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Abstract: A common problem in through-wall radar is reflected signals much attenuated by wall
and environmental noise. The reflected signal is a convolution product of a wavelet and an unknown
object time series. This paper aims to extract the object time series from a noisy receiving signal of
through-wall ultrawideband (UWB) radar by sparse deconvolution based on arctangent regulariza-
tion. Arctangent regularization is one of the suitably nonconvex regularizations that can provide a
reliable solution and more accuracy, compared with convex regularizations. An iterative technique
for this deconvolution problem is derived by the majorization–minimization (MM) approach so that
the problem can be solved efficiently. In the various experiments, sparse deconvolution with the
arctangent regularization can identify human positions from the noisy received signals of through-
wall UWB radar. Although the proposed method is an odd concept, the interest of this paper is in
applying sparse deconvolution, based on arctangent regularization with an S-band UWB radar, to
provide a more accurate detection of a human position behind a concrete wall.

Keywords: sparse deconvolution; majorization–minimization (MM) algorithm; arctangent regular-
ization; through-wall radar; UWB radar

1. Introduction

Basic deconvolution is the process of extracting the unknown input signal (x) of a
linear time-invariant system (y = Hx in matrix form) when the noise-free output signal
(y) and wavelet (H) are known. However, in real-world applications, the output signal
(y) is noisy and distorted by inhomogeneous media, such as ground-penetrating radar
(GPR) [1,2], seismicity [3,4], radars [5–8], astronomy [9], speech recognition [10,11], and
image reconstruction [12–15]. Nowadays, sparse deconvolution plays an important role
in extracting the original data from the noisy received signal; it has been widely used
in denoising, interpolation, super-resolution, and declipping [16–26]. Whereas linear
time-invariant (LTI) filters, such as low-pass, band-pass and high pass, have amplitude
distortions on the original signal resolution [27–35].

The sparse deconvolution algorithm is a numerical method to restore the original
signal by optimization formulation with L1 norm regularization. L1 norm regularization
could effectively remove noise and rectify parts of signal distortion [21–36]. Meanwhile,
L2 norm regularization fails to remove noise, while aggravating signal distortion, and
the Lp pseudo-norm regularization (0 < p < 1) completely removes noise and corrects
most of the signal distortion [20,21]. However, the Lp pseudo-norm suffers from noncon-
vex optimization, which, in turn, leads to the erroneous local optimal point of the cost
function [37].

As a result, this research utilizes a nonconvex arctangent regularization function
which is parameterized by a parameter tuner to avoid the nonconvex optimization of the
cost function, and, thus, realize the local optimal point [32–37]. This advantage will be
applied in through-wall UWB radar application, in this paper, to extract human ranges
behind a wall from a noisy received signal. The advantages of UWB radars, which work
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by emitting short pulses of high-frequency electromagnetic wave (EM), are that they can
provide high penetration, high-range resolution, less harm to human health, and lower
power consumption, compared with continuous-wave radars [16]. UWB radars are thus
suitable for through-wall applications and the detection of human subjects behind solid
objects [38–46]. The S-band frequency range (2–4 GHz) was used in the proposed radar
scheme to provide both high spatial resolution and wall penetration [38–48].

In previous works [43,44,48], UWB radars identified human objects behind a wall
by detecting respiration rate. However, UWB radar algorithms for respiration and/or
heartbeat detection need to capture received signals at least 512 times per minute (60 s),
for over 1 cycle vital sign signal, with Nyquist sampling condition. As a result, we
are interested in the sparse deconvolution algorithm with arctangent regularization for
reconstruing human range from only one received signal, and for faster detection. This
method provides high performance for detecting humans by range movement, but it
is difficult to distinguish between a standing human and static objects. In real-world
applications, humans have motions so that the detectable range is sufficient for obtaining
their positions [41].

The organization of this research is as follows: Section 1 is the introduction. Section 2
details the theoretical background of convolution, deconvolution, and sparse deconvo-
lution. Section 3 describes sparse deconvolution with arctangent regularization and the
majorization–minimization algorithm. Section 4 deals with the experimental setup and
results in the detection of human subjects behind a wall. The concluding remarks are
provided in Section 5.

2. Theoretical Background

We begin this paper with necessary background knowledge for reconstructing target
signals in through-the-wall UWB radar application, which briefly introduces convolution,
deconvolution, and sparse deconvolution with convex and nonconvex functions with the
MM algorithm.

2.1. Convolution Model

A block diagram of the UWB radar system is experimentally determined in Figure 1.
When the transmitter emits, part of the energy is reflected off the wall, and objects detected
by receivers are then captured by an oscilloscope [43–45].

Figure 1. Block diagram of the through-wall UWB radar scheme.

A recorded radar data is a linear system where a UWB wavelet h(t) is convolved with
the reflectivity series x(t). In practice, the radar data (y) can be expressed in a matrix form
with environmental noise (see details in [1]).

y = Hx + w (1)

For complexity reduction of matrix inversion, the reflectivity series (x) will be assumed
to be the same size of y, where y ∈ RN is the received signal in vector form, x ∈ RN is the
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reflectivity series (sparse signal) in vector form, w ∈ RN is white Gaussian noise in matrix
form, and H ∈ R N×N is a convolution matrix.

H =



h0 0 0 · · · 0

h1 h0 0
. . . 0

h0 h1
. . . . . .

...
...

. . . . . . h0 0
hN−1 · · · h2 h1 h0


= A−1B (2)

The convolution matrix H is a Toeplitz structure and determined as H = A−1B, where
A and B are band matrices (sparse matrix) ∈ RN×N [36]. If the matrices A and B are so far
from the band matrix, such as N = 2, then also A−1B, based on the Equation (2), is so far
from the exact result.

