential predictors 
of patient survival.12-14 For example, high levels of infiltrat-
ing CD8 + T cell is associated with better prognosis, while 
regulatory T (Treg) cells predict poor clinical outcomes in 
CRC patients.15 A CRC classification based on TIICs has 
been developed, and five subgroups of CRC with distinct 
survival patterns have been identified.16 Therefore, the com-
prehensive identification of prognostic TIICs may 
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complement current strategies used for the prediction of 
CRC prognosis.

Most previous studies have used immunohistochemical 
approaches to assess the landscape of TIICs. Recently, 
CIBERSORT algorithm was developed to enumerate immune 
cell subtypes. It generates the proportion of TIICs based on 
changes of immune-related and other genes in expression 
profiles.17 Due to the excellent performance of CIBERSORT, 
its application in studying cell heterogeneity has aroused 
increasing attention.18-20 For example, Xiong et al analyzed 
the clinical significant of TIICs in CRC by using 
CIBERSORT16 and Narayanan et al performed CIBERSORT 
algorithm to identify TIICs associated with OS of microsatellite 
unstable CRC patients.21 However, The impact of TIICs on the 
prognosis of patients treated with fluoropyrimidine is not yet 
conclusive.

The immune response is regulated by a complex immune 
molecular network that includes chemokines, cytokines, 
major histocompatibility complex (MHC) molecules, as well 
as co-stimulatory, immunomodulatory, and cytotoxicity- 
mediating molecules.22 The genes encode those molecules 
are referred as immune-related genes (IRGs).23 Besides the 
composition and abundance of TIICs, the expression of IRGs 
is associated with prognosis in CRC patients as well.24 For 
example, higher expression of PD-1 and PD-L1 is correlated 
with better prognosis.25 Furthermore, expression of genes 
encoded MHC class II complex could predict metastasis in 
CRC patients.26 An increasing number of studies also impli-
cate the immune response in chemotherapy-induced 
cytotoxicity.27,28

In the current study, we aimed at illustrating the landscape 
of TIICs and screen TIICs associated with prognosis in CRC 
patients receiving fluoropyrimidine-based chemotherapy. We 
also construct an immune risk (Imm-R) model by integrating 
TIICs- and IRGs to identify potential high-risk CRC patients 
for fluoropyrimidine-based chemotherapy.

Results

Cohort characteristics

Firstly, 865 patients from GSE39582 (585 cases), GSE103479 
(156 cases), GSE72968 (68 cases), and GSE72969 (56 cases) 
were selected. The follow-up information and chemotherapy 
regimens of each case was collected. After filtering out patients 
who received preoperative treatment and whose microarry 
data did not pass the CIBERSORT quality control step 
(p value ≥ 0.05),29 316 CRC patients receiving fluoropyrimi-
dine-based chemotherapy, included 182 male patients and 134 
female patients, were finally included in the study (Table 1 and 
Figure 1). Among them, 199 cases were in stage II–III (62.97%) 
and 117 cases in stage IV (37.03%). The median follow-up time 
was 46 months. 172 patients (54.43%) experienced disease 
recurrence or progression during follow-up. The training set 
consisted of 183 cases from GSE39583. Validation set1 
included 34 cases from GSE103479, who were with stage II– 
III disease and received 5-fluorocrail (5-FU) based chemother-
apy. Validation set2 was the combination of 61 cases from 
GSE72968 and 38 cases from GSE72969, who were stage IV 

and received fluoropyrimidine-based combination treatments 
(Table 1).

Correlation between the immune infiltration landscape 
and clinical features in CRC

TIICs in the tumor microenvironment modulate the antitumor 
response and represent attractive therapeutic targets.30 Using 
the CIBERSORT algorithm, we systematically evaluated the 
abundance of 22 subpopulations of TIICs in the included 
patients of training set. Significant variation in the proportion 
of TIICs was observed among individuals, reflecting the varied 
intrinsic individual immune characteristics (Figure S1A). 
Correlation analysis showed that subpopulations of TIICs 
showed a weak to moderate correlation with each other 
(Figure S1B). Next, we analyzed the the corelation of each 
TIICs subgroup and clinical features, likes TNM stages, TP53 
status, KRAF/BRAF status, RFS and OS, of all patients in the 
training set (Figure S1C–E). As a result, four TIICs were 
identified to be associated with TNM stages (Figure 2a). 
CD8 + T cell was down-regulated with increasing TNM stage 
(p = .036), while Monocytes (p = .045), Eosinophils (p = .0061), 
and activated Mast cells (p = .032) were upregulated with 
increasing TNM stage (Figure 2a). Correlation analysis also 
showed that proportion of CD8 + T cell was negatively corre-
lated to the three other cells (Figure 2b)

We comprehensively explored the relationship between 
TIICs and clinical features in CRC. Mismatch-repair-deficient 
(dMMR) CRC represents a strong indication for 
immunotherapy.31 We compared the abundance of the 22 
TIICs between dMMR and mismatch-repair-proficient 
(pMMR) CRC (Figure S1D). We found that the abundance of 
T follicular helper cells (Tfh), gamma delta T cells, NK cell 
activated and M1 macrophages were significantly increased in 
the dMMR CRC group compared with pMMR (p< .05), while 
that of resting memory CD4 + T cells and Monocytes were 
increased in the pMMR CRC group (Figure 2c). Recent evi-
dence indicates that the KRAS mutation might also shape 
tumor immunity.32,33 In this study, we found that the abun-
dance of activated memory CD4 + T cells and M0 macrophages 
were lower in KRAS-mutated CRC than in wild-type CRC 
(Figure S1E, Figure 2d and e). These results suggested that 
TIICs represented some of the intrinsic characteristics of 
CRC patients with different clinical features.

