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Background: The human heart is a masterpiece of the highest complexity coordinating

multi-physics aspects on a multi-scale range. Thus, modeling the cardiac function

in silico to reproduce physiological characteristics and diseases remains challenging.

Especially the complex simulation of the blood’s hemodynamics and its interaction with

the myocardial tissue requires a high accuracy of the underlying computational models

and solvers. These demanding aspects make whole-heart fully-coupled simulations

computationally highly expensive and call for simpler but still accurate models. While

the mechanical deformation during the heart cycle drives the blood flow, less is known

about the feedback of the blood flow onto the myocardial tissue.

Methods and Results: To solve the fluid-structure interaction problem, we suggest a

cycle-to-cycle coupling of the structural deformation and the fluid dynamics. In a first

step, the displacement of the endocardial wall in the mechanical simulation serves as a

unidirectional boundary condition for the fluid simulation. After a complete heart cycle of

fluid simulation, a spatially resolved pressure factor (PF) is extracted and returned to the

next iteration of the solid mechanical simulation, closing the loop of the iterative coupling

procedure. All simulations were performed on an individualized whole heart geometry.

The effect of the sequential coupling was assessed by global measures such as the

change in deformation and—as an example of diagnostically relevant information—the

particle residence time. The mechanical displacement was up to 2 mm after the first

iteration. In the second iteration, the deviation was in the sub-millimeter range, implying

that already one iteration of the proposed cycle-to-cycle coupling is sufficient to converge

to a coupled limit cycle.

Conclusion: Cycle-to-cycle coupling between cardiac mechanics and fluid dynamics

can be a promising approach to account for fluid-structure interaction with low

computational effort. In an individualized healthy whole-heart model, one iteration sufficed

to obtain converged and physiologically plausible results.

Keywords: fluid-structure interaction, multi-physics coupling, cardiovascular modeling, hemodynamics, fluid

dynamics simulation, whole heart
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1. INTRODUCTION

To be useful in a clinical context, numerical simulation tools
always have to strike a balance between high numerical accuracy
and low computational effort (1, 2). Especially modeling the
human cardiac function in silico remains a challenging task:
The multi-physics nature of the heart in combination with a
multi-scale dimension in time and space claims high demands
on computational cardiac modeling (3, 4). As myocardial
tension development and wall deformation drive the blood
flow, the physical domains of cardiac continuum mechanics
and fluid dynamics are of particular interest for the numerical
reproduction of the pumping function of the human heart. In
this context fluid-structure interaction (FSI) between the heart
muscle and the blood flow is particularly important: As the
endocardial walls form the physiological boundary layer for the
blood, a close interdependence of the concerning quantities is
essential for a correct model.

To solve fluid-structure interaction problems two different
approaches are common in literature [examples in Hirschhorn
et al., (5)]: On the one hand in the monolithic (also called
implicit) approach, fluid and solid mechanics equations are
computed simultaneously within one solver. Therefore, their
mutual influence is directly taken into account, yielding high
stability. In that case no explicit coupling algorithm is required
as all dependencies are completely modeled in the system of
equations. This approach impresses by its high accuracy and
inherent inter-dependency of all results. On the other hand the
mathematical formulations and their numerical implementation
is a challenge. The time step is also restricted due to the
requirements of a sufficiently small Courant-Friedrichs-Lewy
number (6). Nevertheless, the resulting quantities of both
physical domains are immediately available in every time step.

On the other hand partitioned approaches have been
suggested (7). Fluid and solid mechanics (the latter in this
manuscript referred to as ’mechanics’) equations are hereby
solved separately, independent of each other by two single
solvers. Classically, these two solvers are solved sequentially.
Thus, a coupling scheme has to be implemented to account
for the mutual influence of the two physical domains. In
such a routine information must be communicated between
the two solvers in a bi- or mono-directional manner. This
approach is computationally more attractive and offers higher
flexibility concerning the single solvers. Thus, in each solver the
advanced techniques concerning the respective physics can be
applied independently of one another (5). However, the required
coupling routine has to map data between two temporally and
spatially asynchronous grid meshes.

Besides the two basic, purely implicit and explicit algorithms
also semi-implicit schemes (8), implicit-explicit variants (9) and
multi-way coupled algorithms (10) have been proposed. All in
all, a high number of FSI based algorithms and application
fields in the cardiovascular system have been published in recent
years (5, 11). The number of applications in a clinical context
is continuously increasing with computational power and better
algorithms. The opportunities and potentials of computational
modeling are immense, however not depleted.

Therefore, it is common sense that the fluid-structure
interaction takes a central role in reproducing the cardiac
function in silico. The exchange of information between the single
solvers for each different physics is one of the key aspects in
the cardiac modeling process. However, the degree to which the
spatially resolved blood flow has a retrograde effect on the cardiac
mechanics in this multi-physics problem remains unresolved up
to now (10). In this study, we focus on the influence of the
flow on the local variations of cardiac wall deformation. This
is of interest as widely used 3D-0D coupled circulation systems
only consider mean spatial chamber pressure values. There, the
spatial deviations of the flow velocity field are averaged over the
whole chamber. Thus, local increases or decreases are neglected
and a unique pressure is considered across the whole chamber.
Especially in specific phases of the cardiac cycle like e.g., the
ejection phase during the ventricular systole, we hypothesize
that this procedure neglects relevant spatial information. In
this study, we evaluate this phenomenon quantitatively under
physiological conditions.

