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Analyses of the dynamics of diseases in wild populations typically assume all individuals to be identical. However, profound
effects on the long-term impact on the host population can be expected if the disease has age and sex dependent dynamics.
The Phocine Distemper Virus (PDV) caused two mass mortalities in European harbour seals in 1988 and in 2002. We show the
mortality patterns were highly age specific on both occasions, where young of the year and adult (.4 yrs) animals suffered
extremely high mortality, and sub-adult seals (1–3 yrs) of both sexes experienced low mortality. Consequently, genetic
differences cannot have played a main role explaining why some seals survived and some did not in the study region, since
parents had higher mortality levels than their progeny. Furthermore, there was a conspicuous absence of animals older than
14 years among the victims in 2002, which strongly indicates that the survivors from the previous disease outbreak in 1988
had acquired and maintained immunity to PDV. These specific mortality patterns imply that contact rates and susceptibility to
the disease are strongly age and sex dependent variables, underlining the need for structured epidemic models for wildlife
diseases. Detailed data can thus provide crucial information about a number of vital parameters such as functional herd
immunity. One of many future challenges in understanding the epidemiology of the PDV and other wildlife diseases is to
reveal how immune system responses differ among animals in different stages during their life cycle. The influence of such
underlying mechanisms may also explain the limited evidence for abrupt disease thresholds in wild populations.
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INTRODUCTION
An array of new emerging diseases originating from wildlife

reservoirs elucidates the need for more detailed epidemiological

models to predict new outbreaks and facilitate their control [1].

However, owing to practical circumstances in sampling wild

animal populations, vital information necessary to develop more

pertinent models is mostly lacking. In particular, models of wildlife

diseases are often compelled to ignore age and sex dependent

features of the epidemiology, which is unfortunate since the

pattern of age specific mortality can have a profound influence on

the evolution of disease resistance [2,3] and the rate of decline in

herd immunity [3]. In this case study, we investigate the age and

sex specific aspect of recurrent outbreaks in one of the best

documented large-scale wildlife epidemics: the Phocine Distemper

Virus (PDV) that caused two severe mass mortalities in the

European metapopulation of harbour seals (Phoca vitulina) [4,5,6,7].

More than 23,000 seals died in the 1988 epidemic, whereas the

death toll exceeded 30,000 seals in the 2002 event. [7]. Mortality

rates ranged between 22% and 66% in populations along mainland

Europe, while British stocks were less affected [7]. The disease is

enzootic in Arctic seals such as harp seals (Pagophilus groenlandica) [8],

and the risk for repeated cross-species infection in the future is

pending, since grey seals (Halichoerus grypus) could act as immune

carriers in this process [7,9,10]. Mathematical modelling has shown

that the risk for quasi extinction in harbour seals is substantially

increased by repeated PDV outbreaks [11], where one major

component affecting the mortality rate of repeated epidemics is the

level of immunity amongst survivors [12,13].

However, quantifying immunity and pathogen exposure in

surviving seals has proven difficult. Serological studies following

the 1988 epidemic gave estimates for the proportion of seals that

might have escaped infection. Although these studies encompassed

more than a thousand serum samples [4,14], results were

inconclusive, since it remains difficult to relate specific titre levels

to PDV exposure to functional immunity [15]. Whilst individuals

with titres over a certain threshold level have clearly been in

contact with the virus or a similar virus such as CDV, individuals

with lower titres cannot be excluded from having been exposed to

the virus, nor do they necessarily lack innate immunity to the PDV

[15]. A conclusive test on functional immunity is a repeated

exposure to the same infective agent. The second outbreak of PDV

in 2002 across mainland Europe provided a full scale natural

experiment. The current study analyses the age- and sex-

composition of the disease-related mortality in the two outbreaks

and draws conclusions about disease dynamics and immunity.

RESULTS AND DISCUSSION
Males suffered significantly greater mortality (430 in 1988 and

1,142 in 2002) as compared with females (354 and 1,003) in both
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epidemics (Chi-square test p = 2.627), a difference that would be

further enhanced if the fact that sex ratios in harbour seal

populations are biased in favour of females (1:0.88) had been taken

into account. The skew in sex ratio in non epidemic conditions

originates from a higher annual mortality of adult males [16].