Development and validation of the tumor-infiltrating 
immune cell (TIICs) signature

To further explore the potential of using TIICs as an indicator 
of the therapeutic response to cytotoxic regimens, we firstly 
performed Cox regression analysis in the training set to screen 
TIICs associated with overall survival (OS). 13 of 22 TIICs were 
associated with OS (Figure S2 and Figure 3a). Next, we per-
formed multivariate Cox regression analysis to identify inde-
pendent prognostic TIICs and the results showed that Tfh, 
plasma cells, activated mast cells, M0 macrophages, eosino-
phils, and memory B cells were potential independent prog-
nostic TIICs for chemotherapy (Figure S3A and B). The 
association between the above six TIICs and OS were validated 
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in both validation set1 and validation set2 and confirmed that 
Tfh and M0 macrophages were associated with better OS while 
eosinophil was associated with worse OS in the three datasets 
(Figure 3(b and c)). Therefore, collection of Tfh, M0 macro-
phages and eosinophil were defined as the TIICs signature to 
predict CRC patients response to fluoropyrimidine-based che-
motherapy. We also performed a subgroup analysis to assess 
the application of TIICs signatures in stage II–III patients in 
the training set (Figure S4). Tfh and M0 macrophages were 
associated with better survival, while eosinophils were asso-
ciated with worse survival in the stage II–III patients of training 
set (Figure S4A).

Based on the TIICs signature, we constructed a method to 
calculate scores of TIICs signature (TIICs score) to predict the 
prognosis of patients receiving fluoropyrimidine-based che-
motherapy. The TIICs score was calculated as follows: 
(−0.990 × abundance of Tfh)+(−0.731 × abundance of 
Macrophages M0) + (0.655 × abundance of Eosinophils). 
Using the median of TIICs scores as cutoff value, the TIICs 
scores successfully distinguished CRC patients into high-risk 
or low-risk groups. Patients with high risk had significantly 
poorer relapse-free survival (RFS) and OS compared with those 
with low risk in the training set (RFS, p=.013 Figure 3g; OS, p< 
.001; Figure 3d). With threshold set as in training set, TIICs 
scores in validation set1 and validation set2 yielded similar 
results. Compared with those with low risk, high-risk patients 
had poorer RFS and OS in the validation set1 (RFS, p=.054 
Figure 3e; OS, p = .043, Figure 3h), or poorer progression-free 

survival (PFS) and OS in the validation set2 (PFS, p=.043, 
figure 3f; OS, p= 5.9 × 10−4, Figure 3i). The AUC under ROC 
curve of TIICs scores for predicting OS in the training set, 
validation set1 and 2 were 0.691, 0.695, and 0.755 respectively 
(Figure 3j–l). The AUC of the TIICs scores for predicting RFS 
in training set and the validation set1 was 0.602 and 0.707; for 
PFS in validation set2 was 0.670 (Figure 3j–l). Application of 
the TIICs score successfully generated similar results in stage 
II–III subgroup of training set (Figure S4B-D).

Development and validation of the immune risk (Imm-R) 
model by intergrating TIICs and IRGs

Although the TIICs scores seemed to distinguish patients with 
high-risk well, the AUC of ROC curve did not reach 0.8, which 
indicated limited precision. Immune-related genes (IRGs) were 
reported to orchestrate tumor-associated immune responses.34 

The integration of the TIICs signature and IRGs signature may 
enable more comprehensive assessment of immune status and 
more precise prognostic prediction. By integrating two immune 
gene lists from ImmPort35 and TISIDB,36 we obtained a list of 
2404 IRGs. Univariate Cox regression analysis was performed for 
preliminary screening of survival-associated IRGs in the training 
set. Based on the threshold value of p value < 0.05, we identified 61 
IRGs significantly related with overall survival. Then, these 61 
IRGs and the TIICs scores were input into the LASSO-Cox regres-
sion model for feature selection. Under penalizing conditions, 13 
IRGs and TIICs scores which with nonzero coefficients were 

Table 1. Clinical features of patients included in the study.

