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Abstract

Macrophages (Mϕs) play a central role in mucosal immunity by pathogen sensing and

instruction of adaptive immune responses. Prior challenge to endotoxin can render Mφs

refractory to secondary exposure, suppressing the inflammatory response. Previous studies

demonstrated a differential subset-specific sensitivity to endotoxin tolerance (ET), mediated

by LPS from the oral pathogen, Porphyromonas gingivalis (PG). The aim of this study was

to investigate ET mechanisms associated with Mφ subsets responding to entropathogenic

E. coli K12-LPS. M1- and M2-like Mφs were generated in vitro from the THP-1 cell line by

differentiation with PMA and Vitamin D3, respectively. This study investigated ET mecha-

nisms induced in M1 and M2 Mφ subsets, by measuring modulation of expression by RT-

PCR, secretion of cytokines by sandwich ELISA, LPS receptor, TLR4, as well as endoge-

nous TLR inhibitors, IRAK-M and Tollip by Western blotting. In contrast to PG-LPS tolerisa-

tion, E. coli K12-LPS induced ET failed to exhibit a subset-specific response with respect to

the pro-inflammatory cytokine, TNFα, whereas exhibited a differential response for IL-10

and IL-6. TNFα expression and secretion was significantly suppressed in both M1- and M2-

like Mφs. IL-10 and IL-6, on the other hand, were suppressed in M1s and refractory to sup-

pression in M2s. ET suppressed TLR4 mRNA, but not TLR4 protein, yet induced differential

augmentation of the negative regulatory molecules, Tollip in M1 and IRAK-M in M2 Mφs. In

conclusion, E. coli K12-LPS differentially tolerises Mφ subsets at the level of anti-inflamma-

tory cytokines, associated with a subset-specific divergence in negative regulators and inde-

pendent of TLR4 down-regulation.

Introduction

Endotoxin tolerance (ET) is a phenomenon where cells become hypo-responsive to endo-

toxin/lipopolysaccharide (LPS), unable to respond to repeated LPS challenge. ET has been

studied widely in vivo and in vitro in both animals and humans [1]. ET can be both beneficial
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and detrimental to both the host and pathogen alike; immune suppression in general, will ben-

efit the host by dampening down harmful host-derived inflammatory responses that result in

tissue degradation, whereas this suppression will also give the pathogen a reprieve from hostili-

ties, enabling expansion of pathogen numbers. Tolerance induction and sensitivity to ET is

fundamental to the homeostatic function of the gut mucosa; effectively allowing the gastroin-

testinal tract to determine immune fate, tolerating safe non-self, such as commensal microbes

and food whereas maintaining the ability to be activated in inflammatory responses mounted

to unsafe non-self, pathogenic material. Breakdown or dysregulation of tolerance is fundamen-

tal to gut pathology such as inflammatory bowel disease (IBD) or colorectal cancer (CRC). Gut

mucosal macrophages (Mφs) are essential to ET; their differentiation and activation status is

indicative of whether the mucosal environment is harmful to the pathogen or host tissue. ET

induced in Mφs results as a consequence of many different mechanisms, which include induc-

tion and responsiveness to anti-inflammatory cytokines (e.g. IL-10 and TGFβ), down-regula-

tion of PRRs (e.g. TLR4), shedding of cytokine receptors and PRRs and induction of negative

regulatory molecules, which have a functional role in inhibition of TLR4 signal transduction,

such as Tollip, Myd88s, SARM, IRAK-M and SIGIRR (reviewed in [1]).

Mucosal Mφs have a dual functionality that determines tolerance to commensal organisms

or immune responsiveness to entropathogens such as E. coli. This homeostatic tolerisation

phenotype is associated with the M2 Mφ subset whereas an immune activatory/pro-inflamma-

tory phenotype is associated with the M1 Mφ subset (reviewed in [2]). The immune-suppres-

sive anti-inflammatory function of M2 Mφs resembles features of ET; exhibiting a

predominant induction of anti-inflammatory cytokines (e.g.IL-10) and a corresponding

down-regulation of pro-inflammatory cytokine induction (e.g. TNFα) [3]. It is an oversimpli-

fication however, to assign the phenomenon of ET to a specific Mφ subset due to the ever-

increasing characterisation of many varieties of Mφ subsets according to their differentiation,

stimulation, pathological and tolerisation status [4]. Previous investigations in this laboratory

have suggested both differential and overlapping sensitivity to suppression between M1 and

M2 Mφ subsets, determined by phenotype of subset, PAMP and corresponding recognition by

PRR [5]. In general, LPS-tolerisation of downstream Mφ immune responses is determined by

both membrane-associated and intracellular signaling mechanisms; whereby membrane-asso-

ciated mechanisms include reducing expression of TLR4 surface protein, PAMP-binding and

sensitivity of Toll like receptors, and absence of required co-receptor subunits MD2 and CD14

[6–8]; such mechanisms are linked to the homeostatic functionality of M2-like mucosal Mφs

in healthy gut mucosa. With respect to intracellular signalling mechanisms, endogenous sup-

pressors such as Tollip, IRAK-M and short version of MyD88 (MyD88s) have been linked to

TLR4-mediated LPS unresponsiveness [1].

Escherichia coli LPS has been shown to differ from P. gingivalis LPS in structure and various

functional activities [9,10], where E.coli K12 LPS generally exhibits a more robust endotoxin

activity than that displayed by PG-LPS [5]. Indeed, previous investigation demonstrated that

pre-treatment of THP-1 monocytic cells with E. coli and PG-LPS differentially modulate cyto-

kine production and CD14, TLR2, and TLR4 surface expression. This study reported a signifi-

cant difference in the relative potencies of E. coli LPS and PG-LPS to induce pro-inflammatory

cytokines, where PG-LPS was a less effective inducer of pro-inflammatory cytokines. This dif-

ferential response could also be observed with the induction of ET. Pre-treating THP-1 cells

with 100 ng/ml E. coli LPS resulted in 90% reduction in TNFα, IL-1β and IL-6 production

with no effect on CD14 expression, whereas pre-treatment with the same concentration of

PG-LPS resulted in a significant decrease of IL-1β and enhancement of surface CD14 expres-

sion [10]. A similar study, again using THP-1 monocytic cells, showed that ET induced by E.

coli LPS and PG-LPS suppressed TNFα, IL-1β and increased IL-10, whereas ET induced by E.
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coli alone resulted in a suppression of IL-8. Down-regulation of TLR2 or TLR4 protein was

observed in cells tolerised with PG-LPS or E.coli LPS, respectively. After retreatment with

PG-LPS or E. coli LPS, the expression levels of the intracellular negative regulators of TLR sig-

nalling, IRAK-M was increased, whereas Tollip was unaffected [11].

