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Eosinophils are typically a minority population of circulating granulocytes being released
from the bone-marrow as terminally differentiated cells. Besides their function in the
defense against parasites and in promoting allergic airway inflammation, regulatory
functions have now been attributed to eosinophils in various organs. Although
eosinophils are involved in the inflammatory response to allergens, it remains unclear
whether they are drivers of the asthma pathology or merely recruited effector cells. Recent
findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the
question at what point in time their function is regulated. Similarly, eosinophils from
different physical locations display phenotypic and functional diversity. However, it
remains unclear whether eosinophil plasticity remains as they develop and travel from
the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue,
eosinophils of different ages and origin along the inflammatory trajectory may exhibit
functional diversity as circumstances change. Herein, we outline the inflammatory time line
of allergic airway inflammation from acute, late, adaptive to chronic processes. We
summarize the function of the eosinophils in regards to their resident localization and
time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue
that immunological differences in eosinophils are a function of time and space as the
allergic inflammatory response is initiated and resolved.

Keywords: eosinophils, immunology, asthma, lung, allergic airway inflammation, innate immunity
INTRODUCTION

Eosinophils represent a minority population of peripheral leukocytes of the innate immune system.
They are largely evolutionary conserved and classically considered terminally differentiated end-
stage cells (1). Eosinophils develop in the bone marrow from myeloid precursors under the
influence of interleukin (IL)-5. Although IL-5 is critical for eosinophil differentiation, priming, and
survival, other cytokines, as IL-3 and granulocyte-macrophage colony stimulating factor (GM-CSF)
also promote eosinophil differentiation (2). Upon release into the circulation eosinophils are present
in the peripheral blood for a few hours; however, they can survive in tissues for several weeks and
adopt tissue-specific homeostatic phenotypes (3). The ability of eosinophils to remain in tissues for
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extended periods of time suggest they have a necessary role in
homeostasis or preventing disease (2). As postulated in the Local
Immunity And/or Remodeling/repair (LIAR) hypothesis, by
James Lee, eosinophils can be considered intrinsically
homeostatic cells that are associated with sites characterized by
high cell proliferation/turn-over and cell death (4). Indeed,
eosinophils are, under homeostatic conditions, distributed in
many organs like the lung, spleen, and gastrointestinal tract, as
well as in the blood, lamina propria and adipose tissue (5). As
such, these cells are proposed to have a physiological function in
each of these different organs, which is strengthened by evidence
on the existence of multiple tissue specific subtypes of
eosinophils based on distinct surface marker expression and
functional characteristics (6, 7). Although they are equipped with
an arsenal of pre-formed inflammatory mediators and have the
ability to produce several cytokines, eosinophils are most well-
recognized for their pivotal role in the inflammatory pathology
of a broad range of diseases, including parasitic infections and
allergic disease, such as food allergy, asthma, and atopic
dermatitis (8). Whether eosinophils are also involved in the
resolution phase of these inflammatory afflictions is largely
unknown. In general, the immune response after acute
inflammation and the accompanying tissue damage is meant to
resolve inflammation, repair tissue and re-establish tissue
homeostasis.Therefore, it is essential to accurately study the
function of immune cells, not only regarding their location,
but also include their temporal exposure to different
microenvironments at that location. Here we emphasize the
need to define eosinophils during acute, late, and chronic
inflammatory responses, as well as resolution in lung
inflammation in regards to both time and space.
EOSINOPHILS IN MAINTENANCE OF
IMMUNOLOGICAL HOMEOSTASIS

At birth very few eosinophils are present in the lungs of mice,
however they are recruited by IL-5 from type-2 innate lymphoid
cells (ILC2) under the influence of epithelium-derived IL-33
coinciding with the alveolarization phase at post-natal day
(PND) 3. After which they rapidly increase in number, peaking
on PND14, before the eosinophils decline again after weaning
(9). Importantly, eosinophil adopt a type 2 activated immune
phenotype during this phase (10). In humans, eosinophils have
been shown to be present as early as fetal thymic development
(11). From birth onwards the lungs are constantly exposed to a
variety of airborne particles and these insults typically result in
clearance without acute inflammation, as well as antigenic
tolerance. Several studies, in both mice and humans (12, 13),
have shown that eosinophils spend between 3 and 24 hours in
circulation, however their half-life in the lung is prolonged to
about 36 hours (3). Additionally, homeostatic lung eosinophils
express several genes, like Runx3, Serpinb1a, and Ldlr, that are
implicated in the maintenance of lung immune homeostasis and
negative regulation of T helper cell type 2 (Th2 cell) responses
(14). In line with these observations, studies in eosinophil-
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deficient mice have revealed that sensitivity to house dust mite
(HDM) is increased in the absence of eosinophils (14). The
unique capability of lung homeostatic eosinophils to prevent
Th2-driven allergic airway inflammation has been linked to their
ability to inhibit the maturation of allergen-loaded dendritic cells
(DCs) (14). However, seeing that eosinophils are central to the
alveolarization phase early in life, the widespread use of
congenital DdblGATA mice and PHIL mice, that both lack
eosinophils, may significantly confound experiments
performed in adult life. It is still unclear how the absence of
eosinophils at birth will impact later respiratory challenges like
allergens, bacterial and viral infections.

In the steady state adult lung, Mesnil et al. have identified a
small population of tissue-resident eosinophils (rEos). These
eosinophils are found to express distinct surface markers like
the L-selectin receptor CD62L, that is distinct from
“inflammatory” eosinophils (iEos) appearing after allergic
inflammation. Even though rEos express the IL-5 receptor,
their presence in the lung seem to be IL-5 independent and
may promote the development of Th1 immunity by impairing
the ability of DCs to induce Th2 immunity (14). In contrast,
earlier findings of Nussbaum et al. suggest that basal
eosinophilopoiesis and accumulation of eosinophils in tissues
is dependent on ILC2-derived IL-5 (15). These apparent
contradictions on the role of IL-5 in basal conditions of tissue-
eosinophilia highlight the need for a better characterization of
the precise role these lung-resident eosinophils have, especially
when translating these findings to the human lung (16). Recently,
an intra vital microscopy study in mice showed patrolling
eosinophils in the lung vasculature, which were differentially
activated after stimulation with ovalbumin (OVA)-allergen,
suggesting these resident cells to be reactive to allergenic
insults (17). Activation of eosinophils to airborne allergens is
often studied with purified molecules, like: IL-33, papain, and
Aspergillus protease. The use of these type-2 inducing agents
allow for a reductionistic experimental system to investigate
airway allergy. However, real-life allergens (e.g. HDM) better
recapitulate the spatiotemporal interplay between innate and
adaptive immunity, including the pleiotropic function of
eosinophils epitomized in this review. With new tools
becoming available homeostatic- or resident-lung eosinophils
can be further characterized and questions on their contribution
to the maintenance of homeostasis and tolerance in the lung and
the presence of different eosinophil subpopulations can
be addressed.
EOSINOPHILS PROMOTE TH2
DIFFERENTIATION DURING
SENSITIZATION (PRE-CHALLENGE)

