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Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is commonly used to
measure cerebrovascular reactivity (CVR), which can convey insightful information about
neurovascular health. Breath-holding (BH) has been shown to be a practical vasodilatory
stimulus for measuring CVR in clinical settings. The conventional BOLD fMRI approach
has some limitations, however, such as susceptibility-induced signal dropout at air tissue
interfaces and low BOLD sensitivity especially in areas of low T∗2 . These drawbacks
can potentially be mitigated with multi-echo sequences, which acquire several images
at different echo times in one shot. When combined with multiband techniques,
high temporal resolution images can be acquired. This study compared an advanced
multiband multi-echo (MBME) echo planar imaging (EPI) sequence with an existing
multiband single-echo (MB) sequence to evaluate the repeatability and sensitivity of
BH activation and CVR mapping. Images were acquired from 28 healthy volunteers,
of which 18 returned for repeat imaging. Both MBME and MB data were pre-processed
using both standard and advanced denoising techniques. The MBME data was further
processed by combining echoes using a T∗2-weighted approach and denoising using
multi-echo independent component analysis. BH activation was calculated using a
general linear model and the respiration response function. CVR was computed as the
percent change related to the activation. To account for differences in CVR related to
TE, relative CVR (rCVR) was computed and normalized to the mean gray matter CVR.
Test–retest metrics were assessed with the Dice coefficient, rCVR difference, within
subject coefficient of variation, and the intraclass correlation coefficient. Our findings
demonstrate that rCVR for MBME scans were significantly higher than for MB scans
across most of the gray matter. In areas of high susceptibility-induced signal dropout,
however, MBME rCVR was significantly less than MB rCVR due to artifactually high
rCVR for MB scans in these regions. MBME rCVR showed improved test–retest metrics
compared with MB. Overall, the MBME sequence displayed superior BOLD sensitivity,
improved specificity in areas of signal dropout on MBME scans, enhanced reliability, and
reduced variability across subjects compared with MB acquisitions. Our results suggest
that the MBME EPI sequence is a promising tool for imaging CVR.

Keywords: cerebrovascular reactivity, multiband, multi-echo, blood oxygen level-dependent, functional MRI,
breath-holding
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INTRODUCTION

Blood oxygen level-dependent (BOLD) functional MRI (fMRI)
is commonly used to derive cerebrovascular reactivity (CVR),
an assessment of the responsiveness of blood vessels in the
brain to vasoactive stimuli. CVR is an emerging marker for
vascular health that can be affected by normal aging as
well as neurogenerative and cognitive pathologies (Kalaria,
1996; Gorelick et al., 2011; Sweeney et al., 2019). Frequently,
hypercapnic gas inhalation challenges have been performed to
change the arterial carbon dioxide levels for the measurement
of CVR (Tancredi and Hoge, 2013). However, the breath-holding
(BH) approach also has been shown to be reliable and produces
comparable CVR values (Kastrup et al., 2001; Kannurpatti and
Biswal, 2008; Urback et al., 2017). Importantly, it does not require
the extra equipment needed for gas inhalation, which is not
available in clinical settings at all institutions (Liu et al., 2019).

Blood oxygen level-dependent fMRI is a non-invasive
technique that can indirectly measure neuronal activity in the
brain. BH BOLD fMRI can detect regional CVR, which is used for
diagnosing and monitoring vascular changes over time. Previous
studies have demonstrated regional differences in CVR that tend
to vary on an individual basis (Yezhuvath et al., 2009; Catchlove
et al., 2018). This intrasubject variation can be due to age or
disease-related physiological changes such as vascular stiffness
or metabolic responses (Ances et al., 2009). Therefore, it is
important to understand the normal inter- and intra-subject
variability to determine what constitutes a significant change
between subjects or in the same subject over time.

It is important to note that some inherent limitations come
with the BH BOLD fMRI method that need to be considered
for optimizing the imaging and analysis process. For example,
echo planar imaging (EPI) fMRI techniques are affected by spatial
distortion and signal dropout especially in regions such as the
orbitofrontal cortex (OFC), lateral parietal cortex, and inferior
temporal cortex (Cho and Ro, 1992; Glover, 2011). The BH
technique itself is particularly prone to lowered fMRI sensitivity
due to subject motion, cardiac and respiratory cycles, and lack
of compliance (Murphy et al., 2013). Intra-group variation or
small effect sizes can also limit the statistical power for group
analysis, particularly for patient populations (Button et al., 2013;
Cremers et al., 2017).

Some of these limitations can be mitigated using advanced
imaging techniques. Recent studies have shown promising
outcomes using multiband EPI. By simultaneously exciting
multiple slices, slice thickness can be decreased and/or temporal
resolution can be increased (Posse, 2012; Kundu et al., 2013;
Xu et al., 2013; Ravi et al., 2016a). In-plane spatial resolution
can be further increased while maintaining reasonable TEs with
in-plane acceleration techniques. Furthermore, if slice thickness
is decreased, signal dropout due to susceptibility artifacts can
be reduced (Schmiedeskamp et al., 2010). Multi-echo (ME)
techniques, which acquire several echoes in a single excitation,
have been shown to increase the sensitivity of BOLD (Posse
et al., 1999; Weiskopf et al., 2005). Poser and Norris (2009)
demonstrated that the signal dropout and image distortion are
diminished in ME data with shorter-TE images. Multi-echo
acquisitions including short TEs can optimize the BOLD contrast

especially for regions known for magnetic field inhomogeneity
and varying T∗2 values (Posse et al., 1998; Bright and Murphy,
2013b; Ravi et al., 2016b; Fernandez et al., 2017). Boyacioglu
et al. (2015) have examined the effect of adding multiband to
a conventional sequence ME EPI at 7 Tesla. Their findings
highlighted an increase in specificity and sensitivity as well
as better resting-state network detection. This is despite the
fact that decreasing T∗2 with increasing field strength reduces
the benefits of multi-echo acquisitions at high field strengths.
Merging multiband EPI with the ME sequence can potentially
harness the distinct benefits of each technique and improve some
common obstacles with BOLD fMRI.