When considering potential differences in M1 and M2 Mφ subset responses to endotoxin,

PG-LPS exhibited a lower endotoxin activity than E.coli-LPS with respect to secretion of

inflammatory cytokines and chemokines produced from polarised murine bone marrow-

derived Mφs [12]. Previously, endotoxin tolerisation studies have described a differential sup-

pression between M1 (pro-inflammatory, CD14hi) and M2 (regulatory, CD14lo) Mφ subsets in

response to LPS of an oral pathogen, Porphyromonas gingivalis. This differential sensitivity of

Mφ subsets to ET described the pro-inflammatory M1-like subset to be refractory to tolerance

induced by P. gingivalis LPS (little or no suppression of TNFα, IL-1β, IL-6 and NFκB activity),

whereas the M2-like subset was sensitive to tolerance induced by P. gingivalis LPS and sup-

pressed inflammatory cytokines TNFα, IL-1β, IL-6 and NFκB activity [5]. In addition, this dif-

ferential Mφ subset, sensitivity to ET has been suggested to be further reinforced by the

differential induction and responsiveness to the anti-inflammatory cytokine, IL-10 [13]. E.

coli, on the other hand, is an intracellular gut mucosal pathogen; E. coli-LPS is understood to

be able to induce ET in macrophages [10,11,14,15]. The aim of this study was to investigate the

susceptibility of these distinct M1 and M2 Mφ subsets to E. coli K12-LPS-tolerance and to

characterise the mechanisms that underpin this tolerance induction.

Materials and methods

Macrophage (Mϕ) culture

THP-1 cells were maintained in RPMI-1640 medium supplemented with 10% v\v foetal calf

serum (FCS), 2mM L-glutamine and 100 U/ml Penicillin and 100 μg/ml Streptomycin (Lonza,

Wokingham, UK) (here on referred to as R10) at 37o C, 5% CO2 incubation. THP-1 cells were

differentiated into M1-like Mφ subset (Pro-inflammatory) and M2-like subset (anti-inflamma-

tory) by incubation of THP-1 monocytic cells in the presence of 25ng/ml phorbol-12-myristate

acetate, PMA (Sigma-Aldrich, Poole, UK) for 3 days and 10nM 1,25-(OH)2 -Vitamin D3

(Sigma-Aldrich, Poole, UK) for 7 days for M1-like and M2-like Mφ subsets, respectively. Prior

to experimentation, M1-like Mφs were washed and incubated for an additional 24 hours to

washout PMA. This washout protocol ensured low background cytokine production and that

cytokine responses measured were directly induced by E.coli K12-LPS and not by the residual

activation by the diacylglycerol (DAG) analogue, PMA, used to differentiate THP-1 cells to

Mφs.

PMA- and Vitamin D3-differentiated THP-1 cells were used as an appropriate model of pri-

mary blood monocyte-derived M1 and M2 Mφs polarised by GM-CSF or IFNγ and M-CSF or

IL-4/IL-13, respectively. These cell line-derived Mφ subsets exhibited a similar phenotype to

the primary monocyte-derived M1 and M2 Mφ subsets, where the PMA (M1-like) MФs were

TNFαhi (mRNA & protein), IL-12hi, IL-10lo (mRNA), endogenous IL-10 activity-, IL-6hi,

iNOS+ (mRNA), Arginase- (mRNA), Dectin-1-, CD206-, phagocytic activity+ and the Vitamin

D3 (M2-like) Mφs were TNFαlo (mRNA & protein), IL-12lo, IL-10hi (mRNA), endogenous IL-

10 activity+, IL-6lo, iNOS- (mRNA), Arginase+ (mRNA), Dectin-1+, CD206+, phagocytic activ-

ity++ [5,11,13, 16–18].

Activation of macrophage (Mφ) subsets

THP-1-derived M1- and M2-like Mφs were stimulated by 100 ng/ml E.coli K12-LPS (Invivo-

gen, Toulouse, France) for defined time periods at 37o C/5% CO2. Afterwhich time, the
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conditioned supernatants were harvested and stored at -20o C until required for cytokine assay

by sandwich ELISA, whereas cell lysates were used for detection of gene expression by Real

Time polymerase chain reaction (RT-PCR) and intracellular proteins by Western blotting.

Tolerisation by pre-incubation with E.coli K12-LPS

THP-1-derived M1- and M2-like Mφs were pre-treated with 100 ng/ml K12-LPS for 4 hours

and 24 hours, afterwhich time the pre-stimulus culture medium was removed carefully and

Mφs were washed in fresh R10 before re-stimulation by 100 ng/ml K12-LPS for a further 18

hours at 37o C/5% CO2. The conditioned supernatants were harvested and stored at -20 0C

until required for cytokine assay by sandwich ELISA whereas cell lysates were used for detec-

tion of gene expression by Real Time polymerase chain reaction (RT-PCR) and intracellular

proteins by Western blotting. To demonstrate a physiologically-relevant tolerisation; after

stimulation or tolerisation protocols, Mφ viability was routinely checked by Trypan blue

(Sigma-Aldrich, Poole, UK) exclusion. No significant reductions in Mφ viability were observed

for stimulation/tolerisation protocols used in this study, viability was routinely >85%.

Cytokine measurement

At the end of the culture period, conditioned supernatants were harvested and stored at -20
0C. The level of TNFα, IL-6 and IL-10 secretion into the culture supernatants was determined

by sandwich ELISA using capture and detection antibodies commercially available from R&D

Systems UK Ltd., Abingdon and BD Pharmingen, Oxford, UK. Protocols were followed

according to manufacturer’s instructions and compared to standard curves between the range

of 7 to 5,000 pg/ml, using the international standards available from NIBSC, Potter’s Bar, UK.

Real-time PCR analysis of gene expression

Expression of TNFα, IL-6, IL-10, TLR4, IRAK-M, Tollip and glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) mRNA was evaluated by real-time polymerase chain reaction

(RT-PCR). Following each treatment, cells were washed with ice-cold PBS and total RNA was

isolated using GenElute RNA extraction kit (Sigma-Aldrich, Poole, UK) according to manu-

facturer’s instructions. The total RNA concentration was determined using NanoVue spectro-

photometer (GE Healthcare, Freiberg, Germany). RNA purity was assessed by examining the

absorbance ratio at 260 and 280 nm. One microgram of total RNA was reverse transcribed

using MMLV Reverse Transcriptase reaction kit (Sigma-Aldrich, Poole, UK). Sequence spe-

cific primers for the target mRNAs (Table 1) were designed using Primer Express Software

(Applied Biosystems, Paisley, UK) and synthesised by Eurofins MWG Operon (Ebersberg,

Table 1. Sequence of real-time PCR primers and estimated product size. Oligonucleotide sequences are presented for the forward and reverse primers for the cytokines,

TNFα, IL-6 and IL-10, the negative regulatory molecules Tollip and IRAK-M, the LPS receptor TLR4 and for the control housekeeping gene, GAPDH. Primer sequences

were designed using Primer Express Software (Appiled Biosystems, UK) for amplicon product size between 100–150 base pairs (bp).