The first encounter with allergens, like; HDM, and the absence of
type 1 inflammatory signals in early life (“hygiene hypothesis”) –
sets the stage for allergic pathology later in life (18). It is now
clear that the airway epithelial cells (ECs) play an important role
in the induction of allergen-induced inflammatory responses
November 2021 | Volume 12 | Article 772004
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(19). Not only can epithelial cell damage be seen in all
phenotypes of asthma, changes in EC function can be observed
at very young age, cumulating to the idea that ECs may play a
role in the initiation of asthma in early life (20, 21). The link
between epithelial barriers and eosinophils is supported by their
preferred association with epithelial barrier tissues, where foreign
antigens are most often encountered (6). Amongst these
structural barrier cells are pulmonary neuroendocrine cells
(PNECs) that are specialized tissue-resident neuroendocrine
cells in the airway epithelium (22). PNECs can be innervated
by both parasympathetic and sympathetic neuronal fibers (23,
24). With close proximity to steady-state immune cells, like
ILC2, PNECs have the ability to amplify allergen-induced
immune cell recruitment, including eosinophils (25).
Interestingly, eosinophils in turn have been shown to
contribute to increased nerve density and airway nerve
remodeling which serves as a key mechanism for increased
irritant sensitivity and exaggerated airway responsiveness (26).

For the initiation of antigen-specific Th2 responses in the
lung, conventional DC2s (cDC2s) need to migrate to the
draining lymph nodes, a process augmented by ILC2-derived
IL-13, mast cell-derived TNF, epithelial cell-derived GM-CSF,
and by type-1 interferon (27–29). Although unclear in the
pulmonary setting, in the murine intestine it is proposed that
eosinophils play an important role in the activation of DCs and
their migration to the draining lymph nodes (30). Eosinophils
have also been shown to produce an antimicrobial protein,
eosinophil-derived neurotoxin (EDN), that effectively recruits
and activates cytokine producing DCs, thereby enhancing Th2
immune responses (31–33). Besides promoting DC activation,
murine intestinal and lymph node eosinophils have been
reported to express antigen presentation machinery, including;
MHC-II, costimulatory molecules CD80 and CD86, and migrate
to the draining lymph nodes in a CCR7-dependant manner (34–
36). Interestingly, human peripheral blood eosinophils exhibit
very low to undetectable levels of MHC-II, whereas class-II
expression is observed on airway eosinophils (37, 38).
Eosinophils are observed within the T cell zone of the draining
lymph nodes, have the ability to present antigen, and express
transcripts for IL-4 and IL-13. However, the low number of these
cells in the lymph nodes suggest that eosinophils have a minor
role as antigen presenting cells and instead may be required for
the accumulation of DCs within the lymph nodes and
subsequent antigen-specific T effector cell production (39).
Interestingly, these effects were independent of MHC-II
expression on eosinophils, again proposing an accessory role
for eosinophils in the process of T cell stimulation. Moreover,
human blood-derived eosinophils have been shown to induce
DC maturation by physically interacting with DCs in the
presence of bacterial pathogen-associated molecular patterns
(PAMPs) (40).

Together, these data demonstrate that eosinophil-derived
products can promote Th2 inflammation via DC regulation
during the sensitization phase to an allergen. At the same time,
lymph node eosinophils actively suppress DC-induced Th17 and
Th1 responses, thereby promoting Th2 polarization (39). It
Frontiers in Immunology | www.frontiersin.org 3
should be noted that timed depletion of eosinophils using
iPHIL mice in the sensitization phase of HDM or OVA allergic
airway inflammation did not affect the outcome of type 2
immunity or lung function following allergen challenge,
suggesting that eosinophils may have a more subtle effect on
downstream adaptive immunity (41). In all, the process of
allergic sensitization, aided by eosinophils, results in the
proliferation of Th2 cells, the appearance of class-switched
plasma cells producing allergen-specific IgE, and the presence
of IgE/FcϵR1-intraepithelial mast cells in the lung.
PHASES OF ALLERGIC LUNG
INFLAMMATION

Any inflammatory response is subject to critical changes through
space and time, especially in damage-prone tissues like the lungs
(42, 43). The allergic inflammatory response has been classified in
terms of three temporal phases of inflammation, the acute, late,
and chronic phase (44). Even though this paradigm is now well
accepted, surprisingly little is known about the differences in
eosinophil functioning during these distinct phases of allergic
inflammation. Indeed, complete eosinophil-deficient animals do
not distinguish between differential functioning in these phases,
significantly hampering understanding of the exact role of
eosinophils. For example, in vitro exposure of murine blood-
derived eosinophils to a certain set of cytokines defines their
phenotype in the lung when adoptively transferred in vivo (45).
Indeed, type 2 cytokines known to affect eosinophils like IL-4, IL-5
and IL-13, chemokines like CCL11 and lipid mediators, like
cysteinyl leukotrienes (CysLTs) are produced by different cell
types, in different locations and at different time points during
the allergic inflammatory process (19). In an effort to holistically
address the multi-wave inflammatory response, Walsh and
colleagues constructed a network model of allergic airway
inflammation that was supported by experimental perturbation
experiments (46). They reported early induction of airway
hyperresponsiveness (AHR) relied on mast cells in the early
phase and on Th2 cells and eosinophils in the late phase.
Interestingly, IL-13 seemed to differentially affect AHR in a
distinctive manner through time. Other efforts are now being
made to conceptualize and visualize these time-dependent
inflammatory processes (47). In this review, by visualizing the
allergic airway response in space and time in Figure 1, we aim to
illuminate the heterogeneity of environments and molecular input
that govern eosinophil functioning in a spatiotemporal manner.