A =



a0 0 0
... 0 0

a1 a0 0
. . . . . . 0

... a1
. . . . . . . . .

...

aj
...

. . . a0 0 0

0
. . .

... a1 a0 0
0 0 aj · · · a1 a0


(3)

B =



b0 0 0
... 0 0

b1 b0 0
. . . . . . 0

... b1
. . . . . . . . .

...

bi
...

. . . b0 0 0

0
. . . . . . b1 b0 0

0 0 bi · · · b1 b0


(4)

where the matrix elements of A and B consist of aj and bi coefficients. The aj and bi are de-
rived from the Z-transform of the wavelet (Gaussian pulse) h(n), where h(n) = nrn sin(ω0n)
for analysis of A and B band matrices [36]. The Z-transform of the wavelet is mathemati-
cally expressed.

Z{h(n)} = Z{nrn sin(ω0n)} = Z{n f (n)} = −z
dF(z)

dz
(5)

where f (n) = rn sin(ω0n)↔ F(z) = r sin(ω0n)Z−1/
(
1− 2r cos(ω0n)Z−1 + r2Z−2) gi-

ven 0 < |r| < 1. Substituting F(z) to −zdF(z)/dz in the Equation (5), we have

Z{nrn sin(ω0n)} =
r sin(ω0)Z−1 − r3 sin(ω0)Z−3

1− 4r cos(ω0)Z−1 + {4r2 cos2(ω0) + 2r2}Z−2 − 4r3 cos(ω0)Z−3 + r4Z−4 =
b
a

(6)

The Equation (6) is of four order
(
Z−4) and the coefficients aj and bi are derived from

the denominator and numerator in Equation (6)

a = [a0, a1, a2, a3, a4] =
[
1,−4r cos(ω0), 4r2 cos2(ω0) + 2r2,−4r3 cos(ω0), r4

]
(7)

and
b = [b0, b1, b2, b3] =

[
0, r sin(ω0), 0,−r3 sin(ω0)

]
(8)
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where r is the pole radius and ω0 is a normalized angular frequency (ω0 = ω/fs) as a
function of the transmitting frequency (ω = 2πf) and the sampling frequency (fs).

Figure 2a illustrates the reflectivity series x(n) (black line) and wavelet h(n) (green
line) of UWB radar with three behind-the-wall objects. Given the reflectivity series
x(n) = δ (n − 30) + 0.7δ (n − 80) + 0.5δ (n − 100) + 0.3δ (n − 130) with other indexes
x(n) = 0, the first spike is assumed as the wall reflection. Figure 2b shows the noisy signal
(y = Hx + w). The coefficients aj and bi were derived from Equations (7) and (8) to create
the convolution matrix H, given r = 0.9 and ω0 = 0.4π. The standard deviation (σ) of white
Gaussian noise (w) was 0.5. We aim to find the object time series from the noisy data y,
described in the next section.

Figure 2. Reflected received signal of through-wall UWB radar, given three behind-the-wall objects:
(a) the reflectivity series and wavelet (impulse response), (b) noisy signal.

2.2. Deconvolution Model

Deconvolution is estimating x from y (y = Hx + w), but x cannot be directly solved
by rearranging in the form of x = H−1(y−w) or x ≈ H−1y, because H may be singular
and non-square matrices that H has no inverse form [1–22]. The alternative approach to
estimating x is by minimizing the cost function F(x) = ||y−Hx||22. The estimated signal
^
x is derived by optimizing the cost function.

^
x = argmin

x∈RN
||y−Hx||22 =

(
HTH

)−1
HTy (9)

The estimated signal
^
x is as consistent with y as possible, according to the square error

criterion; however, HTH may not be invertible. To avoid this problem, we must add a
regularization term into the cost function; as shown below, it is the solution to the more
general problem [20,41].

F(x) = ||y−Hx||22︸ ︷︷ ︸
closed convex function

+ λ ∑
n

φ(x(n))︸ ︷︷ ︸
regularization

(10)
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It is the cost function in the general form to solve the solution x, as well known
x = argmin F(x), where ||y−Hx||22 is a closed convex function to force x to be consistent
with the measured signal y. φ(x) is a regularization term (or penalty function) that can
enhance some desired features of x, and λ is the regularization parameter that balances the
importance of data fidelity about the estimated signal x.

In the case of the low noise received signal y, we can roughly estimate the reflectivity
series x by the optimization problem, Equation (10), with the regularization term of small
energy (L2 norm) [1–22], ∑

n
φ(x(n)) = ||x||22.

^
x = argmin

x∈RN

||y−Hx||22 + λ||x||22︸ ︷︷ ︸
L2 norm

 =
(

HTH + λI
)−1

HTy (11)

where I is the identity matrix. The notation x2
2 represents the sum of squares of the vector x,

x2
2 = |x1|2 + |x2|2 + . . . + |xN |2.

2.3. Sparse Deconvolution Model with L1 Norm (Convex Regularization)

Given the limitation of L2 norm regularization and the noisy characteristic of received
signal y, we can easily estimate x to be a sparse signal (spike) from y by minimizing
Equation (10) with a convex regularization term of the L1 norm [1–22], ∑

n
φ(x(n)) = x1.

^
x = argmin

x∈RN

||y−Hx||22 + λ||x||1︸ ︷︷ ︸
L1 norm

 (12)

where x1 is called L1 norm regularization (convex regularization) represented by the sum
of absolute values of vector x, x1 = |x1|+ |x2|+ |x3|+ . . . + |xN |. The Equation (12) is the
sparse signal deconvolution problem in a simple form; this problem cannot be solved in an
explicit form, because the cost function is not differentiable. It must be solved by using
an iterative numerical algorithm; this research used the majorization–minimization (MM)
algorithm, which will be discussed in the next section.