Training set Validation set1 Validation set2 All dataset

Features GSE39582(n = 183) GSE103479(n = 34) GSE72968(n = 61) GSE72969(n = 38) Total number(n = 316)
Age
<60 years 70 (38.25) 11(32.35) 27(44.26) 18(47.37) 126(39.87)
≥60 years 113(61.75) 23(67.65) 34(55.74) 20(52.63) 190(60.13)
Gender
Female 82(44.81) 16(47.06) 22(36.07) 14(36.84) 134(42.41)
Male 101(55.19) 18(52.94) 39(63.93) 24(63.16) 182(57.59)
Pathological T category
T1-T2 5(2.73) 2(5.88) 2(3.28) 2(5.26) 11(3.48)
T3-T4 168(91.80) 32(94.12) 38(62.30) 31(81.58) 269(85.13)
Unknown 10(5.46) 0 21(34.43) 5(13.16) 36(11.39)
Pathological N category
N0 52(28.42) 16(47.06) 5(8.20) 6(15.79) 79(25.00)
N1-3 131(71.58) 18(52.94) 35(57.38) 27(71.05) 211(66.77)
Unknown 0 0 21(34.43) 5(13.16) 26(8.23)
M category
M0 165(90.16) 34(100) 0 0 199(62.97)
M1 18(9.84) 0 61(100) 38(100) 117(37.03)
TNM stage
II–III 165(90.16) 34(100) 0 0 199(62.97)
IV 18(9.84) 0 61(100) 38(100) 117(37.03)
Chemotherapy regimens
5FU 59(32.24) 34(100)* 0 0 93(29.43)
5FU+LV 63(34.43) 0 0 0 63(19.94)
FOLFIRI 6(3.28) 0 39(63.93) 28(73.68) 73(23.10)
FOLFOX 12(6.56) 0 22(36.07) 6(15.79) 40(12.66)
FUFOL 41(22.40) 0 0 0 41(12.97)
other 2(1.09) 0 0 4(10.53) 6(1.90)
Tumor location
Proximal 65(35.52) 16(47.06) 12(19.67) 12(31.58) 105(33.23)
Distal 118(64.48) 18(52.94) 49(80.33) 26(68.42) 211(66.77)
Recurrence or progression
No 109(59.56) 25(73.53) 6(9.84) 4(10.53) 144(45.57)
Yes 74(40.44) 9(26.47) 55(90.16) 34(89.47) 172(54.43)
Median follow-up (sd), months 56.00(37.93) 62.09(27.63) 22.05(17.85) 26.04(19.65) 46.15(36.03)

* : Fluorouracil based
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selected (Figure 4(a,b)). Next, we performed stepwise multivariate 
Cox regression analysis based on the features selected by the 
LASSO-Cox regression model in order to construct the Imm-R 
model (Table S1 and Figure 4c). Ultimately, a Imm-R model 
consisting of seven IRGs (PSMD3, CCL22, FGF19, LGR5, 
SKAP1, TACSTD2, S100A4) and TIICs scores, was constructed. 
Hazard ratios (HR), 95% confidence intervals of HR, and p-values 
in univariate and multivariate Cox regression of the seven IRGs 
and TIIC scores for Imm-R model were summarized in Table S1 
and Figure 4c. In the Imm-R model, an immune risk score (Imm- 
R score) was generated using the formula:

Imm-R score = (−0.939× PSMD3)+(−1.304× CCL22) 
+(0.319× FGF19)+(−0.228× LGR5)+(0.665× SKAP1) 
+(0.182× TACSTD2)+(0.329× S100A4)+(0.809× TIICs scores).

In the training set, CRC patients could be divided into high-risk 
and low-risk groups by the median value of Imm-R scores. 
Survival analysis demonstrated that the Imm-R model was power-
ful to distinguish CRC patients with good or bad prognosis (Figure 
4(d,e)). Patients with high-risk had significantly shorter RFS and 
OS compared with those with low risk in the training set (RFS, 
p = .0019; OS, p< .0001). Patients with high risk had shorter RFS in 
the validation set1 with a marginally significant p-value of 0.069 
Figure 4f and shorter OS (p = .018, Figure 4g). In validation sets2, 
the PFS and OS were significantly shorter in the patients with high 
risk (PFS: p = .008, Figure 4h; OS: p< .0001 Figure 4i).

Time-dependent ROC analysis indicated that the AUC of 
Imm-R scores for predicting OS in the training set was 0.826, 
better than that of TNM stage (0.643) (Figure 4j). In the validation 
set1 and validation 2, the AUC of the Imm-R scores for predicting 
OS was 0.789 and 0.807, all significantly greater than TNM stage 

(Figure 4k and l). The Imm-R scores (upper panel) and corre-
sponded OS (middle panel) of individuals in training set (Figure 
4m) and validation set2 (Figure 4n) showed a trend that the OS 
roughly decreased along with the increasing of Imm-R scores. The 
expression levels of the seven IRGs and the TIICs scores were 
shown in the bottom panels (Figure 4m and n).

The efficiency of using Imm-R scores for predicting OS and 
RFS in stage II–III patients subgroup of training set was con-
incident with validation set2 (Figure S5A and B). The RFS and 
OS were significantly shortened in high-risk patients compared 
with low-risk patients (RFS p= .0062; OS, p< .0001). The ROC 
curve also indicated that Imm-R model had good discrimination 
in prognosis estimation, with AUC of 0.804 for OS (Figure S5C). 
These results indicated that the Imm-R model showed good 
discrimination ability in both training and validation sets.

We compared the prognostic effects of Imm-R model with 
common clinical parameters such as age, gender, BRAF status, 
KRAS status, MMR (Mismatch Repair) status, tumor location 
and TNM stage in the training set. Univariate Cox regression 
analysis indicated that KRAS status, TNM stage and Imm-R 
model were associated with OS (KRAS: p = .04; TNM stage: 
p = .018; Imm-R model p = 6.00 × 10−20; Table S2). Multivariate 
analysis confirmed that the Imm-R model was an independent 
prognostic factor (p = 4.61 × 10−11) for OS as shown in Table S2.