Acute Phase (Minutes to Hours)
In the lower airways, alveolar macrophages (AMs) are the main
immune cell type encountering airborne particles, the lung-
resident commensal microbiome and tasked with maintaining
homeostasis (48). They actively patrol the alveoli in homeostasis
and develop under the influence of epithelial-derived TGFb and
GM-CSF (49–51). As such, it is not surprising that these cell
types are found to behave distinctly different in the allergen-
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FIGURE 1 | Eosinophil function in time and space during allergic airway inflammation.
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challenged lung (52). As the inflammatory response develops
and the alveolar space is intruded by other immune cells, like
eosinophils, the concerted immune response is highly dynamic.
At first, for the AM to initiate and support inflammation, it needs
multiple molecular cues to override the TGFb-driven tolerogenic
phenotype (48, 53). Loss of AMs results in exacerbated cellular
and humoral type 2 immunity (54). Recognition of HDM by
AMs is mediated by Dectin-2 and results in the downstream
production of CysLTs (55, 56). Alveolar macrophages readily
phagocytose airborne particles and it is now recognized that the
phagocytic capacity of these macrophages is dysfunctional in
asthmatic patients (52). Interestingly, phagocytosis of apoptotic
cells suppressed HDM-induced allergic lung inflammation (57).
As the clearing capacity of macrophages is reduced, allergens like
HDM can further induce epithelial responses.

Allergen-induced epithelial responses initiate the production
of the cytokines IL-33, IL-25, and thymic stromal lymphopoietin
(TSLP) that are released upon epithelial activation or damage. In
the (naïve) lung, a wide variety of cells respond to these
cytokines, including ILC2, DCs, macrophages, mast cells,
basophils, and eosinophils (58). Activation of these diverse cell
types leads to reciprocal interactions and the release of additional
mediators. Especially ILC2 have been shown to coordinate
eosinophilia in response to allergen, since they localize and
migrate in close proximity to epithelial cells (59). Several
cytokines can activate ILC2 in the early stage, epithelial-
derived IL33 and TGFb (60), as well as basophil-derived IL-4
(61), and tuft cell-derived IL-25 and CysLTs (62), of which the
end product LTE4 is even detectable in the bronchoalveolar
lavage fluid and urine of patients with asthma exacerbations (63).
ILC2-derived IL-5 will act as an early mediator of eosinophil
differentiation and hematopoiesis. At the same time, ILC2-
derived IL-13 enhances the expression of eotaxins that assist
with eosinophil recruitment (62). In turn, eosinophils can
maintain ILC2 activation through the release of IL-4.
Moreover, eosinophils can directly bind IL-33, inducing a wide
range of transcripts supporting eosinophil activation (64).
Whereas, TSLP has a major role in the recruitment of
eosinophil into the respiratory tract (65), it also induces pro-
survival mechanisms through direct binding of TSLP by its
receptor on eosinophils (66). Besides controlling eosinophil
numbers, ILC2 also license DCs to trigger adaptive Th2 cell
responses (67). Furthermore, epithelial cells in the allergic lung
produce GM-CSF, which controls the recruitment and survival
of eosinophils in the lung directly (68). It has further been shown
that activation of the NF-kB pathway in the epithelial lineage is
crucial for the downstream allergic immune cascade in response
to HDM (69) and interference in this cascade early in life can
prevent the onset of allergic disease (18).

In recent years it has been demonstrated that large functional
heterogeneity exists within the epithelial cell lineage at distinct
areas of the respiratory system. Specialized tuft cells contribute to
type 2 immune responses and eosinophilia through the
production of IL-25 and CysLTs (70, 71). When tuft cells
recognize the epithelial stress trigger ATP, they release LTC4,
LTD4 and LTE4, which can augment the sensitivity of ILC2 to
Frontiers in Immunology | www.frontiersin.org 5
type 2 inflammatory mediators (72, 73). PNECs are solitary cells
in the epithelium of the upper airways and function as
chemosensors to respond to changes in oxygen, mechanical-
and chemical stimuli by producing neuroactive mediators (22,
74). Mice lacking PNECs have been shown to exhibit reduced
allergic inflammation and eosinophilia as ILC2 become less
activated (75). In humans, PNECs are found to be increased in
number in asthma patients, producing the neuropeptide CGRP
and the neurotransmitter GABA increasing ILC2-derived IL-5
and promoting goblet cell hyperplasia, respectively (75).
Activation of steady state ILC2 can be further stimulated by
the neuron-derived neuromedin U, especially in the presence of
IL-25 (76, 77). The specific location of these neuroimmune cell
units in the lung and the temporal activation of these early
response hubs in allergic inflammation will need further
investigation in relation to whether and how they have direct
effects on eosinophil activation (78). Importantly, allergen
detection may not only be constrained to the apical side of the
epithelial layer and its associated cells, as epithelial CD23 (the
low-affinity IgE receptor) can bind and transcytose allergen-
specific-IgE, resulting in increased allergic inflammation (79).

After the lung is sensitized to the allergen in a type-2
dominant manner, intraepithelial mast cells are primed by
expressing FCϵR1 binding allergen-specific IgE. Upon allergen
stimulation, membrane-bound IgE clusters FCϵR1 on mast cells
leading to immediate degranulation and the release of pre-
formed vesicles filled with histamine and enzymes like tryptase
and chymase (80). A reciprocal relationship exists between mast
cells and eosinophils, with mast cells supporting eosinophil
survival and activation by secreting IL-5. Genetic knockout of
mast cells reduced eotaxin levels in the lung of HDM challenged
mice and impaired eosinophil recruitment (81). Eosinophil-
derived MBP in turn directly activates mast cells and
basophils, releasing histamine and TNF (2). It has now been
established that mast cell-derived acute phase proteases
modulate asthma pathology (reviewed in (82)). Moreover,
histamine has multiple direct asthma-related effects in the
lung, including; plasma exudation due to increased vascular
permeability, release of mucus, and constriction of small
respiratory passages (83). Tryptase levels in blood and airway
fluid are elevated in asthma patients and correlate with disease
severity (84). Interfering with tryptase using antagonistic
antibodies reduced mast cell activation and the use of tryptase
inhibitors or serine protease inhibitors reduced eosinophil
infiltrates (85, 86). Besides, human b-tryptase has been shown
to enzymatically inhibit eotaxin and RANTES function, possibly
affecting eosinophil recruitment (87). Additionally, human
peripheral blood eosinophils respond to enzymatically active
tryptase by the release of eosinophil peroxidase and beta-
hexosaminidase (88), although it remains to be determined
whether the lung resident eosinophils in mice would contribute
to the acute phase inflammatory response after release of
tryptase. Chymase has been assigned a plethora of asthma-
related activities, including increasing mucus production,
modification of extracellular matrix and modulation of
cytokines like IL-33, IL-4, and IL-1b (89). However,
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exploration of chymase (specifically, the direct mouse
homologue Mcpt4) in murine models of asthma, suggests a
protective role in pathology (90), possibly through the
degradation of IL-33 (91). The effect on eosinophils specifically
includes the suppression of apoptosis and induction of
chemokine production (92).