So in this work we want to find out to which extent the blood
flow has a retrograde effect on the structural mechanics. That
means we want to answer the question to which extent the force
resulting from blood flowing against the myocardial tissue would
alter the local deformation of the heart. Following Bernoulli’s
principle, areas with an increased flow rate are linked to a
lower static pressure acting orthogonal to the myocardial wall.
Therefore, we expect to find local deviations in the displacement
of endocardial wall nodes.

Based on the results of Sacco et al. (12) we assume wall shear
stress to be neglectable compared to the internal stresses of the
myocardium. Therefore, we analyze the endocardial wall pressure
field due to flow dynamics.We subsequently introduce a pressure
gradient in the solid mechanical simulation that incorporates the
information of the spatially resolved pressure deviations from
the mean chamber pressure from the fluid dynamics simulation.
This factor is considered in the mechanics simulation to quantify
deviations in wall deformation due to the effect of the flow. All in
all we want to answer the question whether the influence of fluid
dynamics on structural mechanics can be modeled adequately,
only by considering information from the pressure field.

2. MATERIALS AND METHODS

2.1. Model Generation
All simulations in this study were performed on an individualized
whole-heart geometry. The magnetic resonance (MR) imaging
data were obtained at Heidelberg University Hospital from a 32-
year-old healthy volunteer with a 1.5 T MR tomography system
(Philips Medical Systems). The data set was acquired at diastasis
and segmented manually. The study was approved by the local
IRB, the volunteer gave informed consent.

To estimate the stress distribution present during image
acquisition, a pressure free geometry was estimated by applying
an unloading algorithm. Based on the idea of Bols et al.
(13), we used the estimation algorithm we presented in
Brenneisen et al. (14). Following Peverill (15), a pressure of
p0,LV = p0,LA = 7.5 mmHgwas assumed in the left heart chambers
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during diastatis. For the right heart, we assumed a pressure of
p0,RV = p0,RA = 4mmHg. A pericardial layer was used to represent
the influence of surrounding tissue (16). A clipped model of the
mechanically relevant tissues is shown in Figure 1A.

For the fluid simulations, the pulmonary veins, the pulmonary
artery, the aorta and the venae cava were elongated as straight
tubes to ensure steady sate flow conditions (Figure 1B).

2.2. Structural Mechanics
The mechanical motion of the heart, represented by the
spatial displacement of the mesh nodes, is simulated in
CardioMechanics (16). The solver was verified in an N-
version benchmark study by Land et al. (17). The mechanical
finite element mesh comprised 8,700 nodes and 49,900 linear
tetrahedral elements. The resulting geometry comprising left
ventricle (LV) and left atrium (LA), as well as right atrium (RA)
and right ventricle (RV) together with the pericardial layer �Per

is shown in Figure 1A.
The myocardial tissue (depicted in different shades of blue

in Figure 1A) is modeled as a hyper-elastic material like we
also did in Kovacheva (18). The passive material properties of
the two atria are modeled by the Neo-Hooke material law (19).
The ventricular tissue was modeled based on the material law
presented by Guccione et al. (20).

The strain energy functionW for the Guccione material law is
given by

W =
C

2
(eQ − 1)+

1

2
K(det(F)− 1)2 (1)

Q = bf E
2
11 + bt(E

2
22 + E233 + E223 (2)

+ E232)+ bft(E
2
12 + E221 + E213 + E231) (3)

with the shear modulus C and the scaling factors bf , bt , and bft
being Guccione model parameters. Eij with i, j ∈ [1, 2, 3] denote
the elements of the Green strain tensor, det(F) the determinant
of the deformation tensor. Incompressibility of myocardial tissue
was enforced by a penalty formulation (factor K) affecting the
Jacobian of the deformation gradient. All parameters are chosen
as listed in Table 1.

Fiber orientation was determined in a rule-based manner by
a Laplace-Dirichlet algorithm suggested by Bayer et al. (21). We
used a fiber angle of +60◦ on the endocardial wall as well as -60◦

on the epicardial wall.
The active tension development is driven by the double

Hill model function introduced by Stergiopulos et al. (22). The
periodicity is set to the duration of one heart cycle (t = 1.247 s),
in accordance with the MRI measurement data.

Taking into account all these influencing factors, the
mechanical deformation of the heart geometry is calculated for
each point in time. The deformation is the vector that denotes the
deviation of each node from the initial state. So this deformation
is the effect of the dynamic interplay of active force generated
by the contracting cardiomyocytes and the passive material
properties that govern elastic deformation.

Coupled to the 3D mechanical solver, a 0D circulatory system
was used as presented in Gerach et al. (23) to obtain chamber
pressures, flow rates and volumes. The closed-loop, lumped

parameter circulatory model accounts for the compliances and
resistances of the systemic and pulmonary circulation as well
as the behavior of the valves in an electric equivalent circuit.
All parameters were applied as presented in Gerach et al. (23).
As the four heart chambers are represented by a single variable
capacitor in this circuit, the considered chamber pressures are
spatial mean values. Thus, for all elements in a chamber, the
pressure is the same and no spatial deviations are considered in
the mechanical simulation.

