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In preclinical studies, dc-derived exosomes ad-
ministered as prophylactic 9 or therapeutic 5 can-
cer vaccines demonstrated their value as potent 
immune-activating agents, often more so than did 
live dcs. Based on this premise, some phase i tri-
als of dc-exosomes have been conducted, showing 
promising results in very testing clinical scenarios, 
such as advanced non-small-cell lung cancer 10. 
Why dc-exosomes are more effective than live dcs 
in such therapeutic settings remains unclear. It may 
be that dc-exosomes can spontaneously activate host 
dcs or other immune cells to boost the antitumour 
response. Alternatively, these effects may simply be 
a result of the acellular nature of exosomes, capable 
of performing their activator functions while resisting 
the complex immune suppressive factors present in 
tumour-bearing hosts.

CANCER EXOSOMES AND IMMUNE 
ACTIVATION

Cancer cells also produce exosomes, evident in culture 
and surprisingly abundant in malignant effusions 11 
such as peritoneal ascites of ovarian cancer 12 and 
pleural fluid of mesothelioma 13. In fact, aberrant 
signalling pathways, particularly those related to p53 
response elements such as Steap3, may positively 
regulate exosome secretion, suggesting elevated exo-
some secretion as a property of malignancy and 
genotoxic stress 14.

In many respects, cancer-derived exosomes re-
semble those of apc origin in their biophysical and 
biochemical properties. As would be expected, cell 
type–specific differences are also present, the most 
significant of which are the expression of tumour-
associated antigens, particularly those found in as-
sociation with the cell membrane. Comparisons of 
whole-tumour-cell lysates with tumour exosomes 
reveal often striking enrichment within the exosomes 
of tumour antigens such as HER2/neu, melan-A 11, 
Silv 15, carcinoembryonic antigen 16, mesothelin 17, 
and others. Immunization of mice with dcs pulsed 
with cancer cell–derived exosomes demonstrate 
that it is possible to induce protective antitumour 

Exosomes are nanometre-size vesicles manufactured 
within late multi-vesicular endosomes and actively 
secreted into the extracellular environment 1. The 
vesicles are bounded by a cholesterol-rich phospho-
lipid membrane 2 bearing a host of transmembrane 
and glycosylphosphatidylinisotol-anchored mol-
ecules 3. Their lumen houses a cytosol-like protein 
repertoire, together with unique messenger rna and 
microrna species 4.

In 1996, seminal work by Raposo et al. 1, and 
soon after by Zitvogel et al. 5, demonstrated that exo-
somes isolated from antigen-presenting cells (apcs) 
can act essentially as miniature antigen-presenting 
cell surrogates, capable of activating T cells in vit-
ro—and importantly, also in vivo 5. Exosomes within 
the extracellular milieu can therefore disseminate at 
least some of the parent cell functions.

EXOSOME ACTIVATION OF T CELLS

The direct interaction of apc-derived exosomes with 
CD4+ or CD8+ T cells can lead to cell activation in 
a major histocompatibility complex (mhc)–peptide–
restricted manner. Exosomes that are apc-derived 
must, therefore, express conformationally correct 
mhc–peptide complexes at the exosome surface. 
However, this signal delivery is also supported by key 
accessory factors such as exosomally expressed intra-
cellular adhesion molecule 1 and CD80/CD86 6.

However, more recent studies allude to the rela-
tive inefficiency of direct exosomal T-cell activa-
tion, in which the presence of dendritic cells (dcs) 
as a recipient surface for exosomal mhc molecules 
is important for enhancing the magnitude of T-cell 
activation 7. In vivo, dc-exosomes may be further 
potentiated by also adding exogenous adjuvants 8. 
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immune responses using cancer-derived exosomes 
as a source of an antigen or antigens 15. Similarly, 
in an ex vivo human model system, exosomes taken 
from malignant effusions proved an effective source 
of tumour antigens for cross-presentation to CD8+ 
cytotoxic T cells by dcs 11. This aspect has since been 
explored in the context of phase i studies 12,18, albeit 
with one or more added factors for enhancing or re-
cruiting dc functions. To date, direct activation of  T 
cells by cancer exosomes has not been shown; rather 
the T-cell stimulatory function of cancer exosomes 
requires uptake and processing by professional apcs, 
which subsequently elicit T-cell activation.