Nomogram construction and evaluation of calibration

The nomogram is a user-friendly graphical regression model with 
excellent applicability in clinical settings. Recently, nomograms 

Figure 1. The flow diagram of this study. In brief, four colorectal cancer (CRC) microarray datasets in the GEO database were included in the study at first. After 
filtering out patients who received preoperative treatment and whose microarray data did not pass the CIBERSORT quality control step, 183 cases in GSE39582 (Training 
set), 34 cases in GSE103479 (Validatiaon set1), 61 cases from GSE72968, and 38 cases from GSE72969 (combined as Validation set2) were selected. The prognostic effects 
of the 22 subpopulations of tumor-infiltrating immune cells (TIICs) were analyzed and three TIICs were selected to create the TIICs signature. Further, TIICs and immune- 
related genes were integrated to create the immune risk (Imm-R) model.
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have been widely used in the diagnosis and prognostic prediction 
of a variety of cancers. To improve the usability of the Imm-R 
model, we constructed a nomogram to depict the Imm-R model 
better (Figure 5a). The nomogram included above eight features, 
and a point for each feature was assigned based on the scale on the 
top. The total score was defined as the sum of the points of the 
eight variables. By drawing a perpendicular line from the total 
point axis to the two-outcome axis, estimated three- and five-year 

OS probabilities could be obtained (Figure 5a). To assess the 
goodness-of-fit of the nomogram, we compared the predicted 
three- and five-year survival probabilities to the actual three- and 
five-year survival probabilities using calibration plots (Figure 5b– 
d). The calibration curve revealed good concordance between the 
predicted and observed probabilities in both of the training set, 
validation set1 and validation set2. These results proved that the 
Imm-R model nomogram had very appropriate calibration.

Figure 2. Correlation between immune infiltration landscape and clinical features in CRC. (a) The abundance of four tumor-infiltrating immune cell subpopula-
tions (TIICs) which were significantly associated with TNM stage in the training set. CD8 + T cells (T cell CD8) was downregulated while Monocytes, Eosinophils and Mast 
cells activated were upregulated with increasing TNM stages (p < .05). (b) Correlation matrix of the CD8 + T cells, Monocytes, Eosinophils, and Mast cells activated. (c) Six 
TIICs (T cells CD4 memory resting, T cells follicular helper, T cells gamma delta, NK cells activated, Monocytes, and Macrophages M1) were associated with MMR status 
significantly (p < .05). dMMR, mismatch repair deficient; pMMR mismatch repair proficient. (d and e) T cells CD4 memory activated (d) and Macrophages M0 (e) were 
associated with KRAS mutation status (p < .05). WT-KRAS, wild-type KRAS; MT-KRAS, mutant KRAS.
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The effect of Imm-R model in patients receiving different 
fluoropyrimidine-based chemotherapy

It was not uncommon that clinical outcomes in patients who of 
the same stage and received the same therapeutic regimens 

varied, suggesting the limitation of the current prognostic 
model. We explored whether the Imm-R model could distin-
guish between high- and low-risk patients receiving different 
fluoropyrimidine-based chemotherapy. We observed that this 

Figure 3. Development and validation of the tumor-infiltrating immune cell signature. (a)–(c) High abundance of T cells follicular helper (Tfh)and M0 
macrophages (macrophages M0) were associated with better OS, while eosinophils was associated with worse OS in the training set (a), validation set1 (b) and 
validation set2 (c). (d)–(f) Kaplan–Meier curves for RFS/PFS of patients with high- and low TIICs risk scores in the training set (d), validation set1 (e), and validation set2 
(f). (g)–(i) Kaplan–Meier curves for OS of patients with high- and low TIICs risk scores in the training set (g), validation set1 (h), and validation set2 (i). (j)–(l) ROC curve for 
measuring the predictive value of the TIICs signature for OS and RFS/PFS in the training set (j), validation set1 (k), and validation set2 (l).
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Figure 4. Development and validation of the immune risk (Imm-R) model. (a) Tuning parameter (λ) selection in the LASSO-Cox regression model was performed 
using 10-fold cross-validation via the 1 standard error for the minimum criteria. The black vertical lines were plotted at the optimal λ based on the minimum criteria and 
1 standard error for the minimum criteria. (b) The LASSO coefficient profiles of the 61 immune-related genes and TIICs signature. A coefficient profile plot was produced 
versus the log (λ). (c) Parameters of Imm-R model. p values of features were indicated by the color scale presented on the side. Horizontal bars represent 95% confidence 
intervals. (d) and (e) Kaplan–Meier curves for RFS (d) and OS (e) of patients with high- and low Imm-R scores in the training set. (f) and (g) Kaplan–Meier curves for RFS 
(f) and OS (g) of patients with high- and low Imm-R scores in the validation set1. (h) and (i) Kaplan–Meier curves for PFS (h) and OS (i) of patients with high- and low 
Imm-R scores in the validation set2. (j)–(l) ROC curves for measuring the predictive value of the Imm-R model in the training set (j), validation set1 (k), and validation set2 
(l). (m) and (n) Construction and analysis of risk scores in the training set and validation set2. Top panels: the risk scores of individual patients. Middle panels: the survival 
status and survival times of the patients distributed by risk score. Bottom panel: heatmap of the levels for the eight predictive factors distributed by risk score.
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model could well stratify CRC patients who treated with 5-FU, 
FUFOL and FOLFIRI (p<.01). The Imm-R model could also 
distinguish high-risk patients who received FOLFOX treatment 
but only with marginal significance (p= .057, Figure 5e).

