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Abstract

In recent years immune checkpoint inhibitors have garnered attention as being one of the most promising types of
immunotherapy on the horizon. There has been particular focus on the immune checkpoint molecules, cytotoxic T-
lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) which have been shown to have potent
immunomodulatory effects through their function as negative regulators of T cell activation. CTLA-4, through
engagement with its ligands B7-1 (CD80) and B7-2 (CD86), plays a pivotal role in attenuating the activation of naïve
and memory T cells. In contrast, PD-1 is primarily involved in modulating T cell activity in peripheral tissues via its
interaction with PD-L1 and PD-L2. The discovery of these negative regulators of the immune response was crucial in
the development of checkpoint inhibitors. This shifted the focus from developing therapies that targeted activation of
the host immune system against cancer to checkpoint inhibitors, which aimed to mediate tumor cell destruction
through the removal of coinhibitory signals blocking anti-tumor T cell responses.
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Introduction

The rapidly growing field of cancer immunotherapy
has developed largely as result of our increased
understanding of the immune system and malig-
nancy[1–2]. One of the early developments in this field
occurred when Thomas and Burnett proposed that
tumor cells could evoke an immune response and this
formed the basis of further research[3]. Following this

discovery, the mechanisms of various immune cell
responses involved in cancer recognition and elimina-
tion; including Forkhead box P3 (FOXP3+) regulatory
T cells (T-regs)[4–5], antigen-presenting cells (APCs)[6–
7] myeloid-derived suppressor cells (MDSCs)[8] and
effector T cell subsets[9–13] have been elucidated.
Another important discovery in the development of

checkpoint inhibitors (CIs) is the knowledge that T cell
activation requires two signals. The first signal involves
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specific antigen recognition by lymphocytes and a
second co-stimulatory signal is required as well as the
existence of negative coinhibitory (costimulatory)
signals, while IL-12 and type I IFN (IFNα/β) are
the major sources of signal 3 in a variety of T
cell activation[14]. Receptors such as cytotoxic T-
lymphocyte antigen-4 (CTLA-4) which supply these
coinhibitory signals function as immune checkpoints
which play an important role in the termination of
immune responses following antigen activation; essen-
tially in the maintenance of peripheral tolerance and
autoimmunity. Tumours may exploit these immune
checkpoints in order to actively avoid immune mediated
tumor lysis[15–19]. This research has highlighted the
critical role that the immune system plays in controlling
tumor growth and the importance of reversing immu-
nosuppressive mechanisms. This review will focus on
the mechanisms of action of antibodies that inhibit
CTLA-4 and programmed cell death protein 1 (PD-1),
encompassing therapies that have already been
approved by the FDA and others currently in develop-
ment[2].

Immune checkpoint inhibitors

The inhibition of immune checkpoints using specially
designed checkpoint blocking monoclonal antibodies
(mAbs) such as CTLA-4 and PD-1 play an increasingly
important role in the treatment against a growing
number of malignancies. CTLA-4 attenuates the early
activation of naïve and memory T cells through
interactions with its ligands B7-1 (CD80) and B7-2
(CD86) (Fig. 1A). PD-1 is an receptor expressed on the
surface of activated mature T cells, activated NK cells,
B cells, monocytes and multiple normal tissues and
plays a crucial role in the maintenance of peripheral
tolerance[20–21] (Fig. 1A). In contrast to CTLA-4, PD-1
acts via interactions with its ligands PD-L1 (also known
as B7-H1 or CD274) and is involved mainly in T cell
activity modulation in peripheral tissues as well as
providing a major immune resistance mechanism within
the tumor microenvironment. Cells expressing
high levels of PD-L1 may include tumor cells, T cells,
APCs, epithelial and hematopoetic cells types among
others[22–25]. PD-L2 (also known as B7-DC or CD273)
is mainly expressed by APCs[26–28].
The presentation of antigenic peptide on the MHC

class I molecule to the CD8 T cell is the first step in the
induction of an effective immune response with
generation of tumor-specific CTLs. In addition to the
recognition of pMHC-I by T cells via TCR, induction of
primary T cell response requires co-stimulation of the T
cell by interaction of B7.1/2 co-stimulatory molecules