3. Sparse Deconvolution Method

This section has been divided into three parts. Section 3.1 and 3.2 propose the arctan-
gent regularization and numerical method for this sparse deconvolution, respectively. The
last part presents a flowchart of the proposed method for through-wall UWB radar.

3.1. Sparse Deconvolution with Arctangent Regularization (Non-Convex Regularization)

To improve signal sparsity, the L1 norm (convex) regularization in Equation (12)
could be replaced with a nonconvex regularization [20–22]. In this paper, the nonconvex
arctangent regularization in Equation (13) was used in place of the L1 norm to improve the
detection performance of the through-wall UWB radar scheme. Arctangent regularization
can provide reliable minimization and a fast solution using the MM algorithm, see Section
II-E in [37]. The arctangent function φatan(x, α) is a parameterized regularization with α > 0
(e.g., logarithmic and first-order ration) and is mathematically expressed as

φatan(x, α) =

{
2

α
√

3

(
tan−1

(
1+2α|x|√

3

)
− π

6

)
, α > 0

|x| , α ≈ 0
(13)

The derivative of φatan is written as shown below, to prepare in the MM algorithm.

φ′atan(x, α) =

{
1

α2x2+α|x|+1 sign(x), α > 0
sign(x) , α ≈ 0

(14)
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where 0 < α < 1/λ is a tuner parameter to avoid nonconvex optimization. The arctangent
function is continuous, symmetric, twice differentiable on R\{0}, increasing on R+, and con-
cave on R+. The right-sided second derivative is φ

′′
atan(0

+) = −α. A sparse deconvolution
with arctangent regularization is given by

^
x = argmin

x∈RN

{
||y−Hx||22 + λ ∑

n
φatan(x(n))

}
(15)

3.2. Minimizing the Cost Function Using Majorization-Minimization (MM) Approach

Sparse deconvolution with L1 norm, Equation (12), and arctangent regularization,
Equation (15), cannot be carried out directly because both equations are not differentiable.

To estimate the sparse signal
^
x, MM algorithm was utilized to minimize the cost function

F(x) by sequentially minimizing the quadratic majorizer G(x), as shown in Figure 3a.

Figure 3. (a) Cost function F(x) and its quadratic majorizer G(x); (b) regularization function λφ(x)
and its quadratic majorizer g(x).

This idea is that each G(x) is easier to solve than F(x). The MM approach produces a
sequence, xk+1, each being obtained by minimizing G(x) and converging to the minimizer
of F(x), where k is the iteration counter, k = 0, 1, 2, . . . , K. The updated point xk+1 is derived
by minimizing the quadratic majorizer G(x)

xk+1 = argmin
x∈RN

G(x) (16)

The function G(x) must always be the majorizer (upper bound) of the cost function
F(x), G(x) ≥ F(x), ∀x ∈ RN . The tangent point between G(xk) and F(xk) is related by

G(xk) = F(xk) and G′(xk) = F′(xk) (17)

In practice, the chosen majorizer G(x) should be relatively easy to minimize. The
easy-to-minimize function G(x) is written as

G(x) = ||y−Hx||22 + g(x) = ||y−Hx||22 + xTQkx + c(xk) (18)

where g(x) must be an upper bound for the regularization term λφ(x) in the cost function
F(x), as shown in Figure 3b. g(x) = xTQkx + c(xk), where c(xk) is constant vectors
independent of x; and Qk is a diagonal matrix,

Qk = λ ∗ diag
(
φ′(xk)./xk

)
(19)
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where “diag(.)” is the diagonal matrix operator and the notation ‘./’ denotes component-
wise division. Therefore, the MM update in Equation (16) by minimizing Equation (18)
with respect to x gives

xk+1 =
(

HTH + Qk

)−1
HTy (20)

Substituting H with A−1B obtains

xk+1 =

(
BT
(

AAT
)−1

B + Qk

)
︸ ︷︷ ︸

not band matrix

−1
BTA−Ty (21)

However, there are two problems, as follows [36]:

(1) The update xk+1 (Equation (21)) is mathematically valid, but it may become numeri-
cally inaccurate because the entries of Qk go to infinity when the components of xk go
to sparse (go to zero).

(2) Its inverse matrix is not banded due to (AAT)−1, which has a high computational cost;
so fast solvers cannot be used here.

To address both issues, the matrix inverse lemma was used to alter the non-banded
matrix to the banded matrix, given by(

BT
(

AAT
)−1

B + Qk

)
︸ ︷︷ ︸

not band matrix

−1
= Q−1

k −Q−1
k BT

(
AAT + BQ−1

k BT
)

︸ ︷︷ ︸
band matrix

−1
BQ−1

k (22)

Substituting Equation (22) into Equation (21) obtains

xk+1 = Q−1
k

[
BTA−Ty− BT

(
AAT + BQ−1

k BT
)−1

BQ−1
k BTA−Ty

]
(23)

It shows that the diagonal matrix Q−1
k cannot be infinity, even though xk is approaching

the sparse signal solution. The iteration counter xk+1 depends on Q−1
k starts with the initial

value x0 = y.

Q−1
k = Λ =

1
λ

diag
(

xk
φ′(xk)

)
=

1
λ



xk(1)
φ′(xk(1))

xk(2)
φ′(xk(2))

0
. . .

. . .

0
. . .

xk(N)
φ′(xk(N))


(24)

where xk./φ′(xk) for each scalar value of its matrix for L1 norm is given by

x
φ′(x)

= |x| (25)

and xk./φ′(xk) for arctangent function, according to Equation (14), is given by

x
φ′(x, α)

= |x|
(

1 + α|x|+ α2|x|2
)

(26)

to avoid non-convex optimization, the parameter tuner α is given by

0 < α <
1
λ

and λ ≈ 3std
(

HTw
)

(27)



Sensors 2021, 21, 2488 8 of 17

where ‘std’ is the standard deviation of HTw, and w is the white Gaussian noise [37].
Furthermore, reducing λ leads to an even noisier solution. Increasing λ leads to further
attenuation of both the solution and noise. An implementation of the MM algorithm is
given in Algorithm 1 to extract a sparse signal from a noisy received signal, where the
elements of the diagonal matrix, xk./φ′(xk), are denoted in Equation (26).