Target Forward primer 5’ Size (bp) Reverse primer 3’ Size (bp) Product (bp)

GAPDH CTGCTCCTCCTGTTCGACAGT 21 CCGTTGACTCCGACCTTCAC 23 100

TNFα ACATCCAACCTTCCCAAACG 20 GCCCCCAATTCTCTTTTTGAG 22 151

IL-10 AGGAGGTGATGCCCCAAGCTGA 22 TCGATGACAGCGCCGTAGCCT 21 110

IL-6 TGGCTGCAGGACATGACAAC 20 TGAGGTGCCCATGCTACATTT 20 100

TLR4 AGCCCTTCACCCCGATTC 18 TAGAAATTCAGCTCCATGCATTG 23 100

Tollip TCTCATGCCGTTCTGGAAAAT 21 TCACATCACAAAATGCCATGAA 22 110

IRAK-M TTCAACCATGCTCGGTCATCT 21 CATACCAGGAGAACTACAGCAGA 23 137

https://doi.org/10.1371/journal.pone.0214681.t001
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Germany). RT-PCR was performed using StepOnePlus thermal cycler and Power SYBR Green

kit (Applied Biosystems, Foster City, CA, USA) using 10 pmol of the forward and reverse

primers for each target. Target amplification was carried out under the following conditions:

preheating at 95˚C for 10 min, followed by 40 cycles at 95˚C for 30 s, 60˚C for 1 min and 72˚C

for 1 min. RT-PCR data were analysed following the 2-ΔΔCt method as described by Livak and

Schmittgen [19], using GAPDH as an endogenous control and resting cells as a reference sam-

ple. Thus, the relative quantity of the target transcript is described as fold change (RQ, relative

quantitation) relative to the reference sample and GAPDH.

Western Blotting of TLR4, IRAK-M and Tollip

Cells were harvested on ice using ice-cold lysis buffer, supplemented with a protease inhibitor

cocktail (1/20) and phosphatase inhibitor cocktail (1/100) (Thermo Scientific, Cramlington,

UK). Protein extracts were then separated by electrophoresis in a Criterion Xt precast gel,

4–12% Bis-Tris (BIO-RAD Laboratories Ltd, Hemel Hempstead,UK), and transferred to a

PVDF membrane (Thermo Scientific, Cramlington, UK). The membrane was blocked with

PBS containing 0.1% v/v Tween-20 (Sigma-Aldrich, Poole, UK) and 5% w/v non-fat milk,

Marvel original dried skimmed milk powder (Sainsburys, UK), and incubated with antibodies

against human TLR4 (R&D Systems, Abingdon, UK), IRAK-M (Fisher Scientific, Loughbor-

ough, UK), Tollip (New England Biolabs, Herts, UK) and GAPDH (AbCam, Cambridge, UK)

overnight at 4˚C. After incubation with appropriate horseradish peroxidase-conjugated sec-

ondary antibodies (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK) for 2 hours, immunore-

activity to blotted proteins were visualized using enhanced chemiluminescence (ECL) (GE

Healthcare Life Sciences, Buckinghamshire, UK). Band density was measured using ImageJ

software (available on-line, developed by NIH, USA).

Statistical analysis

Statistical significance was analysed using a balanced analysis of variance (General Linear

Model, Minitab version16 & 17) followed by a multiple comparison test. Significance was set

at P values; (�p< 0.05, ��p< 0.01 and ���p< 0.001 or indicated as ns = non-significant

difference).

Results

E.coli K12-LPS induces distinct cytokine patterns in M1 and M2

macrophage subsets

Mφ subsets differentially respond to LPS challenge; where M1 Mφs predominantly express

pro-inflammatory cytokines and M2 Mφs predominantly express anti-inflammatory cyto-

kines. This cytokine pattern however, can vary with different PAMP stimulation. This investi-

gation was undertaken to characterise whether M1 and M2 Mφs reacted similarly when

challenged by the enteropathogenic E. coli K12-LPS. THP-1-derived macrophages exhibited

distinct cytokine patterns in M1 and M2 Mφ subsets in response to K12-LPS stimulation.

Overall, when stimulated with 0.1 μg/ml K12-LPS for 18 hours, when compared to M2-like

Mφs, M1-like Mφs expressed higher levels of both de novo mRNA (p = 0.12) and secreted

TNFα protein (p = 0.0008) (Fig 1A and 1C). Although, pro-inflammatory M1-like Mφs exhib-

ited a lower level of IL-6 mRNA compared to M2 Mφs (p = 0.09), they produced a significantly

higher level of secreted IL-6 than the anti-inflammatory M2-like Mφs (p = 0.001)(Fig 1B and

1D). Considering M2 Mφs are generally described as anti-inflammatory, K12-LPS stimulation

of IL-10 was investigated. M2-like Mφs expressed a higher IL-10 gene expression level than
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M1-like Mφs at both basal levels (unstimulated) and stimulated (p = 0.001), where LPS-

induced IL-10 mRNA by M1-like Mφs was even lower than unstimulated M2-like Mφs (Fig

2A). Interestingly, K12-LPS induced minimal secretion of IL-10 by M2-like anti-inflammatory

Mφs, when compared to M1-like Mφs (p = 0.0003)(Fig 2B). This apparent discrepancy in IL-

10 induction and secretion between M1 and M2 Mφs is partially explained by an endogenous

IL-10 activity, indeed membrane bound IL-10 has previously been described [20,21]. This

endogenous activity was examined by suppressing IL-10 activity, using a neutralising anti-IL-

10 antibody, and its potential ability to negate anti-inflammatory effects on TNFα production.

Unstimulated Mφ subsets showed no endogenous activity (augmentation of TNFα secretion,

upon neutralising IL-10 activity, Fig 2C and 2D). Upon K12-LPS stimulation however, Mφ
subsets exhibited a differential expression of endogenous IL-10 activity. E. coli LPS failed to

induce an endogenous suppressive IL-10 activity in M1s; TNFα induction did not display a

Fig 1. E.coli K12 LPS induces a similar pro-inflammatory cytokine profile in M1 and M2 Mφ subsets. THP-1-derived M1 and M2 Mφs were generated by

differentiating THP-1 monocytic cells with either 25 ng/ml phorbol 12-myristate 13-acetate (PMA) for 3 days or 10 nM 1,25-(OH)2 vitamin D3 for 7 days,

respectively. M1 (bold) and M2 (shaded) Mφ subsets were stimulated with or without 100 ng/ml K12-LPS. Gene expression, mRNA, was tested in both Mφ
subsets for the expression of TNFα mRNA (a) and IL-6 mRNA (b) where mRNA level is expressed as fold change (RQ) using GAPDH as reference gene and

resting cells as a calibrator sample, as described in [16] using 2-ΔΔct method. Cytokine production was measured by sandwich ELISA and presented as the

mean ± SD in pg/ml for TNFα (c) and IL-6 (d). Data displayed is representative of triplicate samples for n = 3 replicate experiments. Significant differences in

cytokine expression and secretion between activated M1 and M2 Mφs are indicated as ��p< 0.01, ��� P< 0.001 and ns = not significant.