Additionally, recent studies have shown that multiband
multi-echo (MBME) sequences can improve the calculation of
BH metrics. In particular, the combined echo data from a
simultaneous arterial spin labeling (ASL)/BOLD sequence was
compared with a single echo (SE) from the same scan (Cohen and
Wang, 2019). The combined echo approach produced higher BH
activation and repeatability of activation and CVR compared with
the single echo approach (Cohen and Wang, 2019). This sequence
has also shown increased resting-state connectivity strength and
volume as well as finger tapping task activation strength and
volume for the combined echo approach compared with a single
echo approach (Cohen et al., 2017, 2018).

These prior studies have some drawbacks. First, the study
by Cohen et al. included an ASL module in Cohen and Wang
(2019). This led to the repetition time (TR) being very long
(4 s). Second, the “single echo” case was simply the second echo
from the same multi-echo scan. Each additional echo adds to
the readout time and, as a result, the TR. Because the single
echo approach used the second echo from the same scan, it did
not take advantage of the potential for a reduced TR. Therefore,
the overall temporal resolution was reduced, which resulted in
limited statistical power and inhibited a true comparison to
the ME sequence.

To address these drawbacks, in this study, BOLD CVR
measurements were compared between a MBME sequence and
a separate multiband single-echo (MB) sequence. With a shorter
TR for MB scans, the effects of multiple echoes were more directly
assessed using a pure BOLD fMRI acquisition. Recent studies
have also shown that relative CVR (rCVR) is a more sensitive
biomarker than absolute CVR for clinical applications for both
control and patient population studies (Yezhuvath et al., 2009;
Pillai and Zaca, 2012; Coverdale et al., 2016). This approach also
mitigates the differences in percent signal change (PSC) caused
by different effective TEs for MBME and MB sequences. Thus,
in this study, rCVR was compared between MBME and MB
sequences. Repeatability was analyzed in a subset of subjects
who returned for repeat scans. The rCVR difference between
repeated scans, within subject coefficient of variation (wCV),
Dice coefficient (DC) of activation, and intraclass correlation
coefficient (ICC) were analyzed.

MATERIALS AND METHODS

All subjects provided written informed consent prior to
participation in this study. This study was approved by
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the local Institutional Review Board and was conducted in
accordance with the Declaration of Helsinki. In total, 28
healthy volunteer subjects (mean age = 28.0 years, range = 20–
46 years, including 9 male and 19 female) participated in
this study. Of them, 18 returned within 2 weeks to repeat
the study for a total of 46 imaging sessions. Subjects were
instructed to refrain from caffeine and tobacco for 6 h
prior to imaging.

Imaging
Imaging was performed on a 3T scanner (Signa Premier, GE
Healthcare, Waukesha, WI, United States) with a body transmit
coil and a 32-channel NOVA (Nova Medical, Wilmington,
MA, United States) receive head coil. A 3D T1-weighted
magnetization-prepared rapid acquisition with gradient echo
(MPRAGE) anatomical image was acquired with TR/echo time
(TE) = 2200/2.8 ms, field of view (FOV) = 24 cm, matrix
size = 512 × 512 × 256, slice thickness = 0.5 mm, voxel
size = 0.47 × 0.47 × 0.5 mm, and flip angle (FA) = 8◦. Each
subject then underwent two task fMRI scans, one MB scan, and
one MBME scan. The MB scan had the following parameters:
TR/TE = 650/30 ms, FOV = 24 cm, matrix size = 80 × 80,
slice thickness = 3 mm (3 × 3 × 3 mm voxel size), 11
slices with multiband factor = 4 (44 total slices), FA = 60◦,
BW = 250 kHz, echo spacing = 0.51 ms and readout duration
per excitation = 17.4 ms. Overall, 70% of total sampling time was
ramp sampling. The MBME scan had the following parameters:
TR = 900 ms, TE = 11,30,49 ms (three echoes), FOV = 24 cm,
matrix size = 80× 80, slice thickness = 3 mm (3× 3× 3 mm voxel
size), 11 slices with multiband factor = 4 (44 total slices), FA = 60◦,
BW = 250 kHz, echo spacing = 0.51 ms, readout duration per
excitation = 52.2 ms. Overall, 70% of total sampling time was
ramp sampling. Both scans had partial Fourier factor = 0.85
and in-plane acceleration with R = 2. The functional scans
lasted 320 s each for a total of 492 volumes for the MB
scans and 355 volumes for the MBME scans. The TEs for the
MBME scan were set to the minimum possible. The TE for
the MB scan was chosen to match the second TE from the
MBME acquisition.

During the functional scans, a BH task was employed.
Scans began with 66 s of paced breathing, followed by four
cycles of 24 s of paced breathing, 16 s of BH on expiration,
and 16 s of self-paced recovery breathing. Scans ended with
an additional 30 s of paced breathing. The paced breathing
portions consisted of alternating 3 s inspiration and expiration
blocks and were controlled using a red bar that filled up
during inspiration and emptied during expiration. Participants’
breathing was monitored with a respiratory bellow to ensure task
compliance. Due to time constraints, three of the repeat subjects
only underwent the MBME acquisition. Two participants were
excluded because they failed to complete the task for both
the MBME and MB scans. An additional two subjects’ MB
scans and one subject’s MBME scan were excluded due to
failure to complete the task. Overall, there were 39 usable MB
imaging sessions (13 repeat) and 43 usable MBME imaging
sessions (17 repeat).