Biological annotation of Imm-R model

To explore the underlying biological mechanisms of the Imm- 
R model, we performed Gene Set Enrichment Analysis (GSEA) 
based on the microarray datasets from the training set. Patients 
were divided into two groups according to the median value of 
their Imm-R scores. The results observed that several pathways 
related to tumor growth and proliferation were significantly 
activated in those high-risk patients, included the TGF-beta 
signaling pathway, PI3K-Akt signaling pathway, Ras signaling 
pathway, and Wnt signaling pathway (Figure 6a), reflecting the 
active tumor proliferation in high-risk patients. Inversely, 

several pathways related to DNA damage and repair, such as 
the mismatch repair, base excision repair, and DNA replication 
pathways were significantly upregulated in low-risk patients 
(Figure 6b).

In order to further clarify the connection of Imm-R and the 
mechanism of 5-FU resistance, we performed differential 
expression analysis based on the GSE81005 datasets derived 
from wild type and 5-FU-induced resistant HCT8 human CRC 
cell lines.37 In total, 801 genes were significantly upregulated 
and 399 genes were significantly down-regulated in the 5-FU 
resistant HCT8 cells (HCT8/5-FU) compared with wild type 
HCT8 cells (HCT8/WT) (Figure 6c). Pathway enrichment 
analysis indicated that TGF-beta signaling pathway was sig-
nificantly upregulated in the HCT8/5-FU cells and the expres-
sion of hub genes in the TGF-beta signaling pathway were 
significantly increased in the HCT8/5-FU cells (Figure 6(d 
and e)).

Figure 5. Nomogram for predicting OS probabilities of CRC patients receiving fluoropyrimidine-based chemotherapy. (a) The nomogram for predicting the 
three- and five-year OS probabilities of CRC patients receiving fluoropyrimidine-based chemotherapy. Points are assigned for eight features. The score for each feature 
was calculated by drawing a line upward to the 'Points' line, and the sum of the eight scores was 'Total Points'. The total points on the bottom scales correspond to the 
predicted three- and five-year survival. (b–d) Calibration curves for predicting three- and five-year survival OS in training set (b), validation set1 (c), and validation set2 
(d). X-axis: predicted survival produced by the nomogram; Y-axis: actual survival. Dashed lines represented an identical calibration model in which predicted OS 
approximates to actual OS. (e) Kaplan–Meier curves for OS of patients receiving 5-fluorouracil (5-FU); 5-FU and folinic acid (FUFOL); 5-FU, leucovorin, and irinotecan 
(FOLFIRI); and 5-FU, leucovorin, and oxaliplatin (FOLFOX), respectively.
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Figure 6. Gene set enrichment analysis indicated significant pathways associated with the immune risk (Imm-R) model. (a) Upregulated KEGG pathways in 
high-risk patients. (b) Downregulated KEGG pathways in high-risk patients. (c) Volcano plots showed the differential expressed genes (DEGs) between HCT8/5-FU (5-FU 
resistant) and HCT8/WT (Wild type). Red dots represented the significantly upregulated DEGs (UP) in HCT8/5-FU group. Blue dots represented the significantly 
downregulated DEGs (DOWN) in HCT8/5-FU group. Black dots represented non DEGs (NS). (d) Enrichment diagram of TGF-beta signaling pathway. (e) Heatmap showed 
the expression of hub genes in the TGF-beta signaling pathway in HCT8/5-FU and HCT8/WT group. (f) The expression of eight hub genes in the TGF-beta signaling 
pathway in high-risk and low-risk patients in training set.
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We investigated the expression of hub genes in the TGF- 
beta signaling pathway between the high risk and low risk 
patients in the training set. As predicted, seven out of eight 
hub genes (TGFB2/3, SMAD1/2/5/7/9, and TGFBR1) were 
significantly increased in the high risk group (figure 6f). 
These results indicated that activation of TGF-beta signaling 
pathway might play a pivotal role in 5-FU resistance.

Immune checkpoints represent an immunosuppressive 
mechanism that allows cancer cells to escape anti-tumor 
immunity. Some immune checkpoint molecules have been 
identified as potential immunotherapeutic targets,38 such as 
PD-1, PD-L1, CTLA-4, LAG-3, and TIM3.21 We analyzed the 
association between Imm-R scores and the expression of 
immune checkpoint molecules. In patients with low risk, the 
expression of CTLA-4 was increased compared with patients 
with high risk (p = .043, Figure S6). However, there was no 
evidence of significant association between Imm-R scores and 
expression of PD-1, PD-L1, LAG-3, and TIM3 (Figure S6).