Algorithm 1. Sparse Deconvolution with MM Method, Where A and B Are Formed by
Equations (3) and (4).

Input: y ∈ RN, A, and B ∈ RN×N, λ, x/φ′(x)
Output x ∈ RN

x = y (initialization)
g = BTA−Ty
repeat

Λ← 1
λ diag

(
x(n)

φ′(x(n))

)
(diag (.) is diagonal matrix operator and x(n) is N samples of x)

F = AAT + BΛBT

x = Λg−ΛBTF−1BΛg
until convergence (optimization problem Equation (10) has F(xk+1) − F(xk) < 0.01)
return x

We illustrate an example in Figure 4 that, to extract the object time series from the noisy
signal in Figure 2, the reflectivity series x was assumed to have four objects, x = δ (n − 30)
+ 0.7δ (n − 80) + 0.5δ (n − 100) + 0.3δ (n − 130). Given λ = 2, we compare the normal
deconvolution by L2 norm Equation (11) to both sparse deconvolutions by the L1 norm
Equation (12) and arctangent Equation (15).

Figure 4. Comparison between the estimated sparse signal using deconvolution with L2 norm,
L1 norm, and arctangent regularizations.

In Figure 4, the estimated sparse signal using the normal deconvolution with L2 norm
regularization contained a great deal of noise, and was weak, rendering it inapplicable
to real-world radar applications. Meanwhile, in Figure 5, we can see that the L1 norm
solution is slightly attenuated compared with the arctangent solution, therefore, the sparse
deconvolution using the arctangent regularization will be included as an efficient method
to increase the detection performance for through-the-wall UWB radar, as described in the
next section.
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Figure 5. Comparison between the reflectivity series (True) and the estimated sparse signal using
deconvolution with L1 norm and arctangent regularizations.

3.3. Through-Wall UWB Radar with Sparse Deconvolution Based on Arctangent

The sparse deconvolution with arctangent regularization is so efficient in extracting
the sparse signal from the noisy reflected signal (raw data) that lowpass, bandpass, and
smooth filters are no longer required [16–22]. Figure 6 illustrates the steps for extracting
the sparse signal for through-wall UWB radars.

Figure 6. Block diagram of through-wall UWB radar with sparse deconvolution based on arctangent regularization.

In the first step, the noisy received signal was calibrated to remove the unwanted sig-
nals: [42–45]. Figure 7 illustrates the pre- and post-calibration (beyond t = 0) received signal.
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Figure 7. The pre-and post-calibration (beyond t = 0) received signal.

The calibrated received signal y(t) was mathematically expressed by

y(t) = y(t− τ) (28)

where τ is the time index of unwanted signals (i.e., antenna coupling, upon-impact wall
reflection, and inner-wall reflection), it can be calculated by

τ = t1 + 3 × 2
Dwall
vwall

, where vwall =
1

√
µ0ε0εr

(29)

where t1 is the first wall reflection derived by “findpeaks” (Matlab command); factor 3 is a
constant to allow sufficient time for upon-impact wall reflection and inner-wall reflection;
factor 2 is round-trip delay; Dwall is the wall thickness; vwall is the speed of the wave in
the wall; εr is the relative permittivity; and the permittivity (ε0) and permeability (µ0) of
vacuum are 8.854187 × 10−12 F/m and 4π × 10−7 H/m [42]. Note that the singular value
decomposition has been widely used to solve such problems, but it takes a long time to
process during its matrix inversion.

Second, before using the sparse deconvolution, the calibrated signal was down sam-
pled to avoid running out of memory throughout N × N matrix inversion (long calcula-
tions), given rdown is the down sampling ratio under the Nyquist sampling condition. In this
flow chart, the down sampling was done by the integer factor method (e.g., “downsample”
in Matlab). Besides, the N × N band matrices (A and B) must also be down sampled by
the same rdown, and the normalized angular frequency (ω0) was recalculated by

ω0 =
ωc

fs
= 2π fc(∆t ∗ rdown) (30)

where fc is the center frequency, ∆t is the time resolution of the analog-to-digital converter
(ADC), and rdown is the down sampling ratio.

4. Experiments with Human Subjects

Figure 8 depicts the experimental setup of the through-wall UWB radar scheme,
corresponding to the block diagram in Figure 1. Table 1 tabulates the specifications of the
experimental equipment and parameters.
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Figure 8. Experimental setup of the through-wall UWB radar.

Table 1. Equipment List.

Block Manufacturer Specifications

UWB source HP-8133A pulse generator 0.5 V Peak voltage, Central frequency 3 GHz
Tx and Rx antennas Vivaldi type (S-band) [48] 2–5 GHz, 10 dBi, angular width (3 dB) ≈ 45

PA ZVE-8G + Mini-Circuits 2–8 GHz, 30 dBm
LNA R&K-AA260-OS 2–5 GHz, 26 dBm

ADC Agilent Oscilloscope, Infiniium
DSO80604B Max frequency 6 GHz

USB port Agilent GPIB, 82357B Transfer over 850 KB/sec
Transmission power - −5 dBm, bandwidth of 2–5 GHz

Relative permittivity (εr) - εr = 4.5, concrete wall [47]
Thickness of the concrete wall - Approximately 10 cm

The experiments were carried out with a concrete wall approximately 20 cm in thick-
ness. The concrete wall was fashioned from three columns of concretes. In Figure 8, the
S-band UWB pulse (2–4 GHz) from the UWB source was fed into the power amplifier (PA)
and to the Vivaldi Tx antenna. The reflected signal received by the Vivaldi Rx antenna was
amplified by the low-noise amplifier (LNA) and sent to the oscilloscope. The oscilloscope
captured the received signal and transferred it to a computer via a GPIB port. The data
were then discretized by MATLAB 2018a for sparse deconvolution.