SNR and CNR Calculations
All parameters for the MB and MBME data were identical except
for the number of echoes and TR. Thus, the signal intensity was
estimated for the MB and MBME data to evaluate the effects of
FA and TR on SNR using Eq. 1. Here, T1 is the T1 of gray matter
at 3T, estimated to be 1.3 s. The ratio of S between the MBME and
MB sequences was then computed.

S =
sin (FA) ·

(
1− e−

TR
T1

)
1− cos (FA) · e−

TR
T1

(1)

For the single echo case the contrast to noise ratio (CNR) was
estimated using Eq. 2 (Posse et al., 1999; Poser et al., 2006; Miletic
et al., 2020) where S0 is the signal at TE = 0 ms and σ0 is the noise.

CNRMB (TE) =
S0

σ0
· TE · e

−
TE
T∗2 (2)

For the multi-echo case, the CNR was estimated using Eq. 3
(Poser et al., 2006; Miletic et al., 2020) for the T∗2 -weighted echo
combination approach used below.

CNRMBME (TE) =

∑N
n=1 Wn · TEn ·

Sn
σ√∑N

n−1 W2
n

(3)

Here, n is the echo number, N is the total number of echoes, Sn is
the signal intensity at each echo estimated by:

Sn = e
−

TEn
T∗2 (4)

and Wn are the weighting factors given by:

Wn =
TEn · e

−
TE
T∗2∑N

n=1 TEn · e
−

TE
T∗2

(5)

The ratio of CNRMBME to CNRMB was then evaluated at
T∗2 = 50 ms, a typical value of T∗2 in gray matter at 3T
(Wansapura et al., 1999).

Pre-processing
Data was analyzed using a combination of AFNI (Cox,
1996), FSL (Jenkinson et al., 2012), and MATLAB (The
Mathworks, R2018a). Image pre-processing utilized the Human
Connectome Project (HCP) minimal pre-processing pipeline
(Glasser et al., 2013), modified to account for the multiple echo
data (Cohen and Wang, 2019).

Anatomical processing was completed using the
PreFreeSurferPipeline.sh scripts from the HCP pipeline.
First, the anatomical MPRAGE image was anterior commissure–
posterior commissure (ACPC) aligned using aff2rigid in FSL, and
a brain mask was created using FNIRT-based brain extraction
as follows. First, the MPRAGE images was linearly registered
to MNI space using flirt in FSL with 12 degrees of freedom
(Jenkinson and Smith, 2001; Jenkinson, 2002). Then, fnirt in
FSL was used to non-linearly refine the registration (Andersson
et al., 2007). A brain-only reference image in MNI space was
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then inverse warped to native space using the transformations
determined by the flirt and fnirt steps and used to extract the
brain. The brain-only MPRAGE image was then registered to
Montreal Neurological Institute (MNI) space using flirt with
12 degrees of freedom (Jenkinson, 2002) to linearly register the
MPRAGE image to MNI space followed by fnirt to non-linearly
refine the registration.

For both the MB and MBME datasets, the first 10 volumes
were discarded to allow the signal to reach equilibrium. Each
dataset was then volume registered to the first volume using
mcflirt in FSL. For the MBME data, only the first-echo
dataset was registered. Subsequent echoes were registered using
the transformation matrices from the first echo. Then, the
three echoes were combined using the T∗2 -weighted approach
(Posse et al., 1999).

The analysis pipeline then split into two separate analyses.
First the MB and MBME data were processed identically using
“standard” denoising procedures. Then, the MB and MBME data
were reprocessed using “advanced” denoising procedures: an
independent component analysis-based strategy for Automatic
Removal of Motion Artifacts (ICA-AROMA) (Pruim et al., 2015;
Dipasquale et al., 2017) and multi-echo independent component
analysis (ME-ICA), respectively.

The standard denoising pipeline consisted of first, registering
the MB and MBME datasets to the ACPC-aligned MPRAGE
image using epi_reg in FSL and then registering both datasets
to MNI space using the anatomical transformations computed
above. The data was smoothed using a 4 mm full width at half
maximum (FWHM) Gaussian kernel and detrended with a third-
order polynomial. The six rigid-body motion parameters were
regressed from the data.

The advanced denoising pipeline for the MB data consisted
of first, registration to the ACPC-aligned MPRAGE image using
epi_reg in FSL and then to MNI space using the anatomical
transformations computed above. The data was smoothed using
a 4 mm full width at half maximum (FWHM) Gaussian kernel
and then denoised using an ICA-AROMA (Pruim et al., 2015;
Dipasquale et al., 2017). ICA-AROMA is a data-driven technique
which removes components related to motion from the data. The
six rigid-body motion parameters were regressed from the data.

The advanced denoising pipeline for the MBME data utilized
ME-ICA and the open source python script tedana.py version
0.0.91 (Kundu et al., 2012, 2013; DuPre et al., 2019). This
technique, described in detail elsewhere, classifies independent
components as BOLD or non-BOLD based on whether or not
their amplitudes are linearly dependent on TE, respectively
(Kundu et al., 2012, 2013; Olafsson et al., 2015). Non-BOLD
components were regressed out of the combined ME data
resulting in a denoised dataset. The denoised MBME dataset
was then registered to the ACPC-aligned MPRAGE image
using epi_reg in FSL, and subsequently registered to MNI
space using the anatomical transformations computed above.
Finally, the data was smoothed using a 4 mm FWHM Gaussian
kernel. No additional nuisance regressors were removed
from the MBME data.