Correlations between the Imm-R scores and the clinical 
prognostic factors

We analyzed the correlations between the Imm-R scores and 
clinical prognostic factors, including gender, T stage, N stage, 
M stage, tumor location, KRAS mutation status, microsatellite 
state, BRAF mutation status, p53 mutation status, CpG island 
methylator phenotype, and chromosomal instability. Patients 
were stratified into different groups by each clinical factor and 
the Imm-R scores of different subgroups were compared. As 
shown in Figure S7, the Imm-R scores were significantly lower in 
patients with wild-type KRAS genotype and dMMR, suggesting 
that Imm-R score was intrinsically related to KRAS status and 
dMMR. However, no significant correlations were found 
between Imm-R scores and gender, T stage, N stage, M stage, 
tumor location, BRAF mutation status, p53 mutation status, 
CpG island methylator phenotype, or chromosomal instability.

Discussion

Fluoropyrimidine is an important component of systemic che-
motherapeutic regimens for CRC patients in palliative and adju-
vant settings.5 However, patient response rates to 
fluoropyrimidine-based chemotherapy remain low, and 
a significant proportion of patients experience substantial side 
effects, without benefiting from chemotherapy. The prediction 
of response to chemotherapy is critical for effective treatment of 
CRC. An increasing number of studies indicate that the immune 
response is implicated in chemotherapy-induced cytotoxicity.27 

Here, we developed and validated a TIICs- and IRGs-based 
Imm-R model for prognostic prediction of CRC patients receiv-
ing fluoropyrimidine-based chemotherapy. The Imm-R model 
achieved favorable discrimination and calibration in both the 
training and the validation sets for identification of high-risk 
patients. Biological pathways involved in the risk model include 
activation of cell growth, proliferation and immune-related 
pathways, as well as defects in DNA damage and repair path-
ways. Our findings provide new insights into the role of immune 
responses in modulating patient response to fluoropyrimidine- 
based chemotherapy, with potential implications for 

personalized follow-up and decision-making regarding indivi-
dualized chemotherapy in CRC patients.

The balance between the TIICs and the cancer cell population 
in the tumor microenvironment plays an important role in tumor 
progression.39 The presence of TIICs within the tumor microen-
vironment is considered to reflect the immune interaction 
between the host and tumor.40 Complex biological interactions 
occur between immune cells and cancer cells in the tumor micro-
environment, which have substantial prognostic relevance 
because the immune system plays both tumor-promoting and - 
suppressing roles.41 In the present study, we developed TIICs- 
based immune infiltration risk scores comprising Tfh, M0 macro-
phage, and eosinophil populations. Tfh and M0 macrophages 
were associated with favorable prognosis while eosinophils was 
an indicator of poor prognosis. Tfh is a specialized subset of CD4 
+ helper T cells present in the lymphoid organs and in peripheral 
blood.42 Inducible costimulator (ICOS), C-X-C chemokine recep-
tor type 5 (CXC-R5), and PD-1 are classic cell surface markers of 
Tfh cells,43 which play a key role in the development of antigen- 
specific B cells.44 Numerous studies suggest that Tfh cells exhibit 
antitumoral immunity45 by promoting the effector functions of 
CD8 + T cells via the secretion of IL-21, which is downregulated 
due to PD-1/PD-L1-mediated suppression.46 We found that Tfh 
cells were associated with favorable prognosis in patients receiving 
fluoropyrimidine-based chemotherapy, which indicated that Tfh 
cells might be a potential prognostic marker in the context of 
fluoropyrimidine treatment. Among various TIICs, macrophages 
of the M0 and M1 subtypes show the highest infiltration in TME 
compared with that in normal tissues.47 Indeed, recent studies 
support the view that fully polarized macrophages (M1 and M2) 
are the extremes of a continuum of macrophage polarization.48 

M0 is the unactivated subtype, while M1 activates the inflamma-
tory response and participates in the antitumoral response. M2 
inhibits T cell proliferation and promotes tumor proliferation. 
A recent study found that the abundance of M0 and M1 subtypes 
was increased in TME of CRC tissues compared with that in 
normal tissues, indicating that these subtypes were implicated in 
CRC development and progression.49 There was evidence to show 
that high densities of tumor-associated macrophages strongly 
predict the benefitting from 5-fluorouracil adjuvant therapy in 
stage III CRC patients.50 Besides, in-vitro study indicated that 
exposure of M0 macrophages to 5-FU increased the expression 
of the M1-marker, which significantly enhanced the cytotoxicity. 
Eosinophils are evolutionarily conserved cells and are mainly 
studied in the context of allergies. Recent data indicate that 
eosinophils function as immune effectors and immunomodula-
tors in the tumor microenvironment.51 Tumor-infiltrating eosi-
nophils is associated with improved survival of CRC patients.52,53 

However, in the present study we found that infiltration of eosi-
nophil was associated with a poor prognosis in CRC patients 
receiving 5-FU chemotherapy. Whether there is an interaction 
between eosinophils and 5-FU needs to be further investigated. In 
addition to the tumor immune microenvironment, which can 
affect the response to chemotherapy, chemotherapeutic agents 
can also affect the tumor immune microenvironment.54 For 
example, oxaliplatin-induced tumor cell death invoked tumor- 
targeting immune responses, as shed tumor antigens captured 
and presented by dendritic cells causing activation of cytotoxic 
T lymphocytes.55,56 Interestingly, we found that no significant 

10 X. MO ET AL.



difference in OS between the Imm-R model-defined high- and 
low-risk patients when receiving FOLFOX (5-FU, leucovorin, and 
oxaliplatin). A possible explanation is that oxaliplatin promotes 
immunogenic death in high-risk patients.