Of notable interest, however, is the suggestion 
that cancer exosomes do not act as a passive form 
of antigen; on the contrary, such exosomes may be 
superior to other forms of antigen such as whole-
cell lysates 15 or soluble antigen 19. This may be 
the result of an advantageous delivery of antigen 
in the form of exosomes, which may bind and be 
taken up efficiently by dcs. The molecule Mfg-
E8 (lactadherin) expressed by dc-exosomes 3,20 
has been implicated in the interaction between 
dc-exosomes and dcs 21. This molecule is not 
necessarily involved in the binding and uptake of 
cancer exosomes. Molecules such as integrins 22, 
tetraspanins, and others 21 have been implicated in 
exosome–adhesion interactions, but the key to this 
apparent advantageous targeting of cancer exo-
somes to dcs remains elusive. Expression of heat 
shock proteins (such as Hsp70) at the exosome sur-
face may be an interesting candidate, not only as 
a cofactor for efficient receptor-mediated uptake, 
but also for imparting “danger” signals that trigger 
dc maturation and that subsequently enhance im-
munologic activation. Thus, exposing cancer cells 
to stress may render their exosomes significantly 
more immunogenic 16,23. These activities require 
the active participation of dcs in processing and 
in cross-presenting exosomally delivered antigens, 
but it is important to emphasize that the cancer 
exosome phenotype, which is under the influence 
of micro-environmental factors, is important for 
these immune functions.

Stress proteins expressed on the surface of can-
cer cell–derived exosomes may also have influence 
over other cell types, and are therefore not dc-selec-
tive. Gastpar et al. nicely showed that Hsp70 present 
at the exosome surface (from colorectal cancer cell 
lines) could directly activate natural killer (nk) cells, 
supporting migration and cytotoxic functions. In 
contrast, sub-lines that produced exosomes lacking 
surface Hsp70 were poorly activating 24. Exosomal 
Hsp expression is a complex issue; and even when 
elevated exosomal Hsp expression is apparent after 
stress, the elevation may not always correlate with 
enhanced immune function—a difference attribut-
able to luminal as compared with surface expression 
of Hsp 25.

CANCER EXOSOMES AND IMMUNE 
SUPPRESSION

We have cited several examples of cancer exosomes 
exerting a positive influence on the immune system, 
but these scenarios do not seem to be well reflected 
in the clinical setting. We know that patients with 
gross malignant ascites produce copious quantities 
of exosomes in vivo 11,12. Yet, regardless of the exo-
some content of such fluids, the disease more often 
than not pursues a progressive course. Anecdotally, 
therefore, the concept of natural immune-activating 
cancer exosomes may be misleading, at least in an ad-
vanced disease setting. An alternative view suggests 
that the secretion of vesicles that would encourage 
immune-mediated destruction of the tumour is not in 
a cancer cell’s interest. It is more likely, in our view, 
that cancer exosomes reflect the aims and functions 
of the parent cancer cell: that is, to survive, grow, and 
metastasize—and some available evidence supports 
this view 26,27. Is it possible that cancer exosomes also 
act to assist cancers in immune evasion?

Mounting evidence is indeed pointing to exo-
somes as major participants in immune evasion. Al-
though the concept of tolerance induced by exosomes 
was well described in the context of acquired dietary 
antigens 28–30 and, more recently, in reproductive 
biology 31, transplantation 32, and respiratory aller-
gens 33, several novel mechanisms (both direct and 
indirect) have recently been described in the context 
of cancer exosomes.

Among the earliest such reports is a description 
of melanoma-derived exosomes that were lethal to 
T cells 34. These cancer cells naturally express Fas 
ligand, and expel by the multivesicular endosomal 
route at least a proportion of this molecule in the 
form of exosomes. FasL–bearing exosomes, upon 
encountering activated (Fas-positive) T cells, can 
essentially crosslink T cell Fas and trigger apoptotic 
death 34. Other influences of exosomally expressed 
members of the tumour necrosis factor superfamily 
may include downmodulation by ovarian cancer 
exosomes of the CD3-ζ chain. This molecule is an 
integral component of the T-cell receptor (tcr) com-
plex, which is essential for competent signalling after 
tcr–mhc–peptide interactions 35. Melanoma exosomes 
expressing tumour necrosis factor α may also affect 
the CD3–tcr complex in a reactive oxygen species–
mediated manner 36. Thus, cancer exosomes can exert 
drastic effects to oppose one or more T-cell functions 
and, in some situations, may constitute an important 
mechanism by which tumours eliminate activated 
T cells that may recognize and kill them 34.