1https://tedana.readthedocs.io/en/latest/

A significant problem arose using both ICA-AROMA and
ME-ICA to process the BH data. For most of the datasets,
the BH response was erroneously classified as non-BOLD and
regressed from the data. For the ME-ICA technique this was
due to the high variance of the BH response, which caused the
signal to be classified as noise despite a strong dependence on TE.
Removing the variance criteria from the algorithm caused true
high-variance noise components to be falsely classified as BOLD.
Therefore, an additional pre-processing step was added for the
MBME data wherein the task frequency (f = 1/56 s) was bandpass
filtered out of the data. ICA-AROMA and ME-ICA were then run
on the filtered data, and the noise components were regressed out
of the original, unfiltered dataset. This eliminated the problem of
the task response being regressed from the data.

The temporal signal-to-noise ratio (tSNR) was computed after
the smoothing step by dividing the voxelwise mean signal across
time by the standard deviation of the time series. Mean voxelwise
tSNR across subjects for each scan was calculated. To account
for differing numbers of time points between the MBME and
MB scans, the normalized tSNR, tSNRnorm, was computed by
multiplying tSNR by

√
NTP where NTP is the number of time

points (Smith et al., 2013).

fMRI Processing and BH Response
Analysis
The BH response was evaluated in an identical fashion for the
standard and advanced denoising techniques by using a general
linear model with 3dDeconvolve in AFNI. After 3dDeconvolve,
a restricted maximum likelihood model (3dREMLfit) was used
to model temporal autocorrelations in the data. This program
uses an ARMA(1,1) to model the time series noise correlation
in each voxel. BH regressors were generated by convolving a
square wave, with ones during BH periods and zeros otherwise,
with the respiration response function (Eq. 6) (Birn et al., 2008).
The BH hemodynamic response is slow, with the peak oftentimes
occurring after the BH period. Thus, most studies time shift the
BH regressor by several seconds to better model the response
(Kastrup et al., 1999b; Birn et al., 2008; Magon et al., 2009). While
the respiration response function implicitly takes this delay into
account, the BH response delay also varies across the brain by
as much as ±8 s (Birn et al., 2008; Bright et al., 2009; Bright
and Murphy, 2013a; van Niftrik et al., 2016). To account for this,
the BH regressor was shifted from -8 to 16 s in steps of 2 s, and
for each voxel, the regressor that resulted in the highest positive
t-score was chosen.

RRF (t) = 0.6 · t2.1e−t/1.6
− 0.0023 · t3.54e−t/4.25 (6)

Both the ICA-AROMA and ME-ICA techniques involve
regressing noise components from the data that differ across
technique and subject. Therefore, the number of degrees of
freedom was adjusted based on the number of components
regressed from the data by the ICA-AROMA or ME-ICA steps
for the MB and MBME data, respectively. The t-scores were
then converted to z-scores, which were corrected for the reduced
degrees of freedom.
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CVR Calculation
Cerebrovascular reactivity was calculated for the MB and MBME
data as the PSC of the BH task response. This was computed
by dividing the beta coefficient of the BH response by the mean
signal. The PSC increases with TE (Fujita, 2001; Yacoub et al.,
2003; Triantafyllou et al., 2011). Because the combined MBME
data is a weighted average with shorter TEs, the PSC tended to be
lower than for the MB data. Thus, to account for differences in
CVR related to the TE, rCVR was computed as the CVR divided
by the mean CVR in gray matter (Yezhuvath et al., 2009; Pillai
and Zaca, 2012; Coverdale et al., 2016).

Test–Retest Analysis
The similarity of BH activation across time was assessed using
the Dice Coefficient (DC) (Eq. 7). The DC measures the degree of
overlap of active voxels between scans acquired at different times.
In this equation, OVT1−T2 is the number of overlapping active
voxels between time point 1 (TP1) and time point 2 (TP2), VT1
is the number of active voxels at TP1 and VT2 is the number of
active voxels at TP2. For DC calculations, activation maps were
thresholded at an uncorrected p < 0.01.

DC =
2 · OVT1−T2

VT1 + VT2
(7)

The voxelwise repeatability of rCVR was evaluated using the
difference between rCVR at TP1 and TP2 and the within subject
coefficient of variation (wCV), defined as the standard deviation
divided by the mean across the two TPs. The rCVR difference and
wCV were then averaged across gray matter (GM).

Lastly, voxelwise ICC(3,1) was calculated to analyze the test–
retest reliability. ICC(3,1) ranges from 0 to 1, where a value
of 1 expresses perfect reliability. Voxelwise ICC was calculated
using 3dICC in AFNI (Chen et al., 2018). Although there
are no standard ranges indicating what is “good” reliability, a
general recommendation categorizes ICC less than 0.4 as poor,
between 0.4 and 0.6 as fair, between 0.6 and 0.8 as good, and
greater than 0.8 as excellent (Cicchetti, 1994). In accordance with
these parameters, the ICC maps were thresholded at 0.4, 0.6,
and 0.8, and the percentage of voxels above those thresholds
were calculated.

Group Comparisons
For all paired t-tests a p-value < 0.05 was considered
significant. Mean whole-brain normalized tSNR was extracted,
and compared between MB and MBME datasets using a paired
t-test.

The DC, rCVR difference, and wCV were compared between
MB and MBME scans using a paired t-test.

Both voxelwise rCVR and z-score were compared between MB
and MBME datasets using 3dLME in AFNI (Chen et al., 2013).
3dLME performs a voxelwise linear mixed-effects (LME) analysis
in cases where subjects have more than one measurement.
It can also handle missing data. General linear tests (GLTs)
were included to compute group rCVR and activation z-score
measurements for MB, MBME, and the difference between
MBME and MB datasets. Mean rCVR and z-score maps were

also output for MBME and MB data. The residuals from the
model were used as input into 3dFWHMx in AFNI to estimate
the autocorrelation function (acf) parameters. The acf parameters
were then used as input into 3dClustSim in AFNI to estimate
the minimum cluster size required for a cluster to be considered
significant (Cox et al., 2017). Group data were thresholded at
p < 0.05 (cluster size corrected with minimum cluster size = 870
voxels, α < 0.05). Voxelwise group comparisons were repeated
for the standard and advanced denoising pipelines.