on the APC with CD28 on the T cell. This interaction
results in downstream signaling that leads to T cell
activation and further differentiation into CTLs. Upon
activation, T cells express the surface proteins CTLA-4
and PD-1, which bind to B7-1/2 and PD-L1, respec-
tively on the surface of APCs.
Cytotoxic T cells (CTLs) are considered the backbone

of immune response against tumor[29]. To recognize and
eliminate tumor cells, CTLs require two activating
signals. The early immune response, occurring mainly
in the lymph nodes is known as the "priming" phase and
requires two signals for T cell activation. In the first
signal, CD8+ T cells recognize antigenic peptides
presented by the major histocompatibility complex
(MHC) class I molecules on the surface of cancer cells
through their T cell receptor (TCR). The second signal,
known as the "costimulatory signal" completes primary
T cell activation and is achieved through binding of the
T cell costimulatory receptor CD28 with the two
costimulatory ligands on APCs; B7-1 and B7-2[28–30].
This leads to downstream signaling and T cell activation
and further differentiation into CTLs (Fig. 1A). Of note,
CD8 T cells require a third signal, along with antigen
and costimulation, to make a productive response and
avoid death and/or tolerance induction.
Following activation, CTLs express surface protein

receptors, CTLA-4 and PD-1 which function as immune
checkpoints. Under usual conditions, the binding
between CTLA-4 and B7-1 or B7-2 counteract the
costimulatory effects of the CD28 on T cell activation
preventing T cell overactivity, as CTLA-4 binds at
higher affinity (20 times more)[30]. This balance
between inactivity and activity control CTL activity
and thus CTLA-4 acts as a negative regulator of T
cells[31]. Reports have shown that an important
mechanism of tumor evasion is the upregulated
expression of CTLA-4 on T cells with the help of
TGF-β, enabling cancers to evade the immune effects of
CTLs[32–35].
Similarly, the engagement of PD-1 on a T cell with

PD-L1 on the tumor cell surface inhibits T cell function
and activation. The PD-1 mediated dysfunction of T
cells is thought to be due to a number of mechanisms.
Following T cell activation, PD-1 binds to PD-L1 on the
surface of APCs and this induces T cell apoptosis,
anergy, exhaustion or IL-10 production. (Fig. 1A)
Further, PD-L1 may act as a barrier to protect tumor
associated PD-L1 from CTL lysis[36–37]. Additionally,
murine models have demonstrated an interaction
between PD-L1 and B7-1. B7-1 may be expressed on
activated APCs and T cells and may send out inhibitory
signals when bound to PD-L1. Tumours and chronic
infections can exploit this pathway to downregulate T
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cell–mediated immunity against tumors and
pathogens[38–39]. In particular, PD-L1 and to a lesser
extent, PD-L2 are expressed on many tumors, including
urothelial, colon, pancreatic, gastric cancers, ovarian,
breast, cervical as well as melanoma glioblastoma and
NSCLC[28,40–48].
Thus, numerous studies have shown that CTLA-4

and PD-1 have an important role in mediating
immune evasion in the tumor microenvironment.
The administration of mAbs blocking CTLA-4, PD-1
or PD-L1 allows for the generation of a sustained
and specific CTL response capable of tumor cell lysis
(Fig. 1B)[20,26,28]. Clinically successful anti-CTLA-4
antibodies blocking this inhibitory signal such as