Secondary to pre-stored granule proteins, mast cells
synthesize eicosanoids within minutes and cytokines,
chemokines, and growth factors in a matter of hours.
Eicosanoids like the arachidonic acid metabolites prostaglandin
(PG) D2, LTB4, LTC4, hydroperoxy-eicosatetraenoic acid, and
hydroxy-eicosatetraenoic acid (5-HETE) influence eosinophil
trafficking and function in asthma and allergic diseases (93,
94). The early CysLTs and PGD2 prime ILC2s by upregulating
cytokine receptors that respond to the epithelial cell-derived
cytokines IL-33 and IL-25 (62). An intravital microscopy study
in mice showed that IL-33 induced CCR8+ ILC2s to patrol the
peribronchial and perivascular spaces, possibly localizing
eosinophil recruitment to CCL8-rich sites of inflammation
(59). Of the prostaglandins, PGD2 can directly bind its
receptor DP2/CRTH2 on eosinophils (95, 96), which is
robustly expressed on both murine and human eosinophils
(97). Exposure of eosinophils to PGD2 induces both activation
and chemotaxis (98, 99). Activated mast cells further promote
the migration of DCs to the draining LN, contributing to the
initiation of adaptive immunity (100). Mast cells further produce
cytokines, like IL-3, TNF, IL-4, IL-8, IL-13 and IL-25 (44) and
especially, mast cell-derived IL-3 is suggested to play a key role in
modulating eosinophil functioning in allergic asthma (101). In
fact, IL3 polymorphisms have been associated with decreased
risk of asthma (102). In both asthmatic and non-allergic lung
eosinophilia, IL-3 production by type 2 CD8+ (Tc2) cells is found
to be increased (103, 104). However, it is unclear at which stage
in the allergic response CD8+ Tc2 cells are a significant source of
IL-3 for eosinophils.

The highly coordinated acute response to allergens at the
epithelial barrier seems to set the stage for the downstream
allergic inflammatory eosinophilia. However, the immediate
response of lung resident eosinophils or the early infiltration of
circulating eosinophils upon antigen challenge are poorly
investigated, with most studies investigating time points often
days after the last antigenic challenge. The early inflammatory
landscape is coordinated by epithelial cells, mast cells, ILC2 and
neurons, and their products will primarily target resident
eosinophils. At the same time, basophil-derived IL-4 and ILC2-
derived IL-5, as well as eotaxin, recruit eosinophils from the
periphery. However, upon arrival in the lung the inflammatory
input for those cells has changed. It is unknown how the lung
resident and infiltrating eosinophils coordinate this response. In
addition, the type and combination of inflammatory triggers in
the lung, may affect the granulocytic composition. For example,
early (30 minute) recruitment of CD101- eosinophils after LPS
instillation in the lung, suppress neutrophilic lung inflammation
(105). However, combined with HDM, LPS induced neutrophil-
derived cytoplasts and neutrophil extracellular trap (NET)
formation in the broncho-alveolar lavage (BAL) after 24 hours
Frontiers in Immunology | www.frontiersin.org 6
and increased Th17 cells in the lung-draining lymph nodes
(106). The acute phase response is mostly “outward-in”;
however, some immediate immune reactions can be found in
the alveolar space. Within the alveolar space of allergic asthmatic
patients’ segmental challenge with ragweed showed increases in
histamine, PGD2 and thromboxane B2 within 5 minutes of
exposure (107). Although, no cellular changes were yet
observed at this early timepoint. It will be exciting to see how
the division of labor between resident and incoming eosinophils
is established and how this shapes the propagation of the
allergic response.

Late Phase (Hours to Days)
As local innate inflammation progresses into the late phase, the
tissue-contained response is joined by innate cells from the
circulation, including neutrophils, eosinophils, basophils and
monocytes (44). The lung endothelium is conditioned to allow
the tethering, rolling and extravasation of leukocytes into the
lung tissue (108). Apart from the chemo-attractants discussed
above, endothelial priming is induced by several cell types, like
NKT cells and basophils. Whereas mast cells reside in the lung
tissue, the majority of basophils are recruited from the periphery
into the lung after allergen challenge and affect eosinophil
recruitment and function (109, 110). In the late phase of the
asthmatic response, basophils are the major IgE bearing
granulocyte producing histamine (111). Basophils can, like
mast cells, produce IL-3 in response to IgE/FcϵR triggering and
facilitate an autocrine activation loop (112, 113). However, as
reported above, IL-3 actively affects eosinophil function. In
addition to their pro-inflammatory function, murine basophils
also prime lung ILC2s to respond to the neuropeptide
neuromedin B, possibly to inactivate type 2 immune responses
and to aid resolution (114). Moreover, through production of
lipoxygenases and cyclooxygenases, mast cells and basophils can
balance the metabolism of arachidonic acid into leukotrienes and
prostaglandins. For example, allergen/IgE-stimulated bone-
marrow-derived basophils were found to secrete 5-
lipoxygenase (5-Lox) metabolites LTB4 and LTC4 within 30
minutes of exposure (115). In turn, cyclooxygenase (COX)-
metabolites like PGD2 and PGE2 were secreted 6 hours after
stimulation. This temporal separation adds to their ability to
modulate immune responses and the recruitment of immune
cells like eosinophils.