https://doi.org/10.1371/journal.pone.0214681.g001
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significant change, between isotype-matched control and neutralising anti-IL-10 antibody

(p = 0.176). Conversely, E. coli LPS induced an distinct endogenous IL-10 activity in M2-like

Mφs. Neutralisation of IL- 10 activity increased TNFα secretion by 66%, p = 0.0002 (Fig 2C

and 2D). Overall, the Mφ subsets exhibited distinct secretory cytokine patterns upon K12-LPS

stimulation; M1 Mφs, induced a TNFα: IL-6: IL-10 cytokine ratio of 14:1:1, whereas K12-LPS

induced a corresponding ratio of 63:3:1 by M2 Mφs (cytokine secretion between these two Mφ
subsets was significant to p = 0.001 for TNFα, p = 0.001 for IL-6 and p = 0.001 for IL-10 (Figs 1

and 2). When considering the anti-inflammatory function of endogenous, cell-associated IL-

Fig 2. E.coli K12 LPS induces Mφ subset-specific secreted IL-10 and endogenous IL-10 activity. THP-1-derived M1 and M2 Mφs were generated by

differentiating THP-1 monocytic cells with either 25 ng/ml phorbol 12-myristate 13-acetate (PMA) for 3 days or 10 nM 1,25-(OH)2 vitamin D3 for 7 days,

respectively. M1 (bold) and M2 (shaded) Mφ subsets were stimulated with or without 100 ng/ml K12-LPS. IL-10 gene expression of mRNA (a) is presented as

fold change (RQ) using GAPDH as reference gene and resting cells as a calibrator sample, as described in [16] using 2-ΔΔct method. Secretion of IL-10 (b) was

measured by sandwich ELISA and presented as the mean ± SD in pg/ml. Endogenous cell-associated IL-10 activity was measured based upon the anti-

inflammatory activity of IL-10 to suppress LPS-induced TNFα. Mφs were pre-treated with 10 μg/ml 9D7 neutralising anti-IL-10 antibody and compared to an

irrelevant isotype-matched control antibody (IC) and is represented for K12-LPS-stimulated and unstimulated M1 (c) and M2 (d) macrophage TNFα
secretion. TNFα is expressed as the mean± SD in pg/ml. Data displayed is representative of triplicate samples for n = 3 replicate experiments. Significant

differences in cytokine expression and secretion between LPS-activated M1 and M2 Mφs and unstimulated controls and between isotype control and

neutralising IL-10 antibody treatment are indicated as ��p< 0.01, ���P< 0.001 and ns = not significant.

https://doi.org/10.1371/journal.pone.0214681.g002
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10, K12-LPS induced a TNFα: IL-6: endog. IL10 ratio of 3096:254:1 and 3:0.17:1, for M1 and

M2 Mφs, respectively.

E. coli K12-LPS differentially tolerises macrophage subset cytokines

It has previously been established that Mφ subsets exhibit differential cytokine sensitivities to

ET. Tolerisation induced by the LPS of an oral pathogen, Porphyromonas gingivalis, resulted in

suppression of M2 Mφ production of TNFα, IL-6 and IL-10 whereas M1 Mφ production was

refractory to suppression of TNFα and IL-6 (Refer to Table 2 and [5]). With regards to toler-

ance induction in gut mucosal macrophages and the potential to control Mφ-driven immune

fate in the GIT: inflammation/activation Vs. anti-inflammatory/regulatory, it was important to

investigate Mφ subset-specific sensitivity to tolerance induced by LPS from an enteropatho-

gen, Escherichia coli strain K12. Macrophage pre-treatment with E. coli K12-LPS differentially

suppressed cytokine gene expression and subsequent cytokine protein production/secretion

upon re-stimulation with LPS. This homo-tolerisation of cytokine patterns is Mφ subset-

dependent. Consistent with the PG-LPS investigation, the tolerisation protocol adopted in this

study utilised a 24 hour pre-treatment with K12-LPS prior to stimulation with K12-LPS for a

further 18 hours. This tolerisation protocol allowed investigation of differential control of cyto-

kine induction (determined as optimal time course for production of all cytokines TNFα, IL-6

and IL-10).

Gene expression of TNFα relative to GAPDH was significantly suppressed in both M1- and

M2-like Mφs (Fig 3A). In a similar tolerisation protocol, where Mφs were pre-treated with

K12-LPS for just 4 hours (refer to S1 Fig), a similar result was observed compared to that of

the 24 hour pre-treatment; TNFα gene expression levels in M1 Mφs were downregulated by

60% (p = 0.045) and by 90%, (p = 0.15, ns) in M2s, respectively (S1a Fig). When pre-treated

for 24 hours, TNFα mRNA levels in M1 and M2 Mφs were suppressed by 58% (p = 0.038) and

95% (p = 0.012), respectively (Fig 3A). K12-LPS tolerisation significantly suppressed TNFα
protein production/secretion by both M1- and M2-like Mφs. When pre-treated for 4 hours,

secreted TNFα protein was suppressed by 61%, p = 0.003 and 97%, p = 0.003 (S1B Fig);

whereas upon 24 hour pre-treatment, M1 and M2 Mφ TNFα levels were suppressed by 92%

(p = 0.002) and 98% (p = 0.008), respectively (Fig 3B). There was no significant change in IL-6

gene expression compared to LPS stimulus controls (stimulation by K12-LPS without prior

treatment) in M1 (p = 0.959) and M2 Mφs (p = 0.293) upon 4 hours pre-treatment (S1C Fig).

After 24 hours pre-treatment however, M1-like Mφs clearly suppressed IL-6 gene expression

(reduced by 95%, p = 0.002) whereas M2-like Mφs showed no-significant change in IL-6 gene

expression (p = 0.716) (Fig 3C). Similarly, IL-6 cytokine protein production showed no signifi-

cant difference in both M1 (p = 0.221) and M2 Mφs (p = 0.194) upon 4 hours pre-treatment

(S1D Fig). Nevertheless, upon 24 hours pre-treatment, K12-LPS clearly suppressed M1-like

Table 2. P.gingivalis-LPS differentially suppresses M1 & M2 Mφ cytokines. Endotoxin tolerisation effects on

PG-LPS-induced suppression of TNFα, IL-6 and IL-10 secretion by THP-1-derived M1 and M2 Mφ subsets, where

data is presented as % reduction of, or % increase over PG-LPS stimulus controls. Cytokine reduction is indicated by a

downwards pointing arrow, whereas augmentation of LPS-induced cytokines are indicated by an upwards pointing

arrow. Data presented is representative of n = 3 replicate experiments, already published in [5] and serves as a compar-

ator with E. coli K12-LPS induced ET presented in Fig 3.