The simulation is run for ten full heart cycles in order to reach
a limit cycle. In a typical healthy heart cycle, the relaxed state
(diastasis) is followed by the atrial systole. With the contraction
of the ventricles during the subsequent ventricular systole, blood
is ejected through the aortic valve into the systemic circulation.
Finally, a relaxation process leads back to the diastatic state
and the next cycle follows. The displacement of the endocardial
surfaces as well as the pressure of the last heart cycle are extracted
as boundary conditions for the fluid solver. In a first step, this
serves as a one-way coupled FSI interface as also described in the
review by Hirschhorn et al. (5).

2.3. Fluid Mechanics
Blood flow was modeled as laminar and incompressible like
previously reported in Daub (24). With these assumptions, blood
flow velocity ui and pressure p are governed by the Navier-Stokes
equations (NSE). To account for the moving mesh, the system
of equations is solved in an Arbitrary Lagrangian-Eulerian (ALE)
framework, where the mesh motion velocity ci is included in the
divergence term of the NSE (25). This yields the equation

∂ui

∂t
+ uj

∂(ui − ci)

∂xj
= −

1

ρ

∂p

∂xi
+

µ

ρ

(

∂2ui

∂xj∂xj

)

, (4)

in which blood material parameters are chosen equal to those
previously reported in Daub (24) (density ρ = 1, 055 kgm−3

and dynamic viscosity µ = 0.004 kgm−1s−1). Index i denotes
the respective equation for the concerning coordinate direction.
During the solution procedure, the spatially resolved pressure is
obtained for each element using a PIMPLE loop [PISO algorithm
(26) with iterative marching].

The fluid solver is based on a finite volume representation of
the mesh accounting for the blood volume. The left heart as well
as its embedding in the surrounding layers (gray color) is shown
in Figure 1B. At the endocardial boundary, the wall movement
is prescribed based on the solution of the structural mechanics
simulation in the current iteration. The displacement of the
nodes on the endocardium is provided as a time series for one
full heart cycle. A Laplace equation with quadratic diffusivity is
solved to determine themeshmotion velocity of the inner volume
cells. Hence, a no-slip condition is applied at the ventricular wall
for both velocities: the blood velocity, ui, and the mesh motion
velocity, ci.

The flux boundary conditions at the inlets�in and outlets�out

are Neumann boundary conditions, such that the global volume
flux, V̇ , is in accordance with the volume change prescribed by
the boundary conditions from the mechanics simulation. The
inlet pressure is prescribed at the pulmonary veins. The outlet
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FIGURE 1 | (A) Clipped heart geometry with the myocardial tissue of the four chambers colored in shades of blue. The endocardial surfaces of the left atrium (�LA),

left ventricle (�LV ), right atrium (�RA) and right ventricle (�RV ) form the boundary layer for the fluid simulation. Additionally labeled is the pericardial layer (red, �Per ) as

well as in gray color the area, in which the pulmonary veins (left side of the heart) and the superior vena cava (right heart) open into the corresponding atrium. The

blue-gray volume between the atrium and the ventricle denotes the position of the mitral valve (MV, left heart) and the tricuspid valve (right heart). (B) Fluid geometry of

the left side of the heart with elongated vessel trunks. The pressure inlet surfaces (pulmonary veins) are highlighted in green color, whereas the pressure outlet (aorta) is

colored yellow. Also depicted is the initial spatial distribution of the scalar 9 of the scalar transport equation, color coded in red (9 = 1) and blue (9 = 0). The gray

colored background structures represent the pericardial layer as well as the myocardial tissue in the initial, diastatic state.

TABLE 1 | Passive material parameters used for the different tissue areas in the mechanical simulation.

Tissue Domain Model C bf bt bft K ρ0

in Pa in kPa in kg m−2

Ventricle LV, RV Guccione 278 12.0 4.8 8.4 200 1, 082

Atrium LA, RA Neo-Hooke 7, 450 - - - 200 1, 082

Surrounding Pericardium Neo-Hooke 10, 000 - - - 1, 000 1, 082

Surrounding Fat Neo-Hooke 3, 725 - - - 1, 000 1, 082

Vein Pulmonary, vena cava Neo-Hooke 14, 900 - - - 200 1, 082

Artery Pulmonary, aorta Neo-Hooke 14, 900 - - - 200 1, 082

Valve plane Mitral, tricuspid, Neo-Hooke 200, 000 - - - 200 1, 082

Aortic, pulmonary

pressure is prescribed at the aorta. These Dirichlet type boundary
conditions are provided by the circulatory system model.

The tetrahedral fluid volume mesh consist of 143, 000 cells in
the left heart, which corresponds to the number of cells found
to be sufficient by Schenkel et al. (27). The simulations start
with an initial time step of 1t0 = 0.001 s. Afterwards, the
time stepping is adjusted automatically to satisfy a Courant-
Friedrichs-Lewy number of CFL ≤ 0.7. At the initialization of
the solver, the fluid is at rest. Four consecutive heart beats are
simulated to converge to a limit cycle (periodicity of the flow).
Finally, the last cycle is used for the coupling with the structural
mechanics solver.