Recruitment of circulating eosinophils into the inflamed lung
seems to be regulated at several levels. In asthmatic patients,
basophil-derived IL-4 is the cardinal cytokine for recruitment of
eosinophils into the lung and was found in the bronchoalveolar
lavage within 20 hours after segmental allergen challenge (116). The
secreted IL-4 could in turn induce a dose and time-dependent
increase in the levels of eotaxin mRNA within fibroblasts (117).
Additionally, eotaxin-3 expressed by IL-4-stimulated human
vascular endothelial cells may contribute to CCR3-dependent
eosinophil accumulation in the lung (118). Similarly, human
endothelial cells stimulated with IL-4 increased the expression of
VCAM-1, which binds to eosinophil VLA-4 contributing to
eosinophil extravasation after allergen challenge (119). Otherwise,
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Coyle and colleagues reported that IL-4 neutralization just before
allergen challenge had little effect on eosinophil infiltration,
suggesting that although IL-4 is required for the induction of Th2
immunity, it may be dispensable for eosinophil recruitment in the
challenge phase (120). Recently, Felton and colleagues have shown
that eosinophil recruitment into tissues is intrinsically dependent on
expression of the Ikaros zinc-finger family transcription factor
IKZF3 (Aiolos), as Aiolos-deficiency reduced eosinophil CCR3
expression, and subsequent CCL11-induced intracellular ERK1/2
signaling (121). Yi et al. have further shown that it is a network of
cDC2s that converge on lung cDC1s, which produce CCL17 and
CCL22, directly attracting CCR4-expressing eosinophils (122).
Interestingly, the early recruitment within a day was mediated by
CD24- cDC2s producing nitric oxide affecting cDC1 activation,
whereas eosinophil recruitment was aborted via TGFb-producing
CD24+ cDC2s in later phases of the inflammatory response (122).
CCL17 and -22 not only affect eosinophils, as these chemokines are
reported to actively recruit T cells to the lungs sustaining type 2
inflammation (123). The need for eosinophils to induce T cell
infiltration in allergic airway inflammation was further
corroborated (124), although this prerequisite might be less
pronounced in BALB/c mice (125, 126). It is likely that the
division of labor by DCs in the lung upon inflammation is tightly
coordinated in a spatiotemporal manner to allow DC emigration, T
cell activation in the lymph node and T cell recruitment to the lung,
but also supply the lung parenchyma with the proper inflammatory
context. Circulating eosinophils, resident eosinophils, recruited
eosinophils, and bone marrow eosinopoiesis should ideally be
analyzed independently, since they are likely functionally different
or at least different in their susceptibility to external input. In vivo
challenge studies in mild asthmatic patients have shown eosinophil-
specific changes in the BAL transcriptome 48 hours after segmental
bronchoprovocation with allergen (127). These changes may
well be induced by infiltrating eosinophils receiving different
environmental cues. Possibly, tissue damage is sufficient to induce
eosinophil recruitment, as is evidenced by intravital microscopy of
lung tissue at 12 hours post silica particle-induced acute injury (17).
Moreover, radiolabeled eosinophils injected intravenously into
asthmatic patients or healthy volunteers also showed lung
infiltration within minutes, with asthmatic patients showed higher
eosinophil migration to the lung (128).

Neutrophils also play an important role in allergic lung
inflammation and their presence has been related to separate
endotypes of asthma. For example, the presence of high
bronchial neutrophilia with similar levels of eosinophilia was
related to increased serum IgE, IL-17 production and clinical
corticosteroid dependence (129). The recruitment of neutrophils
in the lung is governed by epithelial club cells under the influence
of the circadian rhythm, which mode of attraction underlies the
anti-inflammatory capacity of dexamethasone (130).
Additionally, neutrophil activation in the form of dsDNA-rich
NETosis has been implicated in virally-induced asthma
exacerbations of type-2 responses in the acute phase of the
immune response (131) (discussed in more detail below).
Interestingly, neutrophil depletion in the HDM mouse model
exacerbated type 2 inflammation and airway pathology (132).
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This exacerbation was attributed to increased systemic G-CSF,
which activated ILC2 and enhanced antigen presentation by
monocyte-derived dendritic cells. In addition, a recent study has
shown that IL-17a and TNFs stimulation of lung epithelium
resulted in local G-CSF (CSF3) production, leading to increased
granulopoiesis and both systemic and respiratory neutrophilia
(133). However, the prerequisite of IL-17a and TNF would
suggest this process to be relevant in the adaptive phase of the
inflammatory response, when helper T cell cytokines are
abundant. Increased neutrophilia in asthmatics has been
shown to be dependent on epithelial cells and IL-8 derived
from smooth muscle cells (134, 135). Although IL-8-mediated
neutrophilia may beneficially affect immunity to bacterial lung
infection, the resulting extensive lung remodeling may lead to
impaired lung function in asthmatics (136).

As the lung tissue recruits cells from the circulation, certain
immune cells cross the epithelial barrier to the bronchoalveolar
space, including eosinophils, basophils and lymphocytes (107).
Within 4 hours after segmental allergen challenge in asthmatic
patients, eosinophils are recruited to the alveolar space by
epithelial-derived eotaxin (137). Another study in humans
found increased ILC2 in the BAL at 24 hours after segmental
challenge. Moreover, BAL ILC2 expressed higher levels of IL-13
transcript relative to blood ILC2 (138). At the same time,
allergen-specific IgE, C3a, C5a and IL-9 accumulates in the
BAL (139–141). Allergen-activated macrophages start
producing TNF and IL-6 (142). New alveolar macrophages
may be partly replenished by monocyte-derived cells attracted
by activated epithelial cells (143) and acquire an alternatively-
activated phenotype under the influence of basophil-derived
IL-4 (144). Besides, asthmatic patients showed increased
epithelial-derived MUC5AC levels, at 24 hours after antigen
challenge (145).

During the late phase of the immune response, effector cells
are mainly structural cells, resident immune cells and infiltrating
immune cells from the circulation. In parallel, DCs are activating
allergen-specific T cells in the lymph nodes, which expand and
travel to the lung tissue to introduce the adaptive phase.