(PG-LPS

(Pre-treatment

/

/

PG-LPS)

Stimulation)

Cytokine: TNFα IL-6 IL-10

M1-like Mφs " 41% # 5% #76%

M2-like Mφs # 98% " 423% # 67%

https://doi.org/10.1371/journal.pone.0214681.t002
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Fig 3. E.coli K12-LPS differentially suppresses Mφ subset cytokines secretion and gene expression. M1 (bold) and M2 (shaded) Mφ subsets were pre-

stimulated with 100 ng/ml K12-LPS for 24 hours prior to stimulation with 100 ng/ml K12-LPS incubated for a further 18 hours, indicated using (-) = no

LPS, whereas (+) = LPS added for both pre-stimulated (tolerisation) and stimulated cells (stimulation). Gene expression, mRNA, was tested in both Mφ
subsets for the expression of TNFα mRNA (a), IL-6 mRNA (c) and IL-10 mRNA (e), where the mRNA level is expressed as fold change (RQ) using GAPDH

as reference gene and resting cells as a calibrator sample, as described in [16] using 2-ΔΔct method. Data displayed for gene expression is a representative

experiment with duplicate samples for n = 3 replicate experiments. Cytokine production was measured by sandwich ELISA and presented as the mean

secretion ± SD in pg/ml for TNFα (b), IL-6 (d) and IL-10 (f). Data displayed is representative of triplicate samples for n = 3 replicate experiments. Significant

effects on suppression compared to the untolerised LPS stimulation control for the specified Mφ subset are indicated as � p< 0.05, �� p< 0.01, ���P< 0.001

and ns = not significant.

https://doi.org/10.1371/journal.pone.0214681.g003
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Mφ induction of IL-6 (reduced by 92%, p = 0.021) and showed no significant suppression in

IL-6 production (reduced by 14%, p = 0.364) by M2-like Mφs (Fig 3D).

Interestingly, gene expression of the anti-inflammatory cytokine, IL-10, showed significant

upregulation by both Mφ subsets upon 4 hour pre-treatment tolerisation. The increase level in

IL-10 gene expression was 110% higher in both M1- and M2-like Mφs, p = 0.006 and

p = 0.005, respectively (S1E Fig). IL-10 gene expression did not show any significant change

upon tolerisation in both Mφ subsets after 24 hours of pre-treatment (p = 0.42), however both

subsets exhibited an augmentation trend in LPS-induced IL-10 mRNA (Fig 3E). Pro-inflam-

matory M1-like Mφs showed no change (p = 0.785) in IL-10 protein production when they

were pre-treated by K12-LPS for 4 hours; anti-inflammatory M2-like Mφs however, displayed

an up-regulation of IL-10 by 176% (p = 0.035) (S1F Fig). Secretion of IL-10 by pro-inflamma-

tory M1 Mφs was clearly suppressed (56%, p = 0.002) when pre-treated with K12-LPS for 24

hours compared to positive controls. On the other hand, anti-inflammatory M2 Mφs displayed

a slight but significant increase in IL-10 cytokine secretion (p = 0.039) upon tolerisation over

stimulus controls (Fig 3F).

E. coli K12-LPS tolerisation of Mφ subsets is independent of a down-

regulation in TLR4 protein

Down-regulation in TLR4 surface expression is recognised as a mechanistic response to ET.

To establish an understanding of ET mechanisms utilised in M1 and M2 Mφ subsets, it was

important to investigate the influence of ET on TLR4, the pattern recognition receptor to the

K12-LPS agonist. Upregulation of TLR4 mRNA was observed in M1 Mφs stimulated with

K12-LPS. After pre-stimulation, challenge with the same LPS for an additional 24 hours,

markedly decreased the levels of TLR4 gene expression in M1-like Mφs by 75% compared

with LPS-stimulated cells (p = 0.001). Additionally, M2-like Mφs also showed a significant

downregulation of TLR4 gene expression by 50% upon LPS pre-stimulation/stimulation

(p = 0.001) (Fig 4A). No significant changes in TLR4 gene expression were observed in M1

(p = 0.1) and M2s (p = 0.5) for the 4 hour pre-treatment (S2A Fig). Interestingly however, was

the fact that these ET effects on TLR4 mRNA were not paralleled by TLR4 protein. TLR4 pro-

tein was upregulated in M1-like Mφs upon stimulation with the same pre-treatment challenge

compared to the stimulus control. The band density of positive stimulus control, compared to

the GAPDH house-keeping protein loading control, increased by 14% from 0.37 to 0.42, upon

tolerisation. On the other hand, in tolerised M2-like Mφs, TLR4 was down-regulated by 20%

upon stimulation with the same pre-treatment/treatment challenges, from stimulus control

levels of 0.39 to 0.31 (Fig 4B).

Macrophage subsets exhibit differential regulation of IRAK-M and Tollip

upon endotoxin tolerisation

Previous results presented in this investigation indicate a differential sensitivity of Mφ subset

induced cytokines to ET, and that this differential cytokine suppression was independent of a

down-regulation in the LPS receptor, TLR4. As a consequence of this lack of suppression of

TLR4, mechanistic focus was changed to intracellular negative regulators of TLR4 signalling,

such as IRAK-M and Tollip. Indeed, K12-LPS ET selectively up-regulated the TLR negative

regulators IRAK-M and Tollip in a subset-specific manner. Upon tolerance induction, Mφ
subsets exhibited a clear up-regulation in the gene expression of the negative regulators,

IRAK-M and Tollip mRNA, with the greatest increase observed in M1 Mφs. In the case of the

4 hour pre-treatment tolerance induction, M1-like Mφs showed a significant up-regulation for

IRAK-M mRNA 160% (p = 0.04), whereas M2-like Mφs showed no difference in IRAK-M

Macrophage tolerisation by E. coli LPS

PLOS ONE | https://doi.org/10.1371/journal.pone.0214681 May 23, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0214681


mRNA expression levels (p = 0.25, S2B Fig). For 24 hour pre-treatment, both endotoxin-

tolerised M1- and M2-like Mφs showed a significant up-regulation for IRAK-M mRNA by

330% (p = 0.024) and 300% (p = 0.001), respectively (Fig 5A). The differential Mφ subset-spe-

cific response was observed at the IRAK-M protein level. Interestingly, ET-induced M1-like

Mφs failed to present any appreciable change in IRAK-M protein level, whereas M2-like Mφs

showed a clear upregulation in IRAK-M protein. This was reinforced by protein band densi-

tometry expressed as the relative IRAK-M band density to the loading control density of

GAPDH in the same sample; where the relative band density for the LPS control exhibited by

M1 Mφs was 1.089 which decreased by 35% to 0.712 upon tolerisation. In the case of M2 Mφs,

the relative density increased from 0.431 to 1.053, thus IRAK-M protein was increased by

144% by tolerisation pre-stimulation over control LPS stimulation (Fig 5C). Thus, tolerisation

induced a matched up-regulation in IRAK-M mRNA and protein in M2 Mφs, whereas ET

induced up-regulation in IRAK-M mRNA in M1 Mφs was not matched by that of IRAK-M

protein. Interestingly, the opposite case was observed with Tollip results. M1-like Mφs dis-

played a significant up-regulation by 140% (p = 0.02) and M2 Mφs presented a down-regula-

tion by 60% (p = 0.009) of Tollip mRNA after 4 hours pre-treatment tolerisation (S2C Fig).