4.1. Calibrating Recevied Signal

When the system obtains the received signal from the oscilloscope, as shown below
(example at 3 m), it will be calibrated by using Equation (28) to remove the wall and
antenna responses.

From Figure 9, the duration of the received signals captured by the oscilloscope was
35 ns, with a time resolution (∆t) of approximately 3.125 ps. The received data were
discretized into 11,100 data points. According to the flow chart in Figure 6, the received
signal was calibrated by Equation (28) with the zero-offset τ = 11 ns by computing Equation
(29), with t1 = 6 ns (first wall reflection), Dwall = 10 cm (the wall thickness), εr = 4.5 (the
relative permittivity) [47], and vwall = 1.4132 × 108 m/s (the speed of the wave in the
concrete wall).
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Figure 9. Rawdata at the human range of 3 m.

This calibration is easy and provides quite accurate evaluation, but requires a lot of
parameters to work, which is suitable for the known material and thickness of the wall. In
a realistic context, with variable obstacles and, sometimes, no obstacle at all, the antenna
and wall coupling problems can quickly be removed by observing the setting time shift of
the received signal [48]. Note that the singular value decomposition has been widely used
to solve such a problem, but it takes a long time to process during its matrix inversion.

Next, the calibrated signal was down-sampled by “downsample” command MATLAB,
where the normalized frequency (ω0) was evaluated in Equation (30), ω0 = 2π3 × 109 ×
3.125 × 10−12 × 4 = 0.2356 rad/sample with fc = 3 GHz, ∆t = 3.125 ps, and rdown = 4. The
down-sampling directly reduced the calcaultion time of the inverse matrix of the sparse
deconvolution, from (N × N) to (N/4 × N/4), dimension while maintaing the Nyquist
sampling condition [37].

4.2. Sparse Deconvolution Results

Human range was extracted from the calibrated signal by using the sparse decon-
volution based on the arctangent regularization, accoding to Algorithm 1. The A and
B matrices in Algorithm 1 were calculated from Equations (3) and (4), fixed r = 0.9 and
ω0 = 0.2356 rad/sample, respectively. To avoid nonconvex optimization, the deconvolution
parameters λ and α were 0.4 and 0.9/λ, respectively, by evaluating the Equation (27) [37].

The experimental results, as shown in Figure 10, were compared with L1 and L2 regu-
larizations by varying a person’s distance at 2, 2.5, and 3 m, as well as two person distances
at (2 m, 3 m) and (2.5 m, 3 m).

Figure 10. Cont.
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Figure 10. Sparse deconvolution based on arctangent regularization (red line) compared with L1 norm (green line) and
L2 norm (blue line). (a) a distance of 2 m; (b) a distance of 2.5 m; (c) a distance of 3 m; (d) two persons at (2 m, 3 m); (e) two
persons at (2.5 m, 3 m).

In Figure 10, the human detection performance of the through-wall radar scheme with
the ordinary deconvolution (L2 norm) was unsatisfactory, while that of the radar schemes
with sparse deconvolution (L1 norm and arctangent regularizations) could effectively
locate the human subjects behind the wall. By comparison, the arctangent regularization
was significantly higher than that with L1 norm.

For the experiments with one participant standing at 2, 2.5, or 3 m (Figure 10a–c), the
estimated behind-the-wall distances using sparse deconvolution with arctangent regular-
ization were 2.1, 2.55, and 3.1 m, respectively. For the experiment with two participants
standing (2 m, 3 m) and (2.5 m, 3 m) behind the wall (Figure 10d,e), the estimated behind-
the-wall distances were (2.11 m, 3.2 m) and (2.55 m, 3.16 m). The distance error comes
from the other effects of the wave propagation in the concrete wall. These issues are quite
difficult to model, because the walls in real-world applications are inhomogeneous and not
purely dielectric material [47,48].

Furthermore, for the experiment with two participants standing (Figure 10d,e), the
ghost signal is probably difficult to remove due to the reflection of the electromagnetic
wave scattering off the nearby participants. Technically, if both the wavelet H and the input
signal x are unknown, this is the blind deconvolution problem. It estimates the wavelet
model H of the subsurface layer and the transmitted pulse, which is useful for GPR and
seismic data [4,5,23–28].

In previous works [43,44,48], UWB radar algorithms for human detection need to
capture the received signals at least 512 times per minute (60 s), for over 1 cycle vital
sign signal, with a Nyquist sampling condition. The sparse deconvolution algorithm is
used for reconstruing human range from only one received signal, and for faster detection.
However, with this method, it is difficult to distinguish between a standing human and
static objects. In real-world applications, humans have motions, so the detectable range
is sufficient for obtaining their positions [41]; sparse deconvolution could be deployed
in various through-obstruction applications with faster detection, especially in hostage
rescue operations.