For additional quantitative comparisons, individual mean
z-scores were extracted both from GM (unthresholded) and from
all active voxels (thresholded at p < 0.01). Also, the total number
of active voxels were extracted for each scan. These metrics were
compared between the MB and MBME datasets for both the
standard and advanced denoising pipelines using paired t-tests.

A region-of-interest (ROI) analysis was performed where the
mean rCVR value was extracted from each of 17 ROIs from
the Yeo-17 network template (Yeo et al., 2011). A Bonferroni-
corrected paired t-test compared rCVR between MB and
MBME data for each ROI for both the standard and advanced
denoising pipelines.

In addition, the mean time series was extracted from all GM
voxels, voxels with 2 < z < 2.5, and voxels with z > 4.0 for
MB and MBME datasets averaged across all subjects. To examine
potential improvements with the combined-echo data in active
voxels, a mask was created using the thresholded voxels in the
MB data. That same mask was applied to the MBME data. Thus,
the same voxels were analyzed for the MB and MBME datasets.

RESULTS

SNR and CNR Calculations
The estimated signal intensity ratio between the MBME and MB
scans based on TR and FA and calculated using Eq. 1 was 1.18 for
T1 = 1.3 s. Thus, the higher TR and optimized FA for the MBME
scans resulted in an expected 1.18× SNR advantage over the MB
scans assuming noise was equivalent. Plots showing estimated
signal intensity as a function of FA for the MB and MBME scans
are shown in Figure 1A.

The estimated CNR ratio between MBME and MB scans,
calculated using Eqs 2–5 was 1.88 for T∗2 = 50 ms. Plots showing
the estimated CNR as a function of T∗2 and estimated CNR ratio as
a function of T∗2 are shown in Figures 1B,C, respectively. For T∗2
values greater than approximately 25 ms the CNR ratio increased
with increasing T∗2 .

tSNR
For the standard denoising pipeline tSNRnorm was significantly
higher for the MBME datasets compared with the MB datasets
(2327 ± 358 vs. 2089 ± 292, respectively, p < 0.001). Similarly,
for the advanced denoising pipeline normalized tSNR was
significantly higher for the MBME datasets compared with the
MB datasets (2784± 329 vs. 2500± 295, respectively, p < 0.001).
Mean tSNR maps are shown in Figure 2.
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FIGURE 1 | SNR and CNR Simulations. (A) Signal intensity vs. flip angle for MBME and MB sequences with T1 = 1300 ms. Signal for MBME data is higher owing to
the longer TR (900 ms vs. 650 ms). The flip angle for both sequences was 60◦. (B) CNR vs. T∗2 for MBME and MB sequences. CNR increased with T∗2 and was
higher for the MBME sequences. (C) The CNR ratio of MBME to MB sequences vs. T∗2 .

FIGURE 2 | tSNR maps for the standard (top) and advanced (bottom) denoising pipelines. tSNR was higher for the advanced denoising pipeline compared to the
standard denoising pipeline and for the MBME data (right) compared to the MB data (left).

BH Activation and rCVR Comparisons
Maps of average z-score and results of a GLT comparing MBME
and MB z-scores are shown in Figure 3 for the standard
and advanced denoising pipelines. Qualitatively, for both the
standard and advanced denoising pipelines, mean activation was
higher in GM for MBME vs. MB scans. This was confirmed
by the GLT results that showed increased activation for MBME
compared with MB scans. The largest clusters were in the
prefrontal cortex, OFC, subcortical regions, medial temporal
area, and posterior cingulate cortex. For the advanced denoising

pipeline, there was one cluster with higher activation for the MB
vs. MBME data located in the cerebellum and visual cortex.

Maps of mean rCVR and results of a GLT comparing
MBME and MB rCVR are shown in Figure 4 for the standard
and advanced denoising pipelines. Qualitatively, for both the
standard and advanced denoising pipelines, mean rCVR was
higher for MBME vs. MB scans throughout much of the GM
with the exception of the OFC and inferior temporal lobes. This
was confirmed by the GLT results that showed higher rCVR
for MBME scans compared with MB scans throughout much
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FIGURE 3 | Average breath-holding activation z-score maps for MB (left) and MBME (middle) scans for the standard (top) and advanced (bottom) denoising
pipelines. BH activation was generated from a general linear model using the respiration response function as a regressor. The right column shows a comparison of
the BH activation z-score between MBME and MB scans using a general linear test in the frame of the mixed linear model. Maps were thresholded at a
cluster-corrected p < 0.05 (corresponding to α < 0.05 at the cluster level). For both processing pipelines BH activation was higher for the MBME data vs. MB data.
There was one cluster where MB activation was higher the MBME activation for the advanced pipeline. Orange clusters indicate significant regions where
MBME > MB. Blue clusters indicate significant regions where MBME < MB.

of the GM. MBME rCVR was lower than MB rCVR, however,
in the OFC and inferior temporal lobes, areas associated with
susceptibility-induced signal dropout. tSNR was lower in these
regions compared to the rest of the brain for both sequences and
analyses, however less so for the MBME sequence (Figure 2).
The qualitative rCVR measurements were very similar between
the two sequences with the exception of the OFC and inferior
temporal cortex, areas of high signal dropout. There were also
global increases in tSNR for the MBME sequence compared to the
MB sequence, but the GLT results showed higher rCVR in most
of the gray matter and lower rCVR in high susceptibility areas.