Although endotoxin-tolerised M1- and M2-like Mφs clearly up-regulated Tollip mRNA

expression after 24 hours pre-treatment tolerisation by 140% (p = 0.011) and 300% (p = 0.025),

respectively (Fig 5B), M1-like Mφs only, exhibited an appreciable augmentation in the protein

level of Tollip. The relative band density for Tollip protein for the LPS stimulus control exhib-

ited by M1 Mφs was 0.167 which increased to 0.322 upon tolerisation, whereas for M2 Mφs,

the relative density decreased from 0.061 to 0.014, thus Tollip protein was increased by 93% by

Fig 4. E.coli K12-LPS tolerisation of Mφ subsets is independent of a down-regulation in TLR4 protein. M1 (bold) and M2 (shaded) Mφ subsets were pre-

stimulated with 100 ng/ml K12-LPS for 24 hours prior to stimulation with 100 ng/ml K12-LPS incubated for a further 18 hours, indicated using (-) = no LPS,

whereas (+) = LPS added for both pre-stimulated (tolerisation) and stimulated cells (stimulation). Gene expression, mRNA, was tested in both Mφ subsets for

the expression of TLR4 mRNA (a), where the mRNA level is expressed as fold change (RQ) using GAPDH as reference gene and resting cells as a calibrator

sample, as described in [16] using 2-ΔΔct method. Data displayed for gene expression is a representative experiment with duplicate samples for n = 3 replicate

experiments. Significant effects on suppression (+/+) compared to the untolerised LPS stimulation control (-/+) for the specified Mφ subset are indicated as
���P< 0.001. TLR4 protein (b) was detected by western blotting and levels of GAPDH served as internal controls. The relative band density ratio of TLR4

protein compared to the GAPDH house-keeping protein loading control is indicated numerically above the appropriate sample detected on the blot. Data

displayed is a representative blot of n = 3 independent replicate experiments.

https://doi.org/10.1371/journal.pone.0214681.g004
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Fig 5. Endotoxin-tolerisation of Mφ subsets differentially regulates IRAK-M and Tollip. M1 (bold) and M2 (shaded) Mφ subsets were pre-stimulated with

100 ng/ml K12-LPS for 24 hours prior to stimulation with 100 ng/ml K12-LPS incubated for a further 18 hours, indicated using (-) = no LPS, whereas (+) = LPS

added for both pre-stimulated (tolerisation) and stimulated cells (stimulation). Gene expression, mRNA, was tested in both Mφ subsets for the expression of

IRAK-M mRNA (a) and Tollip mRNA (b), where the mRNA level is expressed as fold change (RQ) using GAPDH as reference gene and resting cells as a

calibrator sample, as described in [16) using 2-ΔΔct method. Data displayed for gene expression is a representative experiment with duplicate samples of n = 3

replicate experiments. Significant effects on suppression (+/+) compared to the untolerised LPS stimulation control (-/+) for the specified Mφ subset are

indicated as � P<0.05, ��� P<0.001. IRAK-M (c) and Tollip (d) protein was detected by western blotting and levels of GAPDH served as internal controls. The

relative band density ratio of IRAK-M and Tollip protein compared to the GAPDH house-keeping protein loading control is indicated numerically above the

appropriate sample detected on the blot. Data displayed is a representative blot of n = 3 independent replicate experiments.

https://doi.org/10.1371/journal.pone.0214681.g005
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tolerisation pre-stimulation over control LPS stimulation levels in M1 pro-inflammatory Mφs

and decreased by 77% in M2s, although this M2 result is not clearly visible in blot (Fig 5D).

Discussion

Mφ subsets have previously been shown to exhibit a differential sensitivity to ET induced in

response to PG-LPS, derived from the oral keystone pathogen associated with chronic peri-

odontitis, Porphyromonas gingivalis [5]. In brief, CD14lo M2 Mφs, which resemble homeo-

static, tissue-resident mucosal Mφs, were sensitive to PG-LPS-induced ET (suppression of

TNFα, IL-1β, IL-6, IL-10 and NFκB) whereas CD14hi M1 Mφs, representative of pro-inflam-

matory mucosal Mφs, were generally refractory to tolerance induction by PG-LPS (little, if any

suppression of TNFα, IL-1β, IL-6 and NFκB). This investigation aimed to investigate whether

the same, or a different, response to ET could be observed between the Mφ subsets when

tolerised by the LPS from a known gut mucosal enteropathogen, E. coli K12.

Firstly, E.coli K12 LPS-induced pro-inflammatory and anti-inflammatory cytokine produc-

tion is dependent on the route of Mφ differentiation. Both subsets exhibited de novo expres-

sion and secretion of pro-inflammatory cytokines; where M1-like Mφs were characterised as

TNFαhi and IL-6hi and M2-like Mφs were TNFαmed and IL-6lo. At first glance, the induction

of the secreted anti-inflammatory cytokine, IL-10, did not conform to the perception that M1

Mφs are generally pro-inflammatory whereas M2 Mφs are anti-inflammatory; M1-like Mφs

secreted higher levels of IL-10 protein than M2-like Mφs, whereas M2-like Mφs did exhibit a

significantly higher level of both IL-10 mRNA and endogenous cell-associated IL-10 activity.

Secondly, in contrast to PG-LPS tolerisation, ET induced by E. coli K12-LPS failed to demon-

strate a differential subset-specific response, whereas displayed differential sensitivity to toler-

ance induction of inflammatory cytokines. Both K12-LPS tolerised M1- and M2-like Mφ
subsets exhibited suppression of the pro-inflammatory cytokine (TNFα: both mRNA and pro-

tein secretion), however a differential subset-specific response was observed for IL-6 and IL-

10. M1 Mφs were sensitive to suppression of IL-6 and IL-10 and in contrast, M2 Mφs were

refractory to suppression of IL-6 and IL-10. This trend for cytokine protein secretion paral-

leled IL-6 mRNA, however IL-10 mRNA did not follow that of IL-10 secreted protein; where

IL-10 mRNA was non-significantly up-regulated in M2 Mφs, yet relatively unchanged in M1

Mφs. Thirdly, suppression of these inflammatory cytokines appeared to be independent of a

down-regulation of TLR4 protein in both Mφ subsets, however both subsets exhibited a signif-

icant decrease in TLR4 mRNA. Finally, and arguably most importantly, a differential subset-

specific regulation was observed for endogenous negative regulators of TLR4-mediated signal-

ling. There was a differential up-regulation in IRAK-M and Tollip protein upon K12-LPS ET

induction; Tollip was upregulated in M1 Mφs and IRAK-M was upregulated in M2s.