Adaptive Phase (Days to Weeks) and
Resolution of Inflammation
Following the initial release of type 2 cytokines in the lung (by
ILC2 and NKT cells), activated eosinophils upregulate multiple
cell surface receptors, allowing them to become dynamically
regulated and in turn drive the production of canonical Th2
cytokines IL-4, IL-5, and IL-13 by T cells (146). A systematic
investigation of these cytokines revealed single and synergistic
effects on eosinophils and lung inflammatory hallmarks, such as
goblet cell metaplasia (147). Over time, plasma cells arise.
Meanwhile, in the bone marrow eosinophil-derived APRIL and
IL-6 have been shown to sustain the survival of co-localizing
plasma cells (148). The adaptive phase of the allergic immune
response is further characterized by the influx of Th2 cells.
Asthmatic patients who clearly present with allergen-specific
Th2 cells, and their associated cytokines, in the bronchoalveolar
lavage, as well as with airway and/or blood eosinophilia are
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clustered as type 2-high patients (149, 150). On the other side,
non- or low-type 2 asthma phenotypes have also been recognized
and are defined by the absence of Th2 cytokine signatures and
eosinophilia. However, within the type 2-high subtype, circulating
Th2 cells appear to be more diverse than initially expected.
Circulating allergen-specific Th2 cells have been identified in the
lungs of mice and in the blood of allergic asthmatic patients. These
Th2 cells have been found to not only produce IL-4, IL-5, IL-6,
IL-13, but also IL-9, IL-17, and IL-21 (151, 152). Th2 cells isolated
from both humans andmice are characterized by the expression of
PPARg, that seems to be crucial in driving Th2 cell pathogenicity
(152, 153). It seems that IL-4 production in the lung is mostly
basophil-derived, while IL-4 present in the draining lymph node
was T cell-derived (154). Furthermore, Tibbitt and colleagues have
shown that while IL-4 may play a more dominant role in the
draining lymph node, IL-5 and IL-13 are more prominent T cell
cytokines in the lung tissue. This indicates that Th2 cells undergo
substantial programming in the lung, making them highly distinct
from their lymph node counterparts (152). We found that IL-21
produced by distinct T cell subsets can promote adaptive Th2 cell
responses (151). It should bementioned that the source of IL-13 in
allergen-induced airway hyperresponsiveness may depend on the
age of first exposure, with IL-13+ CD4+ T cells dominating in
neonatal life and IL-13+ ILC2s dominating in adult mice (155).
Interestingly, it has also been suggested that pulmonary NKT cells,
which are activated by IL-25, IL-33, and TSLP, can license
incoming Th2 cells to induce airway hyperresponsiveness, via
the production of IL-4 and IL-13 (156, 157). Moreover, Va14-
expressing NKT cells, residing in the intravascular space of the
lung microvasculature, can recruit eosinophils after binding of
aGalCer on CD1d (158). However, it is not clear how precisely
NKT cells drive asthma adaptive immune response.

Whereas the classical type 2 cytokines induce the expression of
adhesion molecules, such as ICAM-1 and VCAM1, that allow
extravasation of eosinophils into the lung, the function of the more
enigmatic cytokine IL-9 is largely unknown (159). Besides being
produced by highly-differentiated Th2 cells in allergic asthmatic
patients (160), also referred to as Th9 cells (161), IL-9 is also
produced by human eosinophils and neutrophils (162, 163).
Consequently, increased expression of IL-9 has been found in
the bronchoalveolar lavage in these patients (141). Additionally,
genome-wide expression profiles showed that young asthmatics
with a IL-9 polymorphism were more likely to report a severe
asthma exacerbation to HDM (164). In murine models IL-9 seems
to be critical for the induction of allergic airway inflammation, as
the administration of blocking antibodies reduced asthma features
(165). Moreover, TSLP and IL-25 signaling was shown to promote
Th9 cell differentiation and stimulated IL-9 production by these
cells (166, 167). Elevated levels of IL-9 were further reported to
increase mast cell numbers in the lungs. Mast cell precursors are
attracted to the lung and seem to peak in numbers one day after a
seven-day challenge period (168, 169). In fact, it seems that the
Th9 cells are critical to the IL-9-mediated recruitment of late
phase mast cells (170). The recruited mature mast cells can persist
for weeks post allergen challenge, further reinforcing the Th2
environment. In all, incoming T cells produce high-levels of Th2
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cytokines and thereby maintaining and propagating asthma
features, including the recruitment of eosinophils into the lungs
and airways. Samples derived from human asthmatics showed
that eosinophils may further sustain Th2 inflammation by
maintaining high indoleamine 2,3-dioxygenase (IDO) levels
(171). Interestingly, pulmonary eosinophil trafficking into the
lung lymphatic compartment is shown to be dependent on
LTC4 (172), but independent of eotaxin (34), and has been
proposed to be a prerequisite for DC accumulation in the
draining lymph nodes and allergen-specific T cell proliferation
(39). As mentioned during the sensitization phase, eosinophils can
migrate to the draining lymph nodes and localize to the T cell-rich
paracortical areas. During the adaptive phase of the allergen-
induced immune response, eosinophils have been shown to
stimulate antigen-specific T cell proliferation within the lymph
nodes (34). Additionally, eosinophils have the ability to influence
proliferation and activation of both memory T and B cells, yet
have little effect on naïve T and B cells. Interestingly, eosinophilic
airway inflammation was unaffected in a chronic HDM model in
the absence of B cells or CD40L-dependent B-T cell interactions
(173). As the blood-derived eosinophils infiltrate the inflamed
lung, the circulation is replenished through increased
granulopoiesis in the bone marrow. While the relationship
between systemic infection and emergency neutrophil output
from the bone marrow is well established (174), it is unclear
how acute or chronic allergic lung inflammation affect
eosinopoiesis in the bone marrow. IL-5 is clearly the most
important factor promoting eosinophil production, differentiation,
and in preventing apoptosis (1). Despite the fact that the
developmental pathway of eosinophils has been reviewed
extensively, its precise trajectory under inflammatory conditions
is still a matter of debate (175). Nonetheless, it is worth noting that
allergic lung inflammation leads to increased eosinopoiesis via
systemic IL-5 and further differentiation via systemic or local
IL-3, GM-CSF and eotaxins (CCL11, CCL24, CCL26) (176).