All four valves are modeled by means of a porous material
law that generates a pressure drop across the respective valve
plane as shown in Daub et al. (28). Since the whole heart
and therefore also the valve planes are moving with time, the
porosity model developed by Wang et al. (29) is incorporated.
It considers an increased kinetic energy term in the NSE based
on the mesh displacement. Hereby, the porosity model forces the

velocity within the porous zone to be equal to the motion of the
respective plane:

Fp = −
µ

ρ

φp

kp
· (ui − ci) −

1.75
√

φp
√

150kp
· (ui − ci) |ui − ci| . (5)

The resultant forcing term Fp is inserted into the NSE
(Equation 4) and adjusts each time step dependent on ci. The
valve plane permeability kp varies between infinitesimally small
(impermeable) and 1 (permeable). The respective condition is
changed dependent on the ventricular volume change resulting
from the boundary conditions such that all valve planes are
blocked if

∣

∣V̇
∣

∣ < 20ml s−1. Up to a flux of
∣

∣V̇
∣

∣ < 160ml s−1, the
permeability rises linear with the flow and the valve plane is fully
permeable if

∣

∣V̇
∣

∣ > 160ml s−1. The same limits in reverse order
apply for the closure of the valves. The porosity φp = 1 is kept
constant. Exemplary, the valve plane permeability kp is shown in
Figure 2 for one heart cycle.
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Based on the mitral valve diameter dMV = 15mm, the
Reynolds number reached at maximum velocity umax in the valve
plane is remax = UmaxρdMV/µ = 2, 760. The Womersley
number lies in the physiological range (30), as wo = dMV

√
ωρ/µ

= 19.3, where ω represents the angular frequency.
All simulations are executed in the open-source software

framework openFOAM under the version v1912 (31). We
simulated a series of four full heart cycles to reach a limit cycle.

2.4. Fluid-Structure Coupling
As discussed in the introduction, different approaches for FSI
have been suggested in literature. To account for the influence
of FSI in a computationally and structurally beneficial way, we
propose a cycle-to-cycle coupling as visualized in Figure 3 to
quantify the effects of fluid dynamics on the mechanical results.
In this section, we first introduce the pressure factor x that is
used to communicate the spatially resolved information from
the fluid simulation back to the solid mechanical simulation.
Secondly, we present the complete overview over the whole
coupling procedure.

Toward this end, we extract the pressure pi with i ∈ N for allN
endocardial wall elements from the three-dimensional pressure
field p. As reported in Brenneisen et al. (32), we introduce a 3D
spatially resolved pressure factor x. Compared to the previously
published version, we introduce an additional scaling factor ys to
weigh the influence of the relative pressure factor based on the
absolute pressure values p in the fluid mechanics simulation:

xi,t = ys,t ·
pi,t − pmean,t

pmax,t − pmin,t
+ 1 (6)

for each element i at the time t. The statistical values minimum
(pmin), maximum (pmax) andmean (pmean) pressure are evaluated
spatially for the concerning heart chamber at the current time t.

The subtraction of the mean pressure pmean and the choice of
the denominator in equation 6 ensures that the mean value of the
pressure factor is equal to one. Therefore, the equation

1

Nc

Nc
∑

i=1

xi,t = 1 (7)

is fulfilled for each of the four heart chambers, where Nc is the
number of surface elements in the corresponding heart chamber
c with c ∈ {LA, LV, RA, RV}.

This definition of a mean-free pressure factor is consistent
with the circulatory system model, which delivers one average
pressure pmech,c for each heart chamber. Thus, the pressure
conditions in the circulatory system model do not get out of
balance due to the influence of the fluid solver.

For a scaling factor ys = 1, the dimensionless pressure factor
x ranges between zero and two with numbers between one and
two for a fluid pressure higher then the mean pressure provided
by the circulatory system.

However, a static scaling factor ys = const, that maps all
element pressures pi on the scaling factor interval ys ∈(0 . . . 2)
is not capable to fully reproduce the absolute pressure ranges.

Therefore, we introduced the time-resolved scaling factor

ys,t = 2 ·
pmax,t − pmean,t

pmax,t
(8)

also based on the statistic quantities of the fluid simulation. This
choice ensures that a multiplication of the scaling factor x with
the mean pressure pmean reproduces the fluid pressure pi without
changing the mean pressure factor xmean = 1. In order to ensure
the robustness of the procedure, the scaling factor is limited to
the range ys ∈ (−3, 3).

Finally, the computed pressure factor x serves as an input to
the subsequent mechanical simulation, thus closing the loop of
the iterative coupling procedure.

The adapted mechanical pressure p∗
mech

is calculated by a
multiplication of the pressure estimated by the circulatory system
with the pressure factor x following equation

p∗mech,i,t = pmech,c,t · xi,t . (9)

Figure 4 shows a schematic overview of the coupling
procedure. The initial mechanical simulation is run for ten
heart cycles to reach a steady state. The deformation, i.e., the
coordinates of the endocardial surface of the last heart cycle
is extracted. Also the pressure at the pulmonary veins and the
aorta is extracted from the circulatory system for the last heart
cycle. These quantities are respected as a boundary condition
in the fluid simulation. After four cycles of fluid simulation, a
limit cycle is reached. The spatially resolved pressure field is
extracted. For all elements on the endocardial wall, the pressure
factor x is calculated following equation 6. This pressure factor
is then respected as a boundary condition in the last cycle of
the subsequent solid mechanical simulation. The number of ten
mechanics simulations is also applied in this stage to ensure that
all transients have decayed. This procedure is applied iteratively.