5. Conclusions

Through-the-wall UWB radar posits that the unknown object time series x is sparse
(range domain), and is solved by the sparse deconvolution based on the arctangent regular-
ization to induce sparsity more strongly than the L1 norm. The cost function of this sparse
deconvolution model is also composed of the band matrices A and B, which provide a fast
solution by the majorization–minimization (MM) algorithm. Moreover, the S-band UWB
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radar is intended for locating human subjects behind a wall, with the following step-by-
step description: (1) calibration; (2) down-sampling; (3) designing the band matrices. To
validate this, the through-wall UWB radar scheme with deconvolution based on L2 norm,
L1 norm, and arctangent regularizations was experimentally applied to detect human sub-
jects at different behind-the-wall distances, and experimental results were compared. The
results showed that the human detection performance of the radar scheme with L2 norm
regularization was poor. On the other hand, the radar scheme with L1 norm and arctangent
regularizations could effectively detect the human subjects behind a wall. Nevertheless,
the human detection performance of the through-wall UWB radar scheme with arctangent
regularization was significantly higher than that with L1 norm regularization.

Author Contributions: Conceptualization, A.R.; methodology, A.R. and P.P.; validation, A.R. and
P.P.; formal analysis, A.R. and P.P; investigation, A.R. and P.P; writing-original draft preparation,
A.R.; writing-review and editing, A.R. and P.P.; and funding acquisition, P.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Faculty of Engineering, King Mongkut’s Institute of Technol-
ogy Ladkrabang, Bangkok 10520, Thailand.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank CAPT. Anusorn Yungkumyart at Royal Thai
Navy for supporting Microwave/RF devices. The authors would also like to thank Burn Lab, Depart-
ment of Electronics, Faculty of Engineering at King Mongkut’s Institute of Technology Ladkrabang,
Thailand, for supporting the MATLAB program and electronic circuits. The most important is
encouragement from our parents and Noo Dee.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Moghaddam, S.; Oskooi, B.; Goudarzi, A.; Azadi, A. The comparative sense of sparse deconvolution and least-squares deconvolu-

tion methods in increasing the temporal resolution of GPR data. Arab. J. Geosci. 2019, 12, 627. [CrossRef]
2. Ciampoli, L.B.; Tosti, F.; Economou, N.; Benedetto, F. Signal Processing of GPR Data for Road Surveys. Geosciences 2019, 9, 96.

[CrossRef]
3. Pan, S.; Yan, K.; Lan, H.; Badal, J.; Qin, Z. A Sparse Spike Deconvolution Algorithm Based on a Recurrent Neural Network and

the Iterative Shrinkage-Thresholding Algorithm. Energies 2020, 13, 3074. [CrossRef]
4. Iqbal, N.; Liu, E.; McClellan, J.H.; Al-Shuhail, A.A. Sparse Multichannel Blind Deconvolution of Seismic Data via Spectral

Projected-Gradient. IEEE Access 2019, 7, 23740–23751. [CrossRef]
5. Marks, D.L.; Yurduseven, O.; Smith, D.R.; Smith, O.Y.A.D.R. Sparse blind deconvolution for imaging through layered media.

Optica 2017, 4, 1514–1521. [CrossRef]
6. Xing, S.; Wang, D.; Xu, Q.; Lin, Y.; Li, P.; Jiao, L.; Zhang, X.; Liu, C. A Depth-Adaptive Waveform Decomposition Method for

Airborne LiDAR Bathymetry. Sensors 2019, 19, 5065. [CrossRef] [PubMed]
7. Martinez, D.; Burgués, J.; Marco, S. Fast Measurements with MOX Sensors: A Least-Squares Approach to Blind Deconvolution.

Sensors 2019, 19, 4029. [CrossRef]
8. Zha, Y.; Huang, Y.; Sun, Z.; Wang, Y.; Yang, J. Bayesian Deconvolution for Angular Super-Resolution in Forward-Looking

Scanning Radar. Sensors 2015, 15, 6924–6946. [CrossRef] [PubMed]
9. Starck, J.L.; Pantin, E. Deconvolution in astronomy: A review. Publ. Astron. Soc. Pac. 2002, 114, 1051–1069. [CrossRef]
10. Li, C.-X.; Guo, M.-F.; Zhao, H.-F. An Iterative Deconvolution-Time Reversal Method with Noise Reduction, a High Resolution

and Sidelobe Suppression for Active Sonar in Shallow Water Environments. Sensors 2020, 20, 2844. [CrossRef]
11. Wang, N.; Leung, H.; Kurian, A.P.; Kim, H.-J.; Yoon, H. A Deconvolutive Neural Network for Speech Classification with

Applications to Home Service Robot. IEEE Trans. Instrum. Meas. 2010, 59, 3237–3243. [CrossRef]
12. Xiong, N.; Liu, R.W.; Liang, M.; Wu, D.; Liu, Z.; Wu, H. Effective Alternating Direction Optimization Methods for Sparsity-

Constrained Blind Image Deblurring. Sensors 2017, 17, 174. [CrossRef] [PubMed]
13. Lu, X.; Xia, J.; Yin, Z.; Chen, W. High Resolution Turntable Radar Imaging via two dimensional deconvolution with Matrix

Completion. Sensors 2017, 17, 542.
14. Eom, J.; Moon, S. Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution

Method. Sensors 2018, 18, 2918.

http://doi.org/10.1007/s12517-019-4686-4
http://doi.org/10.3390/geosciences9020096
http://doi.org/10.3390/en13123074
http://doi.org/10.1109/ACCESS.2019.2899131
http://doi.org/10.1364/OPTICA.4.001514
http://doi.org/10.3390/s19235065
http://www.ncbi.nlm.nih.gov/pubmed/31757030
http://doi.org/10.3390/s19184029
http://doi.org/10.3390/s150306924
http://www.ncbi.nlm.nih.gov/pubmed/25806871
http://doi.org/10.1086/342606
http://doi.org/10.3390/s20102844
http://doi.org/10.1109/TIM.2010.2047551
http://doi.org/10.3390/s17010174
http://www.ncbi.nlm.nih.gov/pubmed/28106764