Significant breakthroughs have been made in cancer immu-
notherapy; in particular, IRGs offer potential for the identifica-
tion of new molecular targets for cancer immunotherapy.57 In 
the present study, we identified seven IRGs with potential 
prognostic significance in patients receiving fluoropyrimidine- 
based chemotherapy. CCL22 plays an important role in the 
regulation of the tumor microenvironment.58 A recent study 
indicated that CCL22 could be used as a biological factor to 
evaluate tumor chemotherapy response and progression in 
CRC.59 These previous findings along with the current results 
highlight the potential application of CCL22 for enabling 
improved management of adjuvant chemotherapeutic regi-
mens in patients with CRC during preoperative and postopera-
tive evaluation. FGF19 belongs to the fibroblast growth factor 
(FGF) family, which exhibits broad mitogenic and cell survival 
activities. FGF19 expression is increased in CRC samples, and 
FGF19 blockade has been shown to inhibit the growth of colon 
tumors.60 LGR5 is a promising marker of cancer stem-like cells 
in colorectal cancer.61 Overexpression of LGR5 is associated 
with poor survival and recurrence in CRC.62 Furthermore, 
LGR5 is a predictive marker for fluoropyrimidine-based adju-
vant chemotherapeutic response in CRC, which was in line 
with our results.63 TACSTD2 is up-regulated in CRC and 
associated with response to short-term 5-fluoropyrimidine 
treatment in P53-depleted HCT116 colon cancer.64 IRGs in 
our established Imm-R scores can be regarded as individual 
biomarkers, and their immune features and prognostic signifi-
cance may enable better management of patients receiving 
fluoropyrimidine-based chemotherapy.

Although the present findings provide new insights into the 
impact of immune responses on outcomes of fluoropyrimi-
dine-based chemotherapy, there are limitations to our work. 
First, the data on which the prediction model was built were 
obtained from public databases, and it was not possible to 
obtain all information needed for each patient which may affect 
the accuracy of results. Second, there was significant hetero-
geneity in the patients in the study. For example, GSE39582 
contained patients with stages II–IV, and GSE103479 derived 
from CRC patients with stage II–III, while GSE72968 and 
GSE72969 included patients with metastatic CRC. Although 
the risk model was validated in different populations, this study 
might overlooked factors that had a potential impact on the 
risk model. Third, although the expression profiling data 
included in this study were all derived from gene microarray, 
different sources of gene microarrays, different analysis proce-
dures may affect the accuracy of this study. Fourth, the statis-
tical tests widely used in this study and the resulting false 
positives required attention.

In summary, we systematically identified prognostic TIICs 
and IRGs and developed and validated a TIICs- and IRGs- 
based Imm-R model for identifying CRC patients receiving 
fluoropyrimidine-based chemotherapy with poor prognosis. 
These results have potential implications for personalized fol-
low-up and decision-making regarding individualized che-
motherapy in CRC patients.

Materials and Methods

CRC datasets and preprocessing

We systematically searched publicly available CRC gene 
expression data sets on Gene Expression Omnibus (GEO) 
database fulfilled the following criteria: (1) tumor samples 
derived from CRC patients receiving fluoropyrimidine-based 
chemotherapy, (2) gene expression was detected by microarray 
or high-throughput sequencing, (3) chemotherapy and prog-
nosis was available. Exclusion criteria included: (1) samples 
derived from in vitro or in vivo experiments or human xeno-
grafts, (2) data set cannot be processed. In total, we collected 
four datasets (GSE39582,65 GSE103479,66 GSE72968,67 and 
GSE7296967). Dataset GSE39582 contained patients with 
stage II–IV, and GSE103479 derived from CRC patients with 
stage II–III, while GSE72968 and GSE72969 included patients 
with metastatic CRC. GSE39582 served as the training set and 
GSE103479 served as the validation set1. GSE72968 and 
GSE72969 were generated using the same microarray platform 
by the same research group in France, so we combined them 
into validation set2. GSE39582, GSE72968 and GSE72969 were 
generated using the Affymetrix Human Genome U133 Plus 2.0 
Array and GSE103479 was generated by Almac Diagnostics 
Custom Xcel array. The raw data of all microarray datasets 
were downloaded from GEO and subjected to background 
adjustment using the RMA algorithm.68 The microarray 
probe set was then mapped to the gene symbol according to 
the platform annotation file. Corresponding clinical character-
istics of CRC samples were also obtained. Overall survival is 
defined as the length of time from the date of diagnosis to 
death. Recurrence-free survival is defined as the length of time 
after primary treatment ends that the patient survives without 
any signs or symptoms of CRC.