Fig. 1 Rationale for the use of immune checkpoint inhibitors in cancer therapy. (A) Engagement of CTLA-4 or PD-1 triggers signals that
inhibits activation signaling pathways in the Tcell, leading to T cell anergy or exhaustion, thus inhibiting the T cell immune response. (B) The
administration of CTLA-4, PD-1 or PD-L1 blocking antibodies releases the brakes on the T cell-mediated antitumor immune response and allows
for the generation of functional tumor-specific CTLs capable of killing tumor cells. Ag: Antigen; AP1: Activator protein 1; APC: Antigen-
presenting cell; CTLA-4: Cytotoxic T lymphocyte antigen 4; NFAT: Nuclear factor of activated T cells; NF-kB: Nuclear factor kappa B; PD-1:
Programmed cell death protein 1; PD-L1: Programmed death ligand 1; PI3K: Phosphoinositide 3-kinase; PLC-g: Phospholipase C gamma;
pMHC-I: peptide-MHC class I complex; SHP2: Src homology phosphatase 2; TCR: Tcell receptor; ZAP70: Zeta-chain-associated protein kinase
70.
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ipilimumab and tremelimumab have been developed
which amplify and prolong an anti-tumoral
response[49–50].

Preclinical data

CTLA-4 blockade
Following in vitro studies that supported CTLA-4 as

a key checkpoint molecule in the antitumor immune
response, anti-CTLA-4 blocking antibody therapy was
initially tested in numerous animal models including
breast[51], prostate[52], lymphoma[53], colon[54] and
melanoma[55]. The first study, carried out by Alison
and colleagues demonstrated that CTLA-4 blockade
enhances the anti-tumor immune response[31]. Although
this efficacy was limited to a few cancer cell lines that
only responded to CTLA-4 when combined with a
transduced granulocyte-macrophage colony-stimulating
factor (GM-CSF) producing cellular vaccine[51,56].
These findings suggested that CTLA-4 blockade could
result in significant anti-tumor activity through stimula-
tion of the endogenous antitumor response through
enhancement of naturally or vaccine-induced tumor-
specific T cells. Further, in the case of poorly
immunogenic tumors, which have a limited endogenous
immune response, the combination of CTLA-4 antibody
with a vaccine has the potential to establish an immune
response to hinder tumor growth and lead to tumor
regression in certain cases[2,28].
These studies have paved the way toward CTLA-4

blockade in human clinical trials. A significant phase III
trial was published in 2010 for ipilimumab[57] which
together with tremelimumab[58] are the two most
clinically successful anti-CTLA-4 mAbs[50]. Ipilimu-
mab was found to have a significant increase in survival,
for patients with previously treated unresectable meta-
static melanoma and was the first drug in this class
approved by the FDA for use as first or second line
therapy for advanced melanoma[50,59–61].
Further, as well as enhancing overall survival,

ipilimumab treatment was associated with a durable
response (>2.5 years) with the potential to achieve
long-term control of disease in a significant proportion
(15-20%) of individuals[49–50]. The median duration of
response was two years, compared with 4–8 months for
chemotherapy regimens and oncogene-targeted ther-
apy[62]. The results showed that stable patients at ≥24
weeks were followed up and continued to be stable
beyond 48 weeks. Improved durability was associated
with improved survival outcomes with one year survival
at 42% and 2 year survival at 14%[63–64]. Considering
the advanced inoperable stage of disease in this patient
group, this outcome is encouraging[49–50,65]. These
durable responses suggest lasting adaptations in the

immune system, supporting the belief that immunomo-
dulating therapy may alter the patient’s intrinsic tumor-
specific T cell function[64–65].

PD-1 blockade
The role of PD-1 as an important regulator of

immunity within the tumor microenvironment through
inhibition of T cells has been shown[60,66–67]. It was
predicted that PD-1/PD-L1 blockade would have a
greater anticancer effect than CTLA-4 inhibitors with
fewer unwanted side effects due to the selective
immunosuppressive signals delivered by cancer
cells[2,20]. Effective antitumor T cell responses have
been shown by testing PD-1 blockade together with
GM-CSF in murine models such as CT26 colon
carcinoma, murine B16 melanoma and pancreatic
ductal adenocarcinoma models[68–69]. Numerous clin-
ical trials have therapeutically exploited the PD-1/L1
pathway to considerable effect, with durable response
rates between 20% to 50% in multiple types of
cancer[21,60]. These successes led to FDA approval of
the anti-PD-1 antibodies, pembrolizumab (humanized
IgG4, Merck) followed by nivolumab (fully human
IgG4, Bristol-Myers Squibb, Ono Pharmaceuticals) in
2014, for patients with advanced melanoma who had
not responded to anti-CTLA-4[70–72].
Multiple trials have demonstrated that blockade of the