Sensors 2021, 21, 2488 16 of 17

15. Fors, O.; Núñez, J.; Otazu, X.; Prades, A.; Cardinal, R.D. Improving the Ability of Image Sensors to Detect Faint Stars and Moving
Objects Using Image Deconvolution Techniques. Sensors 2010, 10, 1743–1752. [CrossRef]

16. Wang, P.; Qi, F.; Liu, M.; Liang, F.; Xue, H.; Zhang, Y.; Lv, H.; Wang, J. Noncontact Heart Rate Measurement Based on an Improved
Convolutional Sparse Coding Method Using IR-UWB Radar. IEEE Access 2019, 7, 158492–158502. [CrossRef]

17. Krasnov, F.; Butorin, A. High-Resolution Seismic Data Deconvolution by A0 Algorithm. Geosciences 2018, 8, 497. [CrossRef]
18. Uysal, F.; Selesnick, I.; Pillai, U.; Himed, B. Dynamic clutter mitigation using sparse optimization. IEEE Aerosp. Electron. Syst.

Mag. 2014, 29, 37–49. [CrossRef]
19. Gholami, A.; Sacchi, M.D. A Fast and Automatic Sparse Deconvolution in the Presence of Outliers. IEEE Trans. Geosci. Remote

Sens. 2012, 50, 4105–4116. [CrossRef]
20. Wen, F.; Chu, L.; Liu, P.; Qiu, R.C. A Survey on Nonconvex Regularization-Based Sparse and Low-Rank Recovery in Signal

Processing, Statistics, and Machine Learning. IEEE Access 2018, 6, 69883–69906. [CrossRef]
21. Wu, Y.M.; Wu, A.W.; Jin, Y.Q.; Li, H. An Efficient Method on ISAR Image Reconstruction via Norm Regularization. IEEE J.

Multiscale Multiphys. Comput. Tech. 2019, 4, 290–297. [CrossRef]
22. Ding, Y.Y.; Selesnick, I.W. Artifact-Free Wavelet Denoising: Non-convex Sparse Regularization, Convex Optimization. IEEE Signal

Process. Lett. 2015, 22, 1364–1368. [CrossRef]
23. Li, L. Sparsity-Promoted Blind Deconvolution of Ground-Penetrating Radar (GPR) Data. IEEE Geosci. Remote Sens. Lett. 2014, 11,

1330–1334. [CrossRef]
24. Duan, J.; Zhong, H.; Jing, B.; Zhang, S.; Wan, M. Increasing Axial Resolution of Ultrasonic Imaging with a Joint Sparse

Representation Model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 2045–2056. [CrossRef]
25. Jazayeri, S.; Kazemi, N.; Kruse, S. Sparse Blind Deconvolution of Ground Penetrating Radar Data. IEEE Trans. Geosci. Remote Sens.

2019, 57, 3703–3712. [CrossRef]
26. Mansour, H.; Liu, D.; Kamilov, U.S.; Boufounos, P.T. Sparse Blind Deconvolution for Distributed Radar Autofocus Imaging. IEEE

Trans. Comput. Imaging 2018, 4, 537–551. [CrossRef]
27. Chi, Y. Guaranteed Blind Sparse Spikes Deconvolution via Lifting and Convex Optimization. IEEE J. Sel. Top. Signal Process. 2016,

10, 782–794. [CrossRef]
28. Xie, Y.; Wakin, M.B.; Tang, G. Support Recovery for Sparse Signals with Unknown Non-Stationary Modulation. IEEE Trans. Signal

Process. 2020, 68, 1884–1896. [CrossRef]
29. Zhang, Q.; Zhang, Y.; Huang, Y.; Zhang, Y.; Li, W.; Yang, J. Sparse with Fast MM Superresolution Algorithm for Radar Forward-

Looking Imaging. IEEE Access 2019, 7, 105247–105257. [CrossRef]
30. Ndoye, M.; Anderson, J.M.M.; Greene, D.J. An MM-Based Algorithm for -Regularized Least-Squares Estimation with an

Application to Ground Penetrating Radar Image Reconstruction. IEEE Trans. Image Process. 2016, 25, 2206–2221. [CrossRef]
31. Zheng, H.; Jiu, B.; Liu, H. Joint Optimization of Transmit Waveform and Receive Filter for Target Detection in MIMO Radar. IEEE

Access 2019, 7, 184923–184939. [CrossRef]
32. Selesnick, I.W.; Parekh, A.; Bayram, I. Convex 1-D Total Variation Denoising with Non-convex Regularization. IEEE Signal Process.

Lett. 2014, 22, 141–144. [CrossRef]
33. Chen, P.-Y.; Selesnick, I.W. Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization. IEEE Trans. Signal

Process. 2014, 62, 3464–3478. [CrossRef]
34. Jacobson, M.W.; Fessler, J.A. An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms. IEEE

Trans. Image Process. 2007, 16, 2411–2422. [CrossRef] [PubMed]
35. Figueiredo, M.A.T.; Bioucas-Dias, J.M.; Nowak, R.D. Majorization–Minimization Algorithms for Wavelet-Based Image Restoration.