For this study, NL ≈ 2, 200 endocardial surface elements were
evaluated in the left heart (NLV ≈ 1, 500 and NLA ≈ 700).

2.5. Evaluation Criteria
To evaluate the convergence of the proposed coupling
algorithm, three criteria are investigated. First, the mechanical
deformation difference between the different iterations is
analyzed. Additionally, a scalar transport equation to evaluate
fluid simulations is introduced. Finally, simulation results are
evaluated based on pressure-volume loops.

2.5.1. Deformation

To evaluate the effect on the mechanical simulation, the
displacement of the endocardial wall throughout a heart cycle is
analyzed. Therefore, the Euclidean distance (ED) d is calculated:

di,j =
√

(xi,j+1 − xi,j)2 + (yi,j+1 − yi,j)2 + (zi,j+1 − zi,j)2 (10)

for each node i in time and space, based on the node location
(x, y, z) in the two subsequent iterations j and j+ 1.
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FIGURE 2 | Porosity of the valves during the time course of one heart cycle. Both sub-figures show the valve plane permeability kp for the left side of the heart.

Horizontal lines depict a fully opened or closed valve state. (A) Mitral valve. (B) Aortic valve.

FIGURE 3 | Overview of coupling procedure. The arrows denote the flow of information between the two domains. The upper arrow shows the unidirectional

information flow from the mechanical domain to the fluid solver as it was implemented before [e.g., Daub et al. (28)]. Now the lower arrow takes into account the

retrograde effect from fluid dynamics in the mechanical simulation. This sums up to an iterative sequential procedure (gray arrow). Both—in the mechanics and in the

fluid domain—several full heart beats are simulated before handing over the data to the other domain.

2.5.2. Hemodynamics

As a measure for the fluid simulation results with diagnostic
value, the mixing procedure of blood in the ventricles is analyzed
by solving a scalar transport equation. It is a convection-diffusion
equation suggested by Ferziger et al. (33) and it accounts for the
passive transport of the scalar 9 by the velocity field u. 9 can
therefore be considered as the local concentration of initial blood
and enables a tracking of residual blood volume. The passive
transport equation

∂9(x, t)

∂t
+ Ui(x, t)

∂9(x, t)

∂xi
−

∂

∂xi

(

D
∂9(x, t)

∂xi

)

= 0 (11)

with i ∈ {1, 2, 3} also comprises an artificial diffusion coefficient
D = 10−10m2s−1 for numerical stability. For t0 = 0 s, the scalar

9 is initialized with

9(x, t0) =
{

1 for all elements in the LV

0 elsewhere
(12)

The distribution of 9 in the initial state is shown in Figure 1B.

3. RESULTS

Following this sequential coupling approach, we simulated three
iterations of mechanics simulations and the associated two fluid
simulations like we showed in Figure 4. In this section we
present the results of the introduced pressure factor as well as
the Euclidean distance as the performance measure. Finally, the
influences onto the fluid domain as well as the pressure-volume
loops are presented.
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FIGURE 4 | Schematic overview of the coupling procedure. Starting with a mechanical simulation, the last heart cycle deformation is used as a boundary condition for

the subsequent fluid simulation. The processed pressure factor (PF) is used as an input in the next mechanical simulation, when it has reached a steady state. This

procedure is repeated. The Euclidean distance (ED) is evaluated between the last cycle of two subsequent mechanical simulations.

3.1. Pressure Factor
To investigate the pressure deviations in the fluid simulation,
we evaluated the time course of the normalized pressure factor
in Figure 5. The first fluid simulation is shown in Figure 5A,
the second iteration in Figure 5B. The pressure factor is in the
range of −1.5 < PF < 3 for both simulations. The mean
value is PFmean = 1 per definition, but also the 50% quantile
is pretty close to PFmean = 1 throughout most of the time. At
two characteristic points of the heart cycle, higher deviations
can clearly be observed: On the one hand, at the beginning of
the heart cycle (t = 0.1 s) and on the other hand during the
ventricular systole (t = 0.7 s). The highest deviations occur
during systole close to the aortic valve.

If we investigate a spatially resolvedmap of the pressure factor,
it is clearly visible that the large pressure deviations occur close
to the aortic valve, where blood is ejected during systole. Thus,
a pressure higher than the mean pressure of the chamber (which
is the one corresponding to the boundary conditions from the
mechanical simulation) is present. This is also accompanied by
the spatial distribution of the Euclidean distance in Figure 6.

While comparing the two fluid iterations shown in the
overview Figure 4, we found that the basic shape of the PF time
course stayed equal throughout the plots of Figures 5A,B. On
the one hand, this confirms a consistent behavior of the coupling
algorithm: The timing of the coupling framework matches the
two single physics solvers. On the other hand the reduced
amplitude of the pressure factor by around 10% shows the
tendency to converge toward a limit cycle.

3.2. Deformation
In the second step we evaluated the Euclidean distance (ED)
between the corresponding nodes of the mechanics simulation in
subsequent iterations. The time course of the overall ED for the
last heart cycle is shown in Figure 7. For the left ventricle (LV),
the maximal ED of all endocardial wall nodes was smaller than 2

mm between the first and second iteration. The maximal distance
between the second and third iteration was 70 µm, thus the limit
of necessary cycles was already reached after two iterations.