PD-1/L1 pathway has effective anti-tumor activity in a
number of different malignancies including bladder
cancer[73], breast cancer[66,74], colorectal cancer[60,65–
67,75], diffuse large B cell lymphoma[76], follicular
lymphoma[77], gastric cancer[66], head and neck squa-
mous cell carcinoma[74], Hodgkin’s lymphoma[78],
melanoma[79–84], ovarian cancer[66,74], non–small cell
lung cancer (NSCLC)[8,60,65–66,85–88], pancreatic can-
cer[8,27,66,74], renal cell carcinoma (RCC)[60,74,89],
prostate cancer[60,65], sarcoma[74], small cell lung cancer
(SCLC) and uterine cancer[74]. Further trials are
investigating anti-PD-1/L1 administration in other
cancers such as lung [90], bladder[91–93], renal
cancers[74,94], breast[95–96] and chemotherapy-refractory
Hodgkin disease[78].

Toxicities

CTLA-4 and PD-1 inhibitors are the most clinically
successful checkpoint inhibitors nevertheless, there are
a number of concerns including autoimmunity, unique
adverse effects and toxicity related to checkpoint
blockade mAbs[97]. Although direct comparisons have
not been carried out, clinical response levels and
toxicities are generally consistent between PD-1 and
PD-L1. Due to the role of the PD-1 pathway in the
maintenance of self-tolerance, the inhibition of this
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pathway can cause problems, resulting in adverse
immunologic responses termed "immune related
adverse events" (IRAEs). IRAEs may cause toxicity to
tissues and organs which are usually protected by the
immune system, resulting in autoimmune-like diseases
and inflammation.
However, the most common side effect of PD-1

blockade is fatigue which is not necessarily a limiting
factor in treatment duration and does not require
medical treatment[84]. Other common side effects
associated with CIs were decreased appetite (12%)
and diarrhea (10%)[60]. However, less frequently
observed toxicities can occur in pulmonary (inflamma-
tory pneumonitis), endocrine, mucocutaneous and renal
(interstitial nephritis) sites and even immunologically
privileged sites such as the eye resulting in damage.
These events are rare and may be life threatening such
as the case of inflammatory pneumonitis, requiring
cessation of therapy and treatment with immunosup-
pressants such as corticosteroids[98]. Interestingly,
clinical responses persist despite treatment cessation
and immunosuppression which suggests that the ideal
duration of PD-1 checkpoint blockade has yet to be
determined[99].
In one trial 60% of patients treated with anti-CTLA-4

experienced adverse events of which 10%-15% were
classed as severe (grade 3/4)[50]. IRAEs are less
frequent in anti-PD-1 treated patients than in those
treated with CTLA-4 blockade (13.3% as opposed to
19.9% in anti-CTLA-4 treated patients) leading to
approval of anti-PD-1 treatment as first line for
advanced melanoma in the USA and the EU[2,98].
Understanding the adverse effects associated with
checkpoint blockade as well as having effective
treatment plans for their management are crucial to
optimise the efficacy of anti-PD-1 and anti-CTLA-4
therapy.

Neoantigens

Questions still remain about the degree to which
individual host and tumor characteristics determine
therapeutic responsiveness and whether these can
be used to predict durability and responsiveness.
Whole-genome sequencing of tumors has revealed
that growing tumors acquire hundreds of somatic
tumor specific mutations, which form new antigens
designated "neoantigens" which have been seen in
mouse tumor models and in CTLA-4 and PD-1 treated
patients[100–102].These neoantigens are key determi-
nants in the response of patients to PD-1 and CTLA-4
checkpoint immunotherapy[102–103]. Despite neoantigen
specific T cells being generated in growing tumors they
are unable to produce an effective antitumor immune

response. However, several studies have shown that
neoantigen specific T cells were reactivated following
CIs administration and formed an antitumor
response[101–103]. The genomics of individual tumors
therefore goes some way in explaining the variable
responses among patients who have undergone CIs
treatment.