Although often considered pro-inflammatory, eosinophils
have also been suggested to mediate the resolution of
inflammation. For example, immune resolution of the airways
after allergen exposure is defective in PHIL mice, which lack
eosinophils (177). The resolution phase is characterized by
apoptosis of various immune cells, and the subsequent uptake
by macrophages. Eosinophils can induce macrophage CXCL13
expression in the resolution phase, leading to increased
macrophage-dependent phagocytosis and impaired lymphatic
drainage (177). Additionally, CXCL13 recruits B cells and
CD4+ T cells to the lung, where these may contribute to
induced bronchial-associated lymphoid tissue (iBALT). In
turn, iBALT structures may facilitate or reduce the
accumulation of eosinophils in allergic lung inflammation,
depending on the timing and the research model used (178).
As the innate inflammatory response needs resolution, several
inter-/intracellular negative feedback loops exist to resolve
inflammation, remodel damaged tissue and instigate tissue
repair (179). Granulocytes are thought to travel into the
airways, undergo apoptosis and are removed by macrophage
(or epithelial) efferocytosis (180). In the lung, IL-4 and IL-13
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together with apoptotic cells programs macrophages to go into a
tissue repair phenotype (181, 182). This removal of apoptotic
neutrophils is mediated by expression of Gas6 and recognition
by its cognate receptors AXL and MERTK (183). A similar
MerTK-dependent mechanism of efferocytosis of eosinophils
has been described in an ovalbumin-induced allergic
inflammation model (184). Moreover, a failure to undergo
apoptosis through experimental overexpression of the anti-
apoptotic protein Mcl-1 resulted in exacerbated allergic airway
inflammation (185). Furthermore, in a murine asthma model
phagocytosis of apoptotic cells by alveolar macrophages, resulted
in the production of retinoic acid, which promoted regulatory T
cell development (57). The notion that apoptosis is the major
driver of eosinophil removal from the airways is however
contested (186). Eosinophils can undergo a specific type of
lytic cell death, which involves the expulsion of DNA-
contained eosinophil extracellular traps (EET) and granules
(187). Alternatively, eosinophils may undergo ferroptosis-like
cell death, which may reduce allergic airway inflammation in
mice when therapeutically promoted (188). Nonetheless, how
eosinophil death is regulated as part of the resolution phase or
during chronic inflammation is unclear. If the clearance of dying
cells is impaired, apoptotic cells become necrotic and damage-
associated molecular patterns are released, which may actually
result in additional inflammation. To aid the clearance of death
cells, non-professional phagocytes, such as bronchial epithelial
cells, can contribute to apoptotic cell clearance and the
restoration of homeostasis (189). Both innate and adaptive
immune cells are communicating to ensure resolution of
inflammation. For example, IL-33 may stimulate mast cells to
produce IL-2, which promotes the expansion of Tregs. These
Tregs, in turn, suppress the development of papain- or IL-33-
induced eosinophilia in the lung (190). However, the exact time
and cellular context of IL-2 production will affect the final
outcome (191). IL-33 and IL-13 have also been shown to
coordinate macrophage-mediated bronchial epithelial cell
repair after lung injury (182, 192), as well as the production of
amphiregulin by ILC2 (193). The identification of functional
heterogeneity in these immune responses, under the influence
of the changing local tissue microenvironment, may reflect
their differential roles in regulating proinflammatory versus
tissue-protective responses. However, in the case of chronic
inflammation, the line between adequate immune activation,
immune resolution and tissue regeneration remains even less
well defined.

Chronic Phase (Weeks-Years)
Clinical data and investigational reports on mild and severe
asthmatic patients provide invaluable information about the
chronic phase of the allergic lung. A benchmark study by the
groups of Teichmann and Nawijn explored this cellular
landscape of the lower airways of healthy and asthmatic lungs
by single cell RNA sequencing (194). They revealed a shift in
airway structural cell communication to a Th2-dominated
interactome in asthmatic lungs compared to healthy lungs.
Furthermore, bronchoscopy biopsies from asthmatic patients
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showed enriched mast cells with high expression of genes
involved in downstream biosynthesis of PGD2. Repeated
activation of these pulmonary mast cells by allergens in asthma
patients can result in lowering their degranulation threshold
(195, 196). However, whereas increased mast cell numbers were
observed in the bundles of airway smooth muscle from chronic
asthmatics, these bundles had a profound absence of T cells or
eosinophils (197). Nonetheless, intraepithelial mast cell
accumulation is associated with a type 2-high phenotype (198).
These mast cells seem to be actively degranulating and may be
related to fatal cases of asthma (199). Additionally, in children
with severe asthma, mast cells were positively correlated with
high numbers of submucosal eosinophils (200). Likewise, a
negative correlation was observed between eosinophil counts in
atopic individuals and their epithelial barrier integrity (196).
Collectively, it seems that the cellular landscape in the lungs of
chronic asthmatics is thoroughly affected, resulting in airway
dysfunction, as well as mucus- and goblet cell metaplasia.

The relationship between eosinophils and airway dysfunction
has been extensively researched. The exact role of eosinophils in
common mouse models of allergic airway inflammation likely
depends on several factors, including the chronicity of the model,
the genetic background, the number of antigenic exposures,
the type of allergen, and the mode of antigen delivery (201).
Early studies using the OVA protocol with IL-5 knockout mice
(202), congenitally eosinophil-deficient mice (203) and
eosinophil depleting biologics (204) implicated an important
role of eosinophils in airway inflammation. In contrast, Takeda
and colleagues showed that an extensive OVA model (2
sensitizations and 7 or 11 challenges over a 50 to 66 day
period, respectively) developed airway hyperreactivity reaction
(AHR) in both WT and PHIL (eosinophil-deficient) transgenic
animals (179). Importantly, eosinophil-deficient animals showed
eosinophilic-independent AHR, likely through increased goblet
cell numbers after 11 OVA challenges. Jacobsen and colleagues
described a genetic mouse model of chronic Th2–driven
inflammation by overexpressing IL-5 from T cells and human
eotaxin 2 in the lung (I5/hE2), which did not show extensive
pulmonary histopathology regardless of clear eosinophil
activation, type-2 immunity and degranulation (205). Similarly,
clinical studies were unable to find an association between
reduced eosinophilia by mepolizumab (IL-5 blockade) and
airway function/hyperreactivity, although fewer exacerbations
were observed (206).

In chronic asthmatics, both prostaglandins and leukotrienes
are deregulated and the production of 5-HETE, LTB4 and LTE4
was found to be increased in alveolar macrophages, leading to
defective apoptotic cell phagocytosis (207, 208). This may lead to
aberrant cell accumulation and increased necroptosis or
eosinophil cytolysis. Human eosinophils have also been linked
to the deposition of Charcot-Leyden crystals (CLCs), formed
after eosinophils undergo cytolysis and form extracellular traps
(EET) (209, 210). In severe asthmatics peripheral EET-forming
eosinophils are elevated and can stimulate IL-33 and TSLP
production by lung epithelial cells (211). Moreover, CLC
formation leads to the production of IL-1b, IL-6, and TNF, as
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well as the recruitment of several innate and adaptive immune
cells and the induction of mucus production by epithelial cells
(209, 212). CLC crystals are found more abundantly in asthmatic
patients, where they are located within the mucus plugs
potentially changing their rheology and rigidity, making it
harder to cough them up (209, 213). CLC are amply found in
patients with chronic rhinosinusitis with nasal polyps
(CRSwNP), a condition of type 2 inflammation of the nose
and paranasal sinuses. Here, crystals promote neutrophil
recruitment and neutrophil NETosis, creating a favorable niche
for persistent type 2 immune cells (214). In a recent study in mice
EETs were shown to activate PNECs to produce CGRP and
GABA, contributing to asthma pathology (215). Finally, EETosis
also involves the release of intact granules that retain granule
proteins and can still be activated by CCL11 (187). It has been
proposed that these bioactive cell-free granules remain
pathogenic in the tissue after IL-5/IL-5R blockade, possibly
explaining sustained pathology regardless of significant
reductions in eosinophil counts.