IEEE Trans. Image Process. 2007, 16, 2980–2991. [CrossRef] [PubMed]
36. Selesnick, I.W. Sparse Deconvolution (An MM Algorithm). Available online: http://eeweb.poly.edu/iselesni/lecture_notes/

sparse_deconv/index.html (accessed on 21 October 2014).
37. Selesnick, I.W.; Bayram, I. Sparse Signal Estimation by Maximally Sparse Convex Optimization. IEEE Trans. Signal Process. 2014,

62, 1078–1092. [CrossRef]
38. Charvat, G.L.; Kempel, L.C.; Rothwell, E.J.; Coleman, C.M.; Mokole, E.L. A Through-Dielectric Radar Imaging System. IEEE

Trans. Antennas Propag. 2010, 58, 2594–2603. [CrossRef]
39. Charvat, G.L.; Kempel, L.C.; Rothwell, E.J.; Coleman, C.M.; Mokole, E.L. A Through-Dielectric Ultrawideband (UWB) Switched-

Antenna-Array Radar Imaging System. IEEE Trans. Antennas Propag. 2012, 60, 5495–5500. [CrossRef]
40. Charvat, G.L.; Kempel, L.C.; Rothwell, E.J.; Coleman, C.M.; Mokole, E.L. An ultrawideband (UWB) switched-antenna-array radar

imaging system. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and Technology, Institute
of Electrical and Electronics Engineers (IEEE), Waltham MA, USA, 12–15 October 2010; pp. 543–550. [CrossRef]

41. Ralston, T.S.; Charvat, G.L.; Peabody, J.E. Real-time through-wall imaging using an ultrawideband multiple-input multiple-output
(MIMO) phased array radar system. In Proceedings of the 2010 IEEE International Symposium on Phased Array Systems and
Technology, Institute of Electrical and Electronics Engineers (IEEE), Waltham, MA, USA, 12–15 October 2010; pp. 551–558.
[CrossRef]

42. Li, Y.-C.; Oh, D.; Kim, S.; Chong, J.-W. Dual Channel S-Band Frequency Modulated Continuous Wave Through-Wall Radar
Imaging. Sensors 2018, 18, 311. [CrossRef]

http://doi.org/10.3390/s100301743
http://doi.org/10.1109/ACCESS.2019.2950423
http://doi.org/10.3390/geosciences8120497
http://doi.org/10.1109/MAES.2014.130137
http://doi.org/10.1109/TGRS.2012.2189777
http://doi.org/10.1109/ACCESS.2018.2880454
http://doi.org/10.1109/JMMCT.2019.2953880
http://doi.org/10.1109/LSP.2015.2406314
http://doi.org/10.1109/lgrs.2013.2292955
http://doi.org/10.1109/TUFFC.2016.2609141
http://doi.org/10.1109/TGRS.2018.2886741
http://doi.org/10.1109/TCI.2018.2875375
http://doi.org/10.1109/JSTSP.2016.2543462
http://doi.org/10.1109/TSP.2020.2975935
http://doi.org/10.1109/ACCESS.2019.2932612
http://doi.org/10.1109/TIP.2016.2518862
http://doi.org/10.1109/ACCESS.2019.2960865
http://doi.org/10.1109/LSP.2014.2349356
http://doi.org/10.1109/TSP.2014.2329274
http://doi.org/10.1109/TIP.2007.904387
http://www.ncbi.nlm.nih.gov/pubmed/17926925
http://doi.org/10.1109/TIP.2007.909318
http://www.ncbi.nlm.nih.gov/pubmed/18092597
http://eeweb.poly.edu/iselesni/lecture_notes/sparse_deconv/index.html
http://eeweb.poly.edu/iselesni/lecture_notes/sparse_deconv/index.html
http://doi.org/10.1109/TSP.2014.2298839
http://doi.org/10.1109/TAP.2010.2050424
http://doi.org/10.1109/TAP.2012.2207663
http://doi.org/10.1109/ARRAY.2010.5613313
http://doi.org/10.1109/ARRAY.2010.5613314
http://doi.org/10.3390/s18010311


Sensors 2021, 21, 2488 17 of 17

43. Rittiplang, A.; Phasukkit, P. UWB Radar for Multiple Human Detection Through the Wall Based on Doppler Frequency and
Variance Statistic. In Proceedings of the 12th Biomedical Engineering International Conference (BMEiCON), Institute of Electrical
and Electronics Engineers (IEEE), Ubon Ratchathani, Thailand, 19–22 November 2019; pp. 1–5. [CrossRef]

44. Tantiparimongkol, L.; Phasukkit, P. IR-UWB Pulse Generation Using FPGA Scheme for through Obstacle Human Detection.
Sensors 2020, 20, 3750. [CrossRef]

45. Rittiplang, A.; Phasukkit, P.; Orankitanun, T. Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle
UWB Radar. Sensors 2020, 20, 2916.

46. Yan, K.; Wu, S.; Ye, S.; Fang, G. A Novel Wireless-Netted UWB Life-Detection Radar System for Quasi-Static Person Sensing. Appl.
Sci. 2021, 11, 424. [CrossRef]

47. Pinhasi, Y.; Yahalom, A.; Petnev, S. Propagation of ultra wide-band signals in lossy dispersive media. In Proceedings of
the 2008 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel-Aviv, Israel,
13–14 May 2008; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2008; pp. 1–10. [CrossRef]

48. Rittiplang, A.; Phasukkit, P. 1-Tx/5-Rx Through-Wall UWB Switched-Antenna-Array Radar for Detecting Stationary Humans.
Sensors 2020, 20, 6828. [CrossRef] [PubMed]

http://doi.org/10.1109/BMEiCON47515.2019.8990358
http://doi.org/10.3390/s20133750
http://doi.org/10.3390/app11010424
http://doi.org/10.1109/COMCAS.2008.4562803
http://doi.org/10.3390/s20236828
http://www.ncbi.nlm.nih.gov/pubmed/33260403

	Introduction 
	Theoretical Background 
	Convolution Model 
	Deconvolution Model 
	Sparse Deconvolution Model with L1 Norm (Convex Regularization) 

	Sparse Deconvolution Method 
	Sparse Deconvolution with Arctangent Regularization (Non-Convex Regularization) 
	Minimizing the Cost Function Using Majorization-Minimization (MM) Approach 
	Through-Wall UWB Radar with Sparse Deconvolution Based on Arctangent 

	Experiments with Human Subjects 
	Calibrating Recevied Signal 
	Sparse Deconvolution Results 

	Conclusions 
	References