The spatial distribution of the ED throughout the LV is shown
in Figure 6. In the left part, the maximum ED is shown from the
direction of the septum (upper part), as well as from the opposite
side (lower part). The maximum deviation clearly occurs in the
area of the aortic valve and close to the apex. These two locations
correspond to the two characteristic points in the cardiac cycle:
While blood flows into the ventricle during atrial contraction, the
jet toward the apex increases the pressure. On the other hand,
during ventricular systole, blood moves toward the aorta and
increases the pressure in this area.

Comparing to the right part of Figure 6 reveals that the
median ED is distributed uniformly across the LV and is in the
range below 1mm. Minimum, maximum and mean absolute
numbers for the ED are listed for two iterations in Table 2.

These results show that the changes in deformation as a
reaction to the pressure gradient distribution are small but
still exist.

Comparing the right part of the time course in Figure 7

reveals that a limit cycle is already reached after one iteration of
the fluid solver.

3.3. Hemodynamics
To evaluate the effects of the coupling on the fluid dynamic
quantities, we investigated the residual volume Vres in the
left ventricle. The time course of four heart cycles is shown
in Figure 8. Hereby, the residual volume is calculated by a
multiplication of the scalar 9 computed by the passive scalar
transport (equation 11). Therefore, the blood volume that
initially (at t = 0 s) started in the LV and still remains there
is depicted in milliliter. If the influence of the pressure factor is
not yet considered (Fluid simulation Phase 1), a residual volume
Vres,1 ≈ 20ml is achieved. Considering the influence of the
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FIGURE 5 | Time course of the pressure factor PF over one heart cycle. Calculated by Equation 6, it visualizes the influence of the fluid dynamics simulation. Values

PF > 1 denote a fluid pressure higher than the one calculated by the circulatory system. The statistical distribution of the minimum and the maximum value, as well as

the area which covers 50 and 90% of all values are highlighted in red as well as dark and light blue color. For temporal orientation, the vertical gray lines mark the start

and the end of the systolic phase. (A) First iteration of the fluid solver. (B) Second iteration of the fluid solver.

FIGURE 6 | Spatial distribution of Euclidean distance (ED) across the left

ventricle. The first column shows the maximum values, the second column the

median values. In the upper row, the ventricle is visualized from a septal

position, the bottom row shoes the opposite view. ED between the initial

mechanical simulation (j = 0) and the subsequential one.

pressure factor, a residual volume of Vres,2 ≈ 16ml results. So
all in all a difference of 1Vres = 4ml, compared with a VED ≈
180ml describes a deviation of approximately 2%. Therefore, the
slight changes in deformation of the boundary surface reveal a
small but not neglectable accumulated residual volume.

3.4. Pressure-Volume Loop
Pressure-volume (PV) loops are often used to represent the work
and efficiency of a mechanical system. The same holds true for

the human heart: The PV-loops in Figure 9 show the mean
ventricular chamber pressure plotted against the ventricular
chamber volume and reveal the influence of our coupling
framework. As the mean pressure of each chamber pmean,c is
per definition kept constant (equation 7), deviations in the PV-
loop are only caused by an altered chamber volume. Therefore,
the changes in the diagram are not that great. However, some
deviations exist and a low alteration of the chamber volume
can be found. While the blue line shows the resulting PV-loop
after the nine heart cycles of mechanical simulations (limit cycle,
compare overview in Figure 4), the red and green lines show the
result of considering the pressure factor. Deviations can clearly be
observed in the lower left part of the curve. At this point in time,
the isovolumetric relaxation (left vertical line) and the diastolic
filling (lower horizontal line) take place.

Comparing the PV-loops of the two iterations again confirms
the convergence of the system toward a limit cycle: Deviations
in the chamber volume become smaller. Furthermore, it can be
recognized that the deviations in the mean chamber volume are
below 1Vc < 1ml at every point in time.

However, while comparing the initial iteration (blue) to the
first (red) and second (green) also reveals differences: On the one
hand, at the end of the systole, a pressure peak can be observed
in the top left area of the loop. On the other hand, especially in
the lower and left part of the loop, oscillations are introduced by
the iterative coupling procedure. However, we observe that the
amplitudes of both artifacts decrease in the second iteration.

4. DISCUSSION

The novel coupling approach combines realistic feedback with
comparably low computational effort and independence of the
two single physics solvers. The coupling interface can be used
independently from the exact solver architecture and therefore
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FIGURE 7 | Time course of Euclidean distance (ED) for the last heart cycle in every iteration of the mechanical solver. For an overview see again Figure 4. The

statistical distribution of the minimum and the maximum value, as well as the area which covers 50 and 90% of all values are highlighted in red as well as dark and

light blue color. (A) ED0: ED between initial mechanical simulation (j = 0) and subsequent iteration (mechanical simulation 1). (B) ED1: ED between mechanical

simulation 1 (j = 1) and subsequent mechanical iteration. See Figure 4 for an overview.

TABLE 2 | Euclidean distance in mm.