However, apoptotic death of T cells is not a uni-
versal consequence of interactions with exosomes. 
The outcome depends both on T-cell status and on 
the molecular phenotype of the exosome. In chronic 
inflammatory disease, for example, exosomes may 
in fact attenuate T-cell apoptosis, prolonging their 
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survival inappropriately and adding to persistent 
inflammatory injury 37. Other death-independent 
effects of cancer exosomes on the immune system 
have been reported. Liu et al., for example, pre-
treated mice with breast cancer exosomes before 
implanting tumours and documented accelerated 
tumour growth 38. This accelerated growth was result 
of the negative influence of cancer exosomes on nk 
cell functions, inhibiting nk cell proliferation (in 
response to interleukin-2) and impairing subsequent 
cytotoxic functions. Similarly, studies by other re-
searchers showed that human nk cells also become 
significantly functionally impaired following treat-
ment with several cancer exosome types, manifested 
by downmodulation of nkg2d 39, which is among the 
most important tumour-recognition molecules for nk 
cells. This molecule is also of importance for other 
lymphocyte subsets, such as CD8+ T cells, γδ–T 
cells, nk–T cells, and others. Cancer exosomes may 
therefore negatively modulate the functions of mul-
tiple branches of the immune system, with effects 
seemingly particularly focussed toward suppressing 
cytotoxic function.

Many of the cellular responses described above 
may well occur through direct interactions between 
immune effector cells and cancer exosomes, although 
the molecular participants are not entirely understood 
in each case. However, evidence is also available to 
suggest that cancer exosomes may be exploiting the 
regulatory arms of immunity and thus exerting their 
effects indirectly. One example describes the induc-
tion of human regulatory T cells (CD4+CD25+Foxp3+) 
by mesothelioma-derived exosomes, which thereafter 
exert dominant antiproliferative effects on lympho-
cyte responses to interleukin-2 17. The mechanism 
for this effect was MHC class II–independent, rely-
ing instead on exosomally expressed transforming 
growth factor β1 17.

A robust antitumour response relies not only on 
competent effector cells, it also heavily depends on 
functional apcs. Here again, there are examples in 
which cancer exosomes mediate negative effects. 
The differentiation of dcs from bone marrow precur-
sors (murine system) or from monocytes (humans) 
becomes severely impaired in the presence of tumour 
exosomes 40, largely because of exosomal induction 
of interleukin-6 expression by precursor cells. Simi-
lar examples suggest that tumour exosomes not only 
interfere with dc differentiation, but actively skew 
precursors toward acquisition of a myeloid suppressor 
cell phenotype 41. In turn, such cells mediate negative 
regulation of effector cells through the secretion of 
soluble transforming growth factor β.

Cancer-derived exosomes can therefore target both 
the effector and the antigen-presentation arms of the 
immune system. Whether exosomes from a given tu-
mour harbour sufficient complexity to be capable of a 
multitude of suppressive mechanisms is not yet known. 
Nevertheless, the many mechanisms described to date 

for several cancer exosome types highlight exosomes 
as a major tool for immune evasion.

SUMMARY

Exosomes secreted by cancer cells are dynamic and 
highly complex, and the field as it stands remains 
somewhat controversial. It may be that, in early neo-
plastic lesions, cancer cells and the exosomes they 
produce have not yet acquired the potent suppressive 
molecules and mechanisms described here. Under 
such conditions, exosomes may play an important 
role in disseminating relevant tumour rejection an-
tigens to the immune system, assisting the immune 
response, through the activities of dcs. However, by 
its very existence, progressive disease has overcome 
or overwhelmed the immune response, and exosomes 
in these scenarios harbour multiple mechanisms for 
attenuating several branches of immunity.

Identifying the factor or factors responsible for 
this possible switch from immunogenic to immune-
suppressive exosomes will be a major challenge, but 
will in turn offer exciting novel therapeutic oppor-
tunities for blocking tumour immune escape while 
retaining efficient tumour-antigen handling by the 
immune system.
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