The age structure of female and male seals that died during the

1988 epidemic deviated substantially from the estimated pre-

epidemic stable age distributions. Adults (4–35 yrs) suffered

substantially higher mortality rates than sub-adults (1–3 yrs)

(Table 1). The age specific mortality rates were remarkably similar

in 1988 and 2002 for seals up to 13 years of age. The age

distributions deviated from the projected age distributions for both

females (Kolmogorov-Smirnov two-sample test, p,0.01) and males

(p,0.001). Again sub-adults suffered lower mortality than expected

compared to adults in age classes 4–13 (Table 1). However, seals in

age class 14 years and older showed substantially lower mortality

rates in 2002 compared with 1988. In 1988 60 females (14+years)

were found while 43 females were expected to be found (based on

the estimated age distribution and sample size), and 48 males

(14+years) were found compared to the 32 expected. Out of the

total 1,003 females and 1,142 males collected in 2002 , 124 females

and 92 males were expected to be 14 years or older. However, only

four females and eight males were 14 years or older (Table 1). The

number of older seals found in 2002 is therefore an order of

magnitude lower than expected, and indistinguishable from the

natural annual mortality, i.e. about 5% for adult females and 9%

for adult males [17]. The absence of seals older than 14 years in the

2002 sample strongly indicates that all seals were exposed to PDV

in 1988 and that the survivors developed complete immunity,

protecting them from elevated mortality in 2002.

The data presented here indicate that PDV exposure leads to

complete life-long immunity of survivors. Immunity of survivors

has been shown to decrease the impact of repeated epizootics on

population growth rates and to decrease the risk for quasi-

extinction [13,14]. On the other hand, acquired immunity can

influence the selection pressure on innate disease resistant

genotypes and can thereby maintain high levels of mortality

during outbreaks for a longer time period than would be expected

if only innate immunity had been present [3].

The low prevalence of PDV-specific anti-bodies in serological

samples from Scottish harbour seals after 1988 [14] suggests the

dynamics of the PDV could have been different in this region,

a pattern repeated in 2002 when the disease barely reached

epidemic levels [7]. Also in England, different dynamics are

suggested by the substantially lower mortality rates in 2002, both

compared with the 1988 epidemic, and populations along

mainland Europe in 2002 [18].

We found that adults suffered substantially greater mortality

rates compared with juveniles (1–3 years), both in 1988 and in

2002 (Figs 1 and 2). Since genetic differences are not to be

expected among these age groups, this finding indicates that

genetic differences cannot play an important role in explaining

survival patterns in the study region. Rather, physiological

differences co-varying with age and sex, governed the mortality

patterns across mainland Europe. One of many future challenges

in understanding the epidemiology of the PDV and other wildlife

diseases is to discern how immune system responses differ among

seals in different stages during their life cycle. The influence of

such underlying mechanisms may explain the limited evidence for

abrupt disease thresholds in wild populations.

Table 1. Age categories of actually observed numbers (N) and
expected numbers (E1) of female (f) and male (m) seals that
died in the 1988 and 2002 PDV epidemics.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Year 1988 2002

Age group (Yr) Nf Ef Nm Em Nf Ef Nm Em

Juvenile (1–3) 103 141 85 194 341 424 311 544

Adults (4–13) 191 170 297 204 657 455 822 506

Adults (14) 10 6 10 6 1 0 1 0

Adults (.14) 50 37 38 26 4 1242 8 922

Sum 354 354 430 430 1003 1003 1142 1142

1Expected numbers based on the stable age distribution in 1988, and the
projected age distribution in 2002 (Figs 1 and 2).

2The 95% confidence interval (0.012) of the mean annual rate of increase
(l = 1.116) gives a range of expected numbers of 108–142 for females and 80–
105 for males.

doi:10.1371/journal.pone.0000887.t001..
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Figure 1. Age structures (%) of 354 females that died in the Skagerrak, Kattegat and the Baltic collected during the 1988 epidemic (white
columns) compared with the age structure of the 1003 female seals collected in the Skagerrak, Kattegat , Baltic and the Danish Wadden Sea in
2002 (filled columns). The age structure (AS) just prior to the 2002 epidemic (line) is indicated.
doi:10.1371/journal.pone.0000887.g001
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MATERIALS AND METHODS
Among many other samples, canine teeth were collected from