Euclidean distance ED Left ventricle (LV) Left atrium (LA) Overall

in mm min max mean min max mean min max mean

Iteration 0/1 (j=0 / ED0) 0.00 2.07 0.06 0.00 2.05 0.03 0.00 2.07 0.04

Iteration 1/2 (j=1 / ED1) 0.00 2.06 0.06 0.00 1.66 0.03 0.00 2.06 0.04

It is calculated as the deviation of a node comparing two subsequent iterations of the mechanical solver. In this case, the ED between iteration 0 and 1 (j = 0) as well as the ED between

iteration 1 and 2 (j = 1) are given and quantified for the three regions LV, RV and the overall geometry. Minimum, mean and maximum values are listed.

offers a high degree of flexibility and applicability. It unites
simulation software packages focusing on only one physics to
exchange relevant information in a bidirectional manner. In this
way, we enable to consider fluid dynamic influences in structural
mechanics simulations without a need of direct interaction
during the simulation itself.

The main task and also the biggest challenge that partitioned
FSI solvers face is the adequate exchange of coupling data.
In most cases, different underlying mesh geometries have to
be compared and resulting quantities have to be mapped and
interpolated onto the concerning meshes. This process highly
relies on the accuracy of all models, as well as a correct
mapping. Therefore, coupling frameworks are prone to introduce
errors (5). Since in our approach, the solvers do not exchange
information in each time step1t, the correct temporal alignment
of the simulation results is of high importance as well. As we
experienced during testing, already a small shift in the alignment
of the timing can cause simulations not to converge.

When comparing the novel approach with existing
approaches in literature, we can find that partitioned
approaches continue to gain in importance. The group
around (4) implemented a monolithic solver to tackle the multi
physics problem. To account for the influences of the fluid
simulation in the mechanics domain, a fluid Cauchy stress tensor
is considered. Thus, in each time step, fluid and mechanics

equations are solved within one single solver. Like in this work,
the NSE are formulated in ALE description. However, when using
measurement data as a boundary condition for fluid simulation
in the application part, the motion equations are no longer
solved. Based on the measured time courses, the deformation
of the myocardial walls is known a priori and is not computed
based on the monolithic equations any more. This approach still
delivered accurate results. Lately, Regazzoni et al. (9) additionally
implemented an implicit-explicit scheme based on an inter-grid
transfer operator to enable the computation using different mesh
resolutions and discretizations in space and time. Their coupling
scheme therefore is segregated and staggered. In the fully
coupled model suggested by Santiago et al. (34), a partitioned FSI
simulation was used. They tackled the multi-physics problem
of cardiac simulations by a division in two domains with a
Dirichlet-Neumann decomposition each. Based on a strongly
coupled staggered approach, the electro-mechanical domain is
bidirectionally coupled to the fluid domain. A fluid-structure
interface is implemented to compute the discrete position of
the nodes based on Degroote et al. (7). Also Viola et al. (10)
presented a multi-way coupled computational model based on
an immersed boundary grid for the left part of the heart. In
their fluid-structure-electrophysiology coupling approach, a
central structure evolution equation is solved to link between
the three named physical domains. So in each time step, the new
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FIGURE 8 | Time course of the residual volume introduced to quantify the

washout during the fluid simulation. It is computed based on the transport of

the scalar 9, which can be seen as a local concentration of initial blood

volume in the LV. Shown is the curve for the four full heart cycles, color coded

are the two iterations of the fluid solver.

mechanical geometry is used as an input for the three single
physics solvers. The approach was found to deliver accurate
results on an idealized left heart geometry. Another approach
suggested by Habchi et al. (35) is also based on a partitioned
solver. A block Gauss Seidel implicit scheme is used, but there the
three domains fluid, mechanics and mesh motion are considered.
Overall, there are a lot of FSI approaches and applications, with
most of them based on a partitioned approach. The review of
Hirschhorn et al. (5) concisely presents a large number in their
corresponding application fields.

Summing up, all approaches listed in this section are based
on a staggered scheme. Thus, our approach is based on the
same basic decomposition, that is used in established processes.
However, as we suggest a cycle to cycle coupling, the effort
of implementing an elaborated coupling scheme, that closely
couples both physics, is circumvented.

An abstract way to model the influence of the circulatory
system is to use a 3D-0D coupled approach (23, 36–38). To
adequately define the interface between the circulatory system
pressures and the fluid simulation boundary pressures, we
introduced the prolonged trunks in the left heart to model the
pulmonary veins and the aorta. These rigid tubes also allow for
steady state flow conditions.

To replicate realistic blood flow patterns, Daub et al.
(28) showed that a comparably simple valve model can be
sufficient. Inserting a tripping ring along the valve annulus
enhances vortex formation such that the typical vortex ring
develops in the left ventricular chamber. In this way, previous
limitations of the comparably simple valve model can be
overcome (39, 40). In the present study, the valve planes between
atria and ventricles incorporate a notable narrowing, which
already represents the effective blockage of the valve leaflets

considered sufficient to demonstrate the basic performance
of the coupling algorithm. The same holds true for the
limitation already discussed by Daub et al. (28): This highly
efficient numerical representation of the MV may not be
sufficient to study MV flow characteristics or MV pathology
in detail.