Quantitative BH activation results are shown in Tables 1, 2
for the standard and advanced denoising pipelines, respectively.
No significant difference in mean z-score were seen for MBME
vs. MB scans for both the standard and advanced denoising
pipelines; however, the total number of active voxels was
higher for MBME vs. MB scans for the standard and advanced
denoising pipelines.

Comparisons of ROI-averaged rCVR between MB vs. MBME
scans is shown in Figure 5A for the advanced denoising

pipeline and mirrored the voxelwise analysis. Mean rCVR was
significantly higher for MBME vs. MB data in 12 of 17 Yeo
ROIs, while mean rCVR was higher for MB vs. MBME data
in two Yeo ROIs (9 and 10). These two ROIs encompass
large areas of susceptibility-induced signal dropout (orbitofrontal
gyrus and inferior temporal lobe). In fact, the largest mean rCVR
difference was observed for Yeo 10, where rCVR for MB data was
significantly greater than MBME data (2.02± 0.55 vs. 1.11± 0.35,
respectively; p < 0.0001). Corresponding Yeo ROIs are shown in
Figure 5B. Yeo ROIs 9 and 10 encompass the inferior frontal
and orbitofrontal cortices, areas that suffer from susceptibility
induced signal dropout.

Test–Retest Analyses
Results from the repeatability analysis are shown in Tables 3, 4
for the standard and advanced denoising pipelines, respectively.
The MBME scans produced a higher DC than MB, but it only
trended toward significance for the standard denoising pipeline
(p = 0.057). The mean difference in rCVR between TP1 and
TP2 and wCV were significantly lower (i.e., more repeatable)
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FIGURE 4 | Mean rCVR for MB (left) and MBME (middle) scans for the standard (top) and advanced (bottom) denoising pipelines. The right column shows a
comparison of rCVR between MBME and MB scans using a general linear test in the frame of the mixed linear model. Maps were thresholded at a cluster-corrected
p < 0.05 (corresponding to α < 0.05 at the cluster level). For most gray matter regions, MBME scans produced significantly higher rCVR than MB scans. In the
regions associated with high susceptibility induced signal dropout including the orbitofrontal cortex and inferior temporal lobe, rCVR was higher for MB scans
compared to MBME scans. Results were very similar for the standard and advanced denoising pipelines. Orange clusters indicate MBME > MB. Blue clusters
indicate MBME < MB.

for MBME compared with MB scans for both pipelines. Both
MB and MBME scans had “good” reliability, estimated via ICC
with values ranging from 0.65 to 0.70. ICC for MBME data was
higher compared with MB for both denoising pipelines as was the
percentage of voxels with ICC > 0.4, 0.6, and 0.8. For example, for
the advanced denoising pipeline 34.8% of voxels had ICC > 0.8
for MBME compared with 28.8% for MB data. Surface maps of
voxelwise ICC are shown in Figure 6.

Signal Quality
The average time series for MB and MBME datasets are shown
in Figure 7 for the advanced denoising pipeline. For the active
voxels thresholded at 2.0 < z < 2.5, there was a marked increase

TABLE 1 | Comparison of breath-holding activation for MB and MBME scans
using the standard processing pipeline.

Mean z-score Mean z-score Number of

in GM Active Voxels Active Voxels

MB 4.93 (1.25) 5.29 (0.94) 142822 (28441)

MBME 5.27 (1.20) 5.44 (0.92) 156807 (23599)

p-value 0.153 0.677 0.001

Numbers in parentheses indicate standard deviation.
MB, multiband single-echo; MBME, multiband multi-echo; GM, gray matter.

in signal quality for the MBME data vs. MB data. For active
voxels with a higher threshold of z > 4.0 and averaging across
the whole GM (unthresholded), there was no clear difference
in signal quality between the two acquisitions. Oscillations of
approximately 0.17 Hz corresponding to the paced breathing
were seen for all data in Figure 7. They were similar for the GM
and z > 4 timeseries but the oscillation amplitude was higher for
the MB sequence for 2 < z < 2.5 case.

DISCUSSION

In the present study, rCVR was compared between MB and
MBME sequences using standard and advanced denoising
techniques. The MBME sequence resulted in higher voxelwise
BH activation z-scores and volume and improved repeatability
compared with the MB sequence. Notably, the MBME approach
had higher specificity in regions with high signal dropout and
reduced variability across subjects. These results suggest that
the MBME sequence with appropriate processing is a robust
technique for reliable BH CVR measurements.

One major advantage of acquiring three echoes using the
MBME sequence is that T∗2 can be estimated and used as a
weighting factor when combining echoes. In this technique,
echoes more closely matching the estimated T∗2 value are
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TABLE 2 | Test–retest analysis for the MB and MBME datasets using the standard processing pipeline.

Dice wCV Difference Voxelwise % Voxels with ICC

Coefficient ICC in GM Greater Than:

0.4 0.6 0.8

MB 0.875 (0.060) 0.206 (0.043) 0.40 (0.06) 0.681 (0.223) 85.1 68.5 35.4

MBME 0.899 (0.029) 0.174 (0.023) 0.31 (0.05) 0.697 (0.213) 88.0 73.2 38.3

p-value 0.057 0.003 4.5E-05 N/A N/A

Numbers in parentheses indicate standard deviation.
MB, multiband single echo; MBME, multiband multi-echo; GM, gray matter; ICC, intraclass correlation coefficient, wCV, within subject coefficient of variation.