In this study, M1 (pro-inflammatory) and M2 (anti-inflammatory) Mφ subsets were mod-

elled using PMA- and Vitamin D3-differentiation of the human THP-1 cell line. Upon stimu-

lation by E.coli K12-LPS, these Mφ subsets exhibited similar cytokine profiles to those

reported for primary peripheral blood-derived Mφs. TNFα cytokine production was higher in

M1s than M2s in response to stimulation by the TLR4 agonist, K12-LPS (Fig 1A and 1C).

Although it is believed that IL-6 is pro-inflammatory, it has also been described to display anti-

inflammatory properties. The nature of IL-6 production and function is probably being

reflected in different signalling profiles [22]. Anti-inflammatory effects of IL-6 is generally

reflected by initiation of SOCS proteins and STAT-3 activation [23] and reviewed in [24]. In

fact, the STAT-3-inducible molecule, SOCS-3 is associated with M1 classical Mφ polarisation

and can suppress the anti-inflammatory signal and expression of IL-6 and IL-10. On the other

hand, SOCS-3 knockdown favours M2 polarisation [25]. Additionally, IL-6 also induces IL-
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1Ra, soluble p55 TNF-R and suppresses NFκB; all of which are suggestive of IL-6 promoting

an M2 Mφ phenotype [22,26]. Therefore, the mutual association between SOCS-3 and STAT-

3 would seem to control pro- or anti-inflammatory outcome of IL-6, its production, and the

polarisation of Mφs between M1 and M2 subsets. M1 Mφs produced a significantly high level

of IL10, although it was expected that the higher level of IL-10 production would be by M2

Mφs. However, it has been observed in previous studies, and in our laboratory, that IL-10 in

M2 Mφs is expressed endogenously or as membrane bound protein [13,20].

It is well established that multiple stimulation by LPS can induce ET. The use of the pre-

stimulation/stimulation protocol by K12-LPS is employed to investigate TLR4-mediated

homo-tolerisation. Pro-inflammatory and anti-inflammatory Mφs exhibited a comparable

level of TNFα suppression upon 24 hour priming pre-stimulation, followed by stimulation.

The TNFα suppression in protein secretion was supported by a similar level of suppression

shown in TNFα mRNA. Additionally, the suppression of IL-6 production in M1 Mφs might

be associated with TNFα, in that IL-6 mRNA and protein suppression followed the profile of

TNFα after the 24 hour pre-treatment protocol whereas 4 hour pre-treatment failed to exhibit

significant suppression in M1 Mφs (S1 Fig). This delayed suppression of IL-6 behind the

TNFα response may be indicative of IL-6 production being TNFα-dependent in M1 Mφs.

With regards IL-10 mRNA, M2 Mφs exhibited the higher level of expression compared to

M1s, whereas tolerisation induced a differential response between these Mφ subsets: tolerisa-

tion induced an increase in IL-10 mRNA in M2s whereas only a small increase for M1s. This

trend was not reproduced however, when reviewing IL-10 protein secretion, where IL-10

secretion was selectively suppressed in M1s. This differential response between M1 and M2

Mφs, may be indicative of both differences in mRNA stability and endogenous, membrane-

associated IL-10 activity. A potential differential stability of IL-10 mRNA and protein traffick-

ing resulting in either secreted IL-10 or membrane-bound IL-10 activity, might go some way

to explain why M1 Mφs secreted higher levels of IL-10 protein than M2 Mφs, despite the fact

that M1-induced IL-10 secretion was suppressed by repeated LPS exposure and that M2 Mφs

expressed the higher relative expression of IL-10 mRNA. ET is often related with over-secre-

tion of anti-inflammatory cytokines, such as IL-10 and TGF-β, which contribute to the deacti-

vation of Mφs and the suppression of pro-inflammatory cytokine production [1]. Thus, ET

more likely represents a selective reprogramming, intended at reducing inflammatory damage

[27]. This differential cytokine production or selective reprogramming, potentially converting

an M1 cytokine phenotype to that of a regulatory M2 subset phenotype, is likely to be associ-

ated with distinct signaling pathways.

E. coli LPS demonstrated different abilities to modulate expression levels of members of the

TLR family. These results show that, in response to repeated challenge by K12-LPS, the expres-

sion of TLR4 mRNA was significantly down-regulated by both Mφ subsets; this was not how-

ever, reflected by the protein levels, where M1-like Mφs showed a small up-regulation in TLR4

receptor whereas M2 Mφs exhibited a small decrease. This is generally contradictory to ET

mechanisms described in Mφs [28], however may be indicative of a subset-specific sensitivity

to tolerisation. The cytokine expression profiles secreted by LPS tolerised Mφs could be related

to diversity of regulatory mechanisms associated with TLR4-mediated signaling. As a TLR4

agonist, K12-LPS, can activate both MyD88-dependent and MyD88-independent pathways

and present clear suppression in cytokine production in endotoxin-tolerised Mφs, this is in

stark contrast to TLR2, which signals only through a MyD88-dependent pathway [11]. Endog-

enous LPS-recognition utilizes an endosomal TRIF/TRAM-adaptor (Myd88-independent)

pathway, which results in the activation of IRF3 and the expression of type I IFNs. It has long

since been established that type I IFNs can induce IL-10 production [29,30], hence influencing
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a regulatory phenotype; this may go some way to explaining the differential cytokine responses

to ET in distinct Mφ subsets.

In addition to the contribution of LPS-reception events (receptors and TIR-interacting

adaptor molecules), that influence ET-mediated cytokine responses (hence control of inflam-

mation) in these Mφ subsets, it was important to investigate post-reception signal regulation

tolerogenic mechanisms. Therefore, further experiments compared and contrasted the modu-

lation in gene expression and protein level of negative regulators of TLR4 signaling in endo-

toxin tolerised M1- and M2-like Mφs. The negative regulators, which have been studied, were

IRAK-M and Tollip (Fig 5 and S2 Fig). IRAK-M is a negative regulator, preferentially

expressed in monocytes and macrophages, which inhibits the dissociation of the active kinase

isoforms, IRAK-1 and IRAK-4, from the TLR4-Myd88 complex, effectively suppressing signal-

ing through NFκB and expression of pro-inflammatory such as TNFα and IL-1β [31–33].