Combination therapy

Notably, preclinical studies of anti-CTLA-4 and anti-
PD-1 mAb combinations demonstrated promising
results in a range of cancers[92,104–105]. The first phase
I clinical trial, combining ipilimumab and nivolumab
was updated in an ASCO annual meeting in 2014
showing a 2 year survival of 79% (objective response
rate of 43%) among patients with advanced melanoma.
However, combination therapy was shown to have
increased adverse effects compared to administration of
the agents alone (63% of grade 3/4 toxicities)[106].
Further, a recent phase III study assigned untreated

patients (n = 945) with metastatic melanoma to
combination treatment with nivolumab and ipilimumab.
The median progression free survival was 11.5 months
in the combination treatment in comparison to 2.9
months for ipilimumab and 6.9 months with nivolumab.
The study found that patients with PD-L1 negative
tumors responded more effectively to a combination of
PD-1 and CTLA-4 blockade (11.2 months) as opposed
to nivolumab alone (5.3 months)[106]. Similar to the
2014 study, treatment related toxicity was higher in the
nivolumab-plus-ipilimumab group (55%) as opposed to
nivolumab (16.3%) or ipilimumab (27.3%) monother-
apy[82,106]. Treatment related adverse events in
the combination therapy group are consistent with
side effects seen in previous trials[50, 64, 84] and
were managed primarily with immune-modulatory
agents. Thus, despite the higher incidence of adverse
effects in the combination group, the toxicity profile
is consistent with anti-CTLA-4/PD-1 monother-
apy[104–105].

Co-stimulatory molecules

Similar to immune checkpoint molecules, agonistic
antibodies for co-stimulatory pathways such as CD137
(4-1BB), CD27, OX40 are showing promise as they
augment T cell activation, and therefore may have a role
in the antitumor T cell response[99]. A CD137 agonist
antibody was tested in combination with anti-PD-L1
antibody in a murine breast cancer model which
overcame resistance to immune mediated rejection
and showed improvements in T cell immunity in other
mouse models[107–108]. Based on combined treatment
with agonistic anti-OX40 antibodies and anti-CTLA-4
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antibodies, which induced tumor regression and
improved survival[109], further early phase trials inves-
tigating combinations of OX40 and PD-L1 and OX40
and CTLA-4 are currently underway in advanced solid
tumors (NCT02221960 & NCT02205333). Subsequent
trials in solid tumor models have been tested; OX40 and
anti-CTLA-4 in ovarian carcinoma (ID8), prostate
cancer (TRAMP1), anti-CD137 and CTLA-4 blockade
in MC38 colon cancer and GL261 glioblastoma,
demonstrating synergy between CD137, PD-1, and
CTLA-4[109–113]. Based on these promising results, two
current phase I/II trials are investigating the combina-
tion of anti-PD therapy with anti-CD137 in advanced
solid tumors (NCT02554812 and NCT0217-9918).

Conclusion

The introduction of CIs in the arsenal of immunother-
apeutics against cancer has ushered in a new era in the
treatment of many cancers. Unprecedented responses
have been seen among patients with advanced cancers
including melanoma, lung, bladder, RCC and Hodg-
kin’s disease, treated with anti-CTLA-4, PD-1/L1.
However, only less than 25% of patients treated with
these agents have got benefit. The future of immu-
notherapy depends upon identifying and developing
ideal combinations of immunotherapies in order to
optimise and enhance the efficacy of treatment, as well
as achieving a durable anti-cancer effect. More research
needs to be conducted into immune checkpoint
combination approaches based on individual tumor
genetics to be able to predict responses to treatment and
increase the number of patients that respond to therapy.
Although many challenges still remain, there is a sense
of hope that checkpoint inhibitors have heralded a new
era in the treatment of many cancers. Combining
immune checkpoint antibodies with other immune-
stimulating agents such as conventional drugs, targeted
agents and most promisingly tumor-targeted oncolytic
virus, may open a new avenue for cancer patients in
which a durable clinical benefit can be achieved.
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