In hemorheology studies, the characteristics of the blood are
investigated. It’s a matter of debate whether blood can bemodeled
as a Newtonian fluid, such that the Navier stokes equations as
presented above hold true. As for example (41) state, length and
time scales are sufficiently large in macroscopic views of the
heart chambers, such that the continuum hypothesis holds true.
Therefore, we model blood as a Newtonian fluid in this study.
However, non-Newtonian effects could potentially play a role in
the prolonged trunks (42).

The results presented in this study show that the sequential
coupling approach could be successfully applied for a healthy
heart model. In particular, the Euclidean distance converged for
successive mechanical iterations. A limit cycle was reached after
already one iteration and oscillations decreased significantly.

The numerical stability of the novel approach was high for the
investigated heart model. However, as mentioned in section 2.4,
the pressure factor has an impact on the absolute pressure
values and the absolute deviations. Thus, a non-limited scaling
factor could lead to instabilities of the mechanical simulation.
Especially if the fluid and the mechanical simulation differ
strongly, e.g., caused by a time offset, numerical stability can
be impaired. The oscillations appearing in the PV loop are
probably introduced by the application of the pressure factor:
A steady state system that is exposed to a pressure step, in our
case the multiplication with a pressure factor, is brought out
of balance and starts to oscillate. To cope with this scenario,
normally several iterations are computed, until a new steady
state is reached. As in our case the circulatory system does not
compute several iterations, the discontinuity of the multiplied
pressure factor (pressure step) has to be handled. We observed
that oscillations decreased in a subsequent coupling iteration.
Pressure discontinuities in the fluid simulation that arise locally,
i.e., in neighboring elements could lead to instabilities in
the subsequent mechanical simulation. These local pressure
discontinuities could for example be caused by a wrong labeling
of cells: As the pressure factor is computed based on the mean
pressure in each chamber, the correct classification of cells is of
high importance, especially at the edges of neighboring regions.

With a mean Euclidean distance of 0.06 mm in the LV,
the tissue deformation resulting from the fluid pressure field
is considerably low. Especially compared to the uncertainty
that is introduced during the imaging process, during image
segmentation and during mesh creation, the mean deviation
is neglectable. With the same reasoning, the resulting volume
alteration of below 1ml can be neglected compared to the overall
chamber volumes. Thus, the additional effort of a fully coupled
simulation is likely not justified. Nevertheless, it can be argued
that the maximum geometrical alteration of up to 2 mm is in the
same order of magnitude as the imaging uncertainty. This is true
but the maximum deviation is limited to a very small number
of nodes in time and space. In the regions around the aorta and
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FIGURE 9 | Pressure-volume loop for the right (RV) and left (LV) ventricle. Color coded are the three iterations of the mechanical solver while the first iteration depicts

the limit cycle after nine iterations of the mechanical solver (mechanical simulation 0, blue color). For the LV, two characteristic areas are shown enlarged in the center

of the figure to highlight the differences between the three iterations.

the apex, fluid dynamics had a higher influence on the model
displacement at characteristic points in time (Figure 7).

We contextualize these deviations with an increased blood
flow velocity. As increased blood flow results in a lower static
wall pressure, it deflects the wall to a lower extent than areas
in a mean flow range. This phenomenon is expected to occur
in the area around the aorta during ventricular systole, when
the blood is ejected out of the LV. As we observe high blood
velocities (up to 200ml/s) in the aortic region, we would expect
the fluid to have an influence on the mechanical deformation
through FSI. During the ventricular filling phase, the area around
the apex is affected by this phenomenon. As the scalar transport
confirms, there is a jet toward the apex. This jet also accounts for
a local velocity increase, resulting in a higher Euclidean distance
between the nodes.

Thus, if the focus of interest is exactly in the detailed
resolution of these regions, the impact of fluid dynamics has to
be considered especially at the mentioned characteristic points
in time. However, even in this case, it is sufficient to compute one
iteration of the sequential pressure-deviation coupling algorithm.

Considering the washout of the LV in Figure 8, the altered
mechanical deformation leads to a noticeable increase. This is
due to the fact that residual volume is summed up cycle by
cycle, which finally leads to an increased washout of 4%. Thus,
in the case of simulating subsequent heart cycles, considering one
iteration of the sequential coupling procedure would lead tomore
precise results.

In conclusion, the retrograde influence of fluid dynamics on
mechanical deformation appears as not particularly relevant for
most of the time of the heart cycle in a healthy configuration. In
other cases, one iteration of the fluid-mechanic coupling would
be sufficient to account for the minor deviations.

Regarding other coupling approaches, the main advantage
of the sequential coupling approach is the independence of the
mechanics and fluid solvers. The presented approach enables to
use different, completely independent software packages for the
simulation of the different physics. The solvers are only linked
by exchanging the pressure factor and the only requirement for
the mechanical solver is the ability to incorporate the external
pressure factor during simulation.

In future work, this iterative coupling approach will have
to prove its ability to deliver physiologically accurate results
also for diseased heart models. To improve stability of the
coupling framework and to increase smoothness of the results, a
time window for the determination of the scaling factor ys can
be introduced. Additionally, the degree of automation can be
increased toward a fully automatic pipeline.

Summing up, we observed that the influence of fluid dynamic
pressure resulted in a structural deviation of up to 2mm.
These deviations could already be resolved after one coupling
iteration. In conclusion, the sequential coupling approachwith its
comparably low computational effort delivered promising results
for modeling fluid-structure interaction in cardiac simulations.
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