FIGURE 5 | (A) Comparison of mean rCVR between MB and MBME scans in 17 different Yeo ROIs for the advanced denoising pipeline. Significant differences
between seque01nces were found in for 14 out of 17 ROIs. There were 12 ROIs that showed MBME > MB and two ROIs where MB > MBME. The Yeo ROI 10 (the
Control A network) displayed the largest difference. (B) The corresponding Yeo ROIs to the data in panel (A). (Note: * p < 0.05, ** p < 0.01, *** p < 0.001,
Bonferroni-corrected).

weighted higher. In this way, sensitivity can be increased as
BOLD sensitivity has been shown to be higher when TE = T∗2 .
Furthermore, acquiring more than two echoes allows for
denoising with ME-ICA, where the TE dependence of BOLD
signals can be measured and then separated from spurious
noise signals (Kundu et al., 2012, 2013; Olafsson et al., 2015).
Physiological fluctuations, including heartbeat, respiratory, and
motion artifacts, in the signal can be automatically removed. This
underlying benefit was reinforced with the rCVR repeatability
analysis where the rCVR difference, wCV, and ICC were
improved for MBME vs. MB data (Table 3).

It is also important to note that parameters were identical
between the MB and MBME acquisitions with the exception of
TR (900 ms for MBME and 650 ms for MB). This was deliberate as
the goal was to evaluate each sequence as researchers were likely
to use them. Therefore, TR was minimized for each sequence.
SNR calculations showed that the higher TR for the MBME data
resulted in an SNR 1.18 times higher than the MB data. This fact
could potentially lead to biased results and an unfair comparison
between the sequences. However, since the scan time was the

same for each sequence, the MB data contained 1.39 times the
number of time points compared to the MBME data (492 vs. 355,
respectively). Murphy et al. (2007) have shown that the tSNR
required to detect a given effect size is proportional to 1

/√
N

where N is the number of timepoints. Thus, as N increases the
required tSNR decreases. So, while the higher TR for MBME
scans resulted in a 1.18 times SNR increase, it also increased
the tSNR necessary to detect a given effect size. To detect the

TABLE 3 | Comparison of breath-holding activation for MB and MBME scans
using the advanced processing pipeline.

Mean z-score Mean z-score Number of

in GM Active Voxels Active Voxels

MB 5.61 (1.28) 5.83 (0.96) 153924 (23132)

MBME 5.87 (1.26) 6.01 (0.98) 164843 (18042)

p-value 0.445 0.574 0.002

Numbers in parentheses indicate standard deviation.
MB, multiband single-echo; MBME, multiband multi-echo; GM, gray matter.
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TABLE 4 | Test–retest analysis for the MB and MBME datasets using the advanced processing pipeline.

Dice wCV Difference Voxelwise % Voxels with ICC

Coefficient ICC in GM Greater Than:

0.4 0.6 0.8

MB 0.889 (0.054) 0.219 (0.056) 0.42 (0.08) 0.647 (0.223) 81.2 62.3 28.8

MBME 0.907 (0.024) 0.187 (0.027) 0.33 (0.05) 0.678 (0.213) 86.5 69.7 34.8

p-value 0.169 0.031 3.6E-04 N/A N/A

Numbers in parentheses indicate standard deviation.
MB, multiband single echo; MBME, multiband multi-echo; GM, gray matter; ICC, intraclass correlation coefficient, wCV, within subject coefficient of variation.

FIGURE 6 | Surface maps of the intraclass correlation coefficient for MB (left) and MBME (right) scans for the standard (top) and advanced (bottom) denoising
pipelines. The MBME data had higher ICC than the MB data throughout most of the brain, as indicated by more orange and yellow areas.

same effect size, the MBME data requires a tSNR of 1.18 times
the tSNR of the MB data effectively canceling out the SNR gains
related to the TR. Importantly, the fact that these values, the SNR
gain caused by the longer TR and the tSNR increase required to
detect the same effect size, are virtually identical is a coincidence
and only effectively cancel for this specific set of parameters
with T1 = 1.3 s.

Compared with the BH CVR report by Cohen and Wang
(2019), this study produced markedly higher voxelwise ICCs
(ICC > 0.65 vs. ICC < 0.5). Part of this may be due to the
significantly increased temporal resolution in the current study
compared with that in Cohen et al. (TR = 0.65–0.9 s vs. TR = 4.0 s,
respectively), resulting in more than six times the number of
timepoints for the MB scans compared to Cohen and Wang
(2019). In addition, the study by Cohen and Wang (2019)
included pCASL labeling, which may have added additional noise
sources to the data.

Multiband multi-echo scans resulted in higher activation
volume compared with MB scans. These results indicate a better
response is obtained from MBME than MB. Furthermore, the
mean time series was extracted from MB and MBME data in
several regimes: unthresholded whole GM, active voxels at the
threshold of 2.0 < z < 2.5, and active voxels at the threshold
z > 4.0 (Figure 7). The biggest differences in the two signals
occurred in the low threshold regime (2.0 < z < 2.5) where
the MBME signal was cleaner than the MB signal. This is in
accord with the results from Cohen and Wang (2019), who found
significant improvements for multi-echo data compared with
single echo data for voxels with 0.01 < p < 0.05.

Independent component analysis-based strategy for
Automatic Removal of Motion Artifact was used to
denoise the MB data. Studies have shown ICA-AROMA
outperforms other ICA-based denoising techniques such as
FMRIB’s ICA-based X-noiseifier (FIX) (Griffanti et al., 2014;
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FIGURE 7 | Mean time series for MB and MBME scans for gray matter (top),
active voxels with z-scores between 2 and 2.5 (middle), and active voxels
with z-score greater than 4 (bottom) for the advanced denoising pipeline.
There was a notable improvement in signal quality for MBME vs. MB of active
voxels with the threshold ranged from 2 to 2.5, while the signals for the other
categories appeared similar.