Indeed, IRAK-1 kinase activity is reduced in LPS-tolerised human and murine Mφs [28,34],

whereas knockout of IRAK-M impairs Mφ ET and results in augmentation in LPS-induced

activation of NFκB and MAPK [32]. In addition to dissociation of IRAKs-1 and -4, it has also

been reported that IRAK-M might inhibit signal transduction between Myd88 and IRAK-1,

thus preventing complex formation with downstream reduction in cytokine expression [35].

Although IRAK-M expression has been reported in both murine and human models of ET

(reviewed in [1]), no investigations have suggested a potential difference in IRAK-M-mediated

ET induced in distinct Mφ subsets. Tollip is associated with both TLR2 and TLR4, playing an

inhibitory role in TLR-mediated cell activation, through its capability to suppress the activity

of IL-1 receptor-associated kinase (IRAK) after TLR ligation/reception [36]. Indeed, human

Tollip was described to regulate TLR2 and TLR4 signaling with the consequent suppression of

the pro-inflammatory cytokines TNFα and IL-6 whilst up-regulating the anti-inflammatory

cytokine, IL-10 [37]. This is suggestive of Tollip exerting its regulatory effects on inflammation

through both direct suppression of inflammatory cytokine expression and their down-regula-

tion of expression and functionality by the induction of IL-10 [38]. Additionally, this Tollip-

mediated tolerisation is likely to be context dependent, where high-dose LPS induces Tollip

expression and facilitates resolution of inflammation [39,40], whereas extremely low-dose LPS

induced a cell stress response through clearing Tollip, blocking lysosomal fusion events, hence

perpetuating chronic inflammation [41]. Interestingly, there was a distinct difference in gene

expression of these negative regulators between tolerised M1 Mφs and M2 Mφs, where both

regulators were up-regulated by LPS tolerisation, with the highest levels observed in M1 Mφs.

This augmentation of gene expression however, was not necessarily translated to protein levels

of IRAK-M and Tollip: Tollip was up-regulated in ET induced in M1-like Mφs whereas

IRAK-M was up-regulated in M2s. It is suggestive that this differential utilisation of negative

regulators of TLR signalling may have an influence on the relative ET responses of these Mφ
subsets with respect to their expression, secretion and responsiveness to TNFα or to IL-6 and

IL-10. The differential involvement of IRAK-M and Tollip in Mφ subset responses to ET and

their role as upstream negative regulators of NFκB-driven signalling responses [32,37] is indic-

ative of both a differential NFκB signal dependence of these distinct subsets, but may also indi-

cate a role for NFκB as a molecular discriminator of Mφ polarisation. Indeed, p65 NFκB

subunit inhibition has been demonstrated to favour anti-inflammatory M2-like Mφ polarisa-

tion [42]; where p65 NFκB subunit favours M1 polarisation and activity and p50/p50 NFκB

drives M2 polarisation [43]. Just how this differential utilization of negative regulators in dis-

tinct Mφ subsets determines inflammatory cytokine responses will be the subject of future

investigations aimed at selective suppression of Mφ subsets associated with inflammatory

pathology and cancer.
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In contrast to previously published investigations where M1- and M2-like Mφ subsets

exhibited a differential sensitivity of TNFα secretion to ET induced by PG-LPS [5], no such

dichotomy in TNFα response was seen in the same Mφ subsets where ET was induced by E.

coli K12-LPS. With regards IL-10 secretion however, both subsets were sensitive to ET induced

by PG-LPS whereas IL-10 (and additionally, IL-6) were differentially regulated by K12-LPS-

induced ET in M1- and M2-like Mφ subsets. This differential Mφ subset response between ET

induced by PG-LPS and K12-LPS would appear to be independent of a down-regulation in

TLR4 protein and is suggestive of subtle Mφ subset- and bacterial species LPS-dependent

effects being associated with signalling downstream of TLR reception events. As a conse-

quence, this study has described a differential, subset-dependent ET-induced up-regulation in

distinct negative regulators of TLR signal transduction pathways; where Tollip was augmented

in M1 Mφs and IRAK-M in M2s upon K12-LPS ET. Manipulation of the expression and bind-

ing activities of such regulators is likely to have a significant and discriminatory effect on Mφ
subset cytokine phenotype and thus, manipulation of ET may exert a profound effect in the

regulation of inflammation via polarisation of Mφ subsets between pro-inflammatory

(M1-like) and anti-inflammatory (M2-like) phenotypes.

Supporting information

S1 Dataset.

(XLSX)

S1 Fig. Short-term pre-treatment with E.coli K12-LPS differentially suppresses Mφ subset

cytokine secretion and gene expression. M1 (bold) and M2 (shaded) Mφ subsets were pre-

stimulated with 100 ng/ml K12-LPS for 4 hours prior to stimulation with 100 ng/ml K12-LPS

incubated for a further 18 hours, indicated using (-) = no LPS, whereas (+) = LPS added for

both pre-stimulated (tolerisation) and stimulated cells (stimulation). Gene expression, mRNA,

was tested in both Mφ subsets for the expression of TNFα mRNA (a), IL-6 mRNA (c) and IL-

10 mRNA (e), where the mRNA level is expressed as fold change (RQ) using GAPDH as refer-

ence gene and resting cells as a calibrator sample, as described in [16] using 2-ΔΔct method.

Data displayed for gene expression is a representative experiment with duplicate samples for

n = 3 replicate experiments. Cytokine production was measured by sandwich ELISA and pre-

sented as the mean secretion ± SD in pg/ml for TNFα (b), IL-6 (d) and IL-10 (f). Data dis-

played is representative of triplicate samples for n = 3 replicate experiments. Significant effects

on suppression compared to the untolerised LPS stimulation control for the specified Mφ sub-

set are indicated as � p< 0.05, �� p< 0.01 and ns = not significant.

(TIF)

S2 Fig. Short-term pre-treatment E.coli K12-LPS tolerisation of Mφ subsets differentially

regulates IRAK-M, Tollip and TLR4 gene expression. M1 (bold) and M2 (shaded) Mφ sub-

sets were pre-stimulated with 100 ng/ml K12-LPS for 4 hours prior to stimulation with 100 ng/

ml K12-LPS incubated for a further 18 hours, indicated using (-) = no LPS, whereas (+) = LPS

added for both pre-stimulated (tolerisation) and stimulated cells (stimulation). Gene expres-

sion, mRNA, was tested in both Mφ subsets for the expression of TLR4 mRNA (a), IRAK-M

mRNA (b) and Tollip mRNA (c), where the mRNA level is expressed as fold change (RQ)

using GAPDH as reference gene and resting cells as a calibrator sample, as described in [16]

using 2-ΔΔct method. Data displayed for gene expression is a representative experiment with

duplicate samples of n = 3 independent replicate experiments. Significant effects on suppres-

sion (+/+) compared to the untolerised LPS stimulation control (-/+) for the specified Mφ
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subset are indicated as� P<0.05, �� P<0.01 and ns, not significant.

(TIF)
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