In order to investigate the potential mechanisms of 5-FU 
resistance, we downloaded a microarray dataset (GSE81005) 
derived from wild type and 5-FU-induced resistant HCT-8 
human colorectal cancer cells. GSE81005 was detected by 
Affymetrix Human Gene Expression Array. The raw data of 
the microarray datasets were downloaded from GEO. Datasets 
were normalized and annotated as described above.

Inference of infiltrating cells in the tumor 
microenvironment

To evaluate the abundance of TIICs in the CRC samples, we 
employed the LM22 gene signature and the CIBERSORT algo-
rithm, which could sensitively and specifically discriminate 22 
human immune cell phenotypes (B cells, T cells, NK cells, 
macrophages, DCs, and myeloid subsets).69 CIBERSORT is 
a deconvolution algorithm based on support vector regression, 
which uses a set of reference gene-expression values corre-
sponding to a minimal representation for each cell type to 
infer cell type proportions in data from bulk tumor samples 
with mixed cell types. The CIBERSORT algorithm can, in 
particular, be used to derive the proportion of cells in complex 
microarray data.17 Using Monte Carlo sampling, CIBERSORT 
calculates the empirical p value of the deconvolution to indi-
cate the accuracy of the results, while a p value of <0.05 
indicates that the inferred cell composition is highly 
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reliable.29 Therefore, we only retained CRC samples with 
CIBERSORT p values <0.05 for subsequent analysis.

Construction and validation of tumor-infiltrating immune 
cell signature

In the training set, we first applied the univariable Cox propor-
tional hazards regression model to define the prognostic value 
of the TIICs for overall survival (OS). The optimal cutoff values 
of the proportions of different TIICs in the training cohort 
were calculated on the basis of the prognostic significance 
using X-Tile software.70 TIICs with significant prognostic 
value were first validated in the validation set. TIICs with 
significant prognostic value in both training set and validation 
set were analyzed using the multivariate Cox proportional 
hazards regression model, and those with a p value < 0.05 
were used to construct the TIICs signature. The individual 
TIICs scores were calculated based on the immune cell signa-
ture. A formula for the TIICs scores was established to predict 
patient survival: TIICs scores = (−0.990 × abundance of Tfh) 
+(−0.731 × abundance of Macrophages M0) + (0.655 × abun-
dance of Eosinophils). The prognostic performance of the 
TIICs signature was evaluated using the receiver operating 
characteristic (ROC) curve and area under the curve (AUC).

Construction and validation of the immune risk (Imm-R) 
model

We integrated the IRGs and TIICs signature to develop the Imm- 
R model. A functionally annotated list of IRGs (n = 1811), using 
Gene Ontology, was downloaded from ImmPort, and a list of 
genes related to antitumor immunity as reported in literatures was 
obtained from TISIDB (n = 988). Merging the two lists and 
removing duplicate genes resulted in 2404 unique IRGs. We 
first performed univariate Cox regression analysis for preliminary 
screening of survival-associated IRGs in the training set. Genes 
entered the model as continuous variables. Based on a significance 
threshold of p value < 0.05, the significative IRGs determined by 
univariate Cox regression analysis and TIICs risk scores were 
subjected to LASSO-penalized Cox regression analysis. In this 
regression analysis, the penalty parameter lambda.1se for preven-
tion of overfitting was selected using 10-fold cross validation.71 

The features selected by LASSO-penalized Cox regression were 
subsequently entered into the multivariate Cox proportional 
hazards regression model. Finally, features with p values < 0.05 
in the multivariate Cox proportional hazards regression model 
were used for construction of the Imm-R model. A formula for 
the Imm-R score was established to predict patient survival:

Imm-R score = (−0.939× PSMD3)+(−1.304× CCL22) 
+(0.319× FGF19)+(−0.228× LGR5)+(0.665× SKAP1) 
+(0.182× TACSTD2)+(0.329× S100A4)+(0.809× TIICs scores)

The individual Imm-R score in both training set and valida-
tion set was calculated according to the formula accordingly.

A nomogram was used to visualize the Imm-R model and 
predict the three-year and five-year survival rate. The ROC curve 
and AUC were used to evaluate the discrimination, and the calibra-
tion curve was used to evaluate the goodness of fit of the Imm-R 
model.

Biological significance of the Imm-R model

To explore the biological implication of the Imm-R model, 
we performed a gene set enrichment analysis (GSEA) using 
the clusterProfiler R package.72,73 The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways and Gene ontology 
(GO) biological process were evaluated. Differential expres-
sion analysis was performed using the “limma” package with 
False Discovery Rates (FDR) <0.05 and |logFC| >1 as the 
threshold.

Statistical analysis

In this study, all statistical analyses were performed using 
R software (version 3.5.1; https://www.Rproject.org/). 
Continuous variables were compared using Student’s t-tests 
or Wilcoxon rank-sum tests. Survival analyses were conducted 
using the Kaplan–Meier method with log-rank test by ‘survival’ 
package. Feature selection and model construction were con-
ducted with Univariate and Multivariate Cox regression. Time- 
dependent ROC curve and LASSO Cox regression analysis 
with 10-fold cross-validation and nomogram were estimated 
using R packages74 (survivalROC, glmnet, rms). Unless other-
wise stated, statistical significance was defined at p values < 
0.05. The planned sample size was calculated with α of 0.05, β 
of 0.2 and HR of the risk score in the training set.
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