Salimi-Khorshidi et al., 2014). Dipasquale et al. (2017) evaluated
ICA-AROMA in comparison to standard denoising, FIX,
and ME-ICA for resting state fMRI[44]. They found ME-
ICA performed best for multi-echo data while ICA-AROMA
performed best for single echo data. Another advantage of

ICA-AROMA is, unlike FIX, no training data is required
(Dipasquale et al., 2017)[44]. While not the main goal of our
study, we were able to show advanced denoising techniques,
ICA-AROMA and ME-ICA outperformed standard denoising
techniques. For example, mean z-scores and activation volumes
were higher for the advanced denoising techniques (see Figure 3
and Tables 1, 3).

The voxelwise LME results showed MBME scans also had
higher rCVR throughout much of the GM. This was confirmed
via the ROI approach where rCVR was higher for MBME
vs. MB for 12 of 17 GM ROIs. However, two ROIs showed
decreased rCVR for MBME vs. MB. These ROIs corresponded
to areas of the brain, including the orbital frontal gyrus
and inferior temporal lobe, known for a high susceptibility-
related signal dropout. In fact, the MB had artifactually high
rCVR in these regions because low signal and high noise
resulted in high PSC (Figure 4). Mean z-scores in these
regions were lower for the MB data than for the MBME data
(Figure 3), indicating poor signal quality and that the rCVR
was artifactually high in these regions. The mean rCVRs for
the MBME scans in these regions were more similar to the
rest of the brain.

Heightened CVR was also seen in the cerebellum and visual
cortex compared to the rest of the brain. One study has shown
higher CVR in the cerebellum and occipital regions compared
with the rest of the brain due to increased BOLD signal
changes in those regions (Kastrup et al., 1999a). This area also
corresponds to the vascular territory of the posterior inferior
cerebral artery.

It is important to note higher rCVR does not necessarily
indicate higher accuracy. In fact, rCVR depends on the region
used for normalization. Here, mean GM CVR was used to
normalize the CVR data. That region included the OFC and
inferior temporal cortex, areas of significantly heightened CVR
for the MB data. Therefore, the mean GM CVR may have
been artifactually higher leading to lower CVR values. The
goal of the rCVR analysis was to show the differences between
the sequences in areas of high susceptibility. Therefore, these
results indicate that the properties of the combined-echo data
provide a more sensitive approach to detect rCVR values
within difficult imaging domains such as the frontal orbital
and inferior temporal areas (Figures 3, 4). This enhanced
performance by the MBME sequence is also shown in Fernandez
et al. (2017), where an ME EPI sequence outperformed the
standard EPI sequence for both control and high-susceptibility-
prone regions (such as the ventromedial prefrontal cortex,
bilateral insula, and anterior cingulate cortex) for a fear
conditioning task while using the same T∗2 -weighted echo
combination approach (Fernandez et al., 2017). In future
research, the MBME sequence could be applied to different
tasks on those regions with high signal dropout, to test their
cognitive or emotional regulatory roles in neurological and
psychiatry conditions.

Very limited research has been done directly evaluating
MBME sequences compared with MB sequences. In particular,
no study has reported such a comparison by assessing the rCVR
measurements. Different from the Cohen and Wang (2019)
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study, this study used a pure MB acquisition with a shorter
TR of <1 s, in order to directly compare it with an MBME
sequence. These findings align with other reports using ME
and simultaneous multi-slice approaches that displayed better
identification of BOLD components, a better ability to filter out
artifacts, and gains in sensitivity (Boyacioglu et al., 2015; Olafsson
et al., 2015).

Whole-brain normalized rCVR was used instead of absolute
CVR for two main reasons. First, another BOLD fMRI CVR
study recommended utilizing rCVR to understand regional
distributions because it reduces intra-group variations by
normalizing to the whole brain CVR (Yezhuvath et al., 2009).
Second, since MBME uses a weighted combination of three
echoes with TE ranging from 11 to 49 ms, the MB and MBME
scans had different effective TEs. The BOLD PSC is known to
increase with increasing TE (Fujita, 2001; Yacoub et al., 2003;
Triantafyllou et al., 2011). Therefore, the CVR was normalized
to provide a fair comparison between the scans.

One limitation of this study is that the effect of age and gender
was not fully assessed; also, disease-related factors were not
evaluated as only healthy subjects participated. It is important to
note that in cases of physiological changes that have CVR effects
involving the entire brain, absolute CVR would be reported.
However, as this study emphasizes, rCVR data are useful in
cases where the expected CVR changes are regional and can
better reveal between-group differences over time. In addition,
in order to complete a consistent evaluation, spatial resolution
was matched for MB and MBME. It is important to understand
that adjustments between TR and voxel size can be done for
MB but that such adjustments for MBME are more limited due
to the long echo-train length. However, future directions could
take advantage of emerging gradient technology that involves
increasing strength and slew rate to allow MBME to be more
compatible with higher spatial resolutions (Foo et al., 2018).
Finally, the FA was the same (60◦) for the MBME and MB data
despite differing TRs. The FA was set to the Ernst angle for the
MBME, but should have been adjusted to the Ernst angle for the
MB acquisition (52.7◦) as well. This error only resulted in a signal
intensity difference of approximately 1% (see Figure 1A).

Previous works have already revealed BH BOLD fMRI as
a practical strategy for absolute CVR measurements that can
provide group differences for healthy individuals (Urback et al.,
2017). Further research is necessary to assess the applicability
of BH MBME BOLD fMRI in patients with neurological
diseases, especially in those with known vascular effects such as
Alzheimer’s, epilepsy, Moyamoya, and traumatic brain injury.

CONCLUSION

In conclusion, MBME and MB sequences were compared in
terms of rCVR. The MBME approach enhanced the BH activation
strength and volume as well as the rCVR repeatability and
reliability, especially in the regions with high signal dropout
observed in single echo imaging. This suggests that MBME EPI
with appropriate processing is a useful option for obtaining
reliable CVR measurements.
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