each sampled seal carcass during both mass mortalities. In 1988

teeth from 784 animals older than pups of the year were taken

from the Danish and Swedish parts of the Skagerrak, the Kattegat,

and the Baltic, whereas 1,953 teeth were taken from the same

areas in 2002. In the latter year the material was supplemented

with 192 teeth from seals older than pups from the Danish

Wadden Sea, giving a total of 2,145 teeth (Table 1). Thus, samples

were obtained from all major populations across mainland

Europe. In 2002 we also collected 377 pups of the year (POY),

out of which larger pups were aged using teeth, whereas seals

shorter than 95 cm were regarded as pups of the year [17]. POY

were excluded from comparisons of age specific mortality, due to

their varying association to their mothers over the nursing period,

and lower recovery rate of pup carcasses, but data indicate that

close to 100% of the pups died in 1988 in severely affected regions

[16].

Crowns of sampled teeth were removed, and the cementum of

the roots were used for age determination [19]. Teeth from both

epidemics were sectioned using a freezing microtome (Leica

Cryostat CM 1510 and Frigomobil 1206) at the National

Environmental Research Institute, Denmark. Central longitudinal

14mm thick sections were cut [19]. Before mounting on glass

slides and being treated with 5% gelatine, the sections were kept

in demineralised water (pH 8) for a minimum of 20 minutes.

About 4–5 sections of each tooth were mounted on glass slides.

The dried sections were stained with a 0.032% solution of

Toluidine Blue 0 (‘‘Certistan’’, Merk, Germany), and dissolved in

alkaline water (pH 8–9) for ten minutes. Excess stain was

removed in two successive demineralised water baths. The

sections were mounted permanently using Entellan, and cover

clips. Using a reference material of animals with known age, teeth

were then determined to age by counting the growth layer

groups. A sub-sample of teeth was used in blind tests with three

different readers [19].

To project age structure and population size from time t to t+1,

a column vector (n), which includes the number of individuals

in each age class, is multiplied by the population projection

matrix (L). Thus,

L nt~ntz1: ð1Þ

The asymptotic population growth rate is given by the dominant

eigenvalue of L and denoted l1 and the stable age distribution is

given by the right eigenvector [20].

Before 1988, the harbour seal population across mainland

Europe had been increasing steadily by 12% per annum, which is

close to the maximum growth capacity of harbour seals [21,22],

implying fertility rates close to 1 in sexually mature females, which

also was confirmed by histological investigations of ovaries [17]. A

well known fact is that after periods of exponential growth the age

structure stabilises, and the expected numbers of individuals in

each age class can be estimated from the life history matrix

[20,22,23]. Given the observed annual rate of increase at 12%, it is

readily seen that the deviation from the stable age distribution is

negligible after 10 years [16,24,25] also in extreme scenarios. This

is also confirmed by empirical studies, where proportions of pups

remained constant in relation to the size and structure of the

population [22]. Consequently, the possible minor deviations from

assumed stable age distributions do not affect the results of this

study.

To avoid sample biases, all carcasses washed ashore from the

largest colonies were collected, which represented about 95% of all

seals that died at those sites [16]. Further, the estimated age

structure of the surviving population in 1988 was projected

20 years ahead, and the population growth rate was predicted to

substantially exceed the maximum long-term growth rate of

harbour seals (13% per annum). Later empirical studies showed

that the population growth rate was close to 20% per annum

during the years following the 1988 epidemic, which could be

explained by that the population was initially dominated by young

adult females [22].

The age structure of the seals killed in the 1988 epidemic [17]

was used to estimate the age composition of the survivors in 1988

[16] (Figs 1 and 2). Constructing Leslie matrices for the female and

male segments separately, and parameterised by the rate of annual

population increase at 1.116 (95% confidence interval60.012)

Figure 2. Age structures (%) of 430 males that died in 1988 (white columns) and of the 1142 males collected in 2002 (filled columns). The
estimated age structure (AS) of total population in 2002 (line) is indicated.
doi:10.1371/journal.pone.0000887.g002
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over the period 1988 to 2000 [22], and age specific fertility and

survival rates [16], we projected the population structure up to

2002 (Figs 1 and 2). The estimated pre-epidemic age composition

in 2002 also represents the expected age structure of seals that died

during the 2002 epidemic, if mortality rates in all age classes had

been identical. We compare the age structure of the seals that died

in 2002 to the estimated age composition of the total population in

2002 before the disease outbreak.
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