In both murine experimental asthma models, as well as in
patients with eosinophilic asthma, a population of CD4+ resident
memory T (Trm) cells was observed (194, 216). Trm cells express
the IL-33 receptor ST2, suggesting they could be directly activated
by epithelial-derived IL-33 and contribute to the chronicity of the
asthma pathogenesis (217). Indeed, higher levels of ST2 were
found on allergen-specific CD4+ T cells in the BAL of asthmatics
after segmental allergen challenge (145). In murine models,
allergen-specific Trm cells produced more Th2 cytokines than
circulating Th2 cells. Interestingly, the functional difference
between the pool of lung Trm and circulating memory cells
could be further explained by their localization. Whereas
circulating Th2 cells preferentially localized in the lung
parenchyma, controlling eosinophil and T cell recruitment, Trm
cells localized primarily near the airways and induced eosinophil
activation, mucus production, and AHR (218). In human tissue
samples from CRSwNP, there was a notable expansion of basal
cells at the expense of epithelial cell diversity. This process was not
only driven by type-2 cytokines (IL-4 and IL-13), but also induced
a possible memory-like phenotype in the basal cell population
(219). When comparing allergic asthmatics with allergic
nonasthmatic controls, both groups developed allergic airway
inflammation in response to allergen. However, in the asthmatic
patients type-2 cytokine levels and mucin levels were substantially
higher compared to controls (145). Interestingly, type-2 cytokine
levels only correlated with mucin production in the asthmatic
subjects, but not in the controls, suggesting differences in the
airway epithelial responses to inflammation (145). Besides, chronic
exposure of the lung to IL-33 seems to drive the allergic immune
response beyond the typical type 2 phenotype towards aberrant
remodeling of lung epithelium and lung parenchyma (220).

Importantly, not only adaptive antigen-specific immune cells
like T and B cells are educated by previous inflammatory insults.
This suggests that alveolar macrophages, ILC2, and lung
epithelial (stem) cells may be functionally and epigenetically
reprogrammed by an inflammatory insult or inflammatory
microenvironment. However, it remains to be determined
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whether it is the same alveolar macrophage lineage or newly
recruited monocyte-derived alveolar macrophages, that are
subject to this environmental imprinting. In settings of allergic
airway inflammation, papain and IL-33 have been shown to
induce long-term changes in lung ILC2, with some persisting up
to two months in the lung and even 4 months in the mLN.
Exposure of these ‘conditioned’ ILC2 to a second unrelated
allergen resulted in exaggerated cytokine responses and
increased type 2 immune response (221). Interestingly, ILC
memory resembles adaptive T cell memory even in absence of
antigen-specificity. A novel finding is the presence of
inflammatory memory in basal cells from allergic nasal polyp
samples (222). Basal cells were found to expand at the expense of
differentiated epithelial cells and displayed IL-4/IL-13 responsive
genes that remained fixed ex vivo. It is unknown whether
eosinophils or granulocyte progenitors display such
immunological memory as a result of chronic allergic airway
inflammation. However, it is clear that chronic asthma patients
are immunologically predisposed to airway insults that result in
repeated acute and adaptive immune responses aimed at antigen
clearing and tissue repair.

Like all chronically ill individuals, asthmatic patients
inevitably enter the clinic with an extensive inflammatory
history involving chronic eosinophilia. Experimental
eradication of eosinophils in animal models before onset of
chronic inflammation severely compound the conclusions that
can be extrapolated in relation to eosinophil functioning in
asthmatics. Another observation of interest is the shortening of
telomere length in peripheral leukocytes of asthmatics (223, 224),
suggesting extensive leukocyte proliferation and found to
correlate with eotaxin 1 expression (225). However,
telomerase-deficient mice showed debilitating eosinophil
responses in the lung and reduced eosinopoiesis, although
eosinophil-independent effects of telomerase cannot be
excluded (226). Whether constant eosinopoiesis in long-term
severe asthmatics induces inflammaging phenotypes in
eosinophils remains unknown.
EOSINOPHILS IN ASTHMA
EXACERBATIONS

Chronic asthmatics are commonly hospitalized for asthma
exacerbations and these account for roughly one-third of all
asthma-related deaths in the US (227). Exacerbations of asthma
can be induced by various different stimuli, including allergens,
pollution, cold air, microbes, and viruses. Amongst the latter,
respiratory viruses and especially respiratory syncytial virus (RSV)
and rhinovirus (RV) are major drivers of asthma exacerbations in
children and adults, respectively (228). Respiratory viruses most
frequently infect lung epithelial cells (229). Remarkably, asthma
exacerbations are mainly induced in patients with high eosinophil
numbers (type 2 high phenotype) (230). Recent studies have
shown that during viral-induced asthma exacerbations, high
levels of IL-33 were produced by airway epithelial cells,
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consequently suppressing type-I IFN production and leaving the
epithelium more vulnerable to repeated infections (231–233).
Likewise, epithelial cells from asthmatics showed defective
interferon l production after infection with rhinovirus (234).
Importantly, a recent study suggests that the response of the
lung epithelium to rhinovirus infection is not qualitatively
changed, but is delayed (235). The epithelium of healthy
patients showed a peak in the anti-viral response at 48 hours
post-infection, whereas lung epithelial cells from asthma of COPD
patients peaked at 96 hours post-infection (235). As exposure to
respiratory viruses increased the levels of IL-33 and TSLP
produced by lung ECs, it comes to no surprise that children
hospitalized with severe respiratory infection had increased ILC2
numbers in the lungs (236). Equivalently, in murine models of
influenza infections, increased numbers of ILC2 were found in the
lungs. Although influenza is rarely involved in asthma
exacerbations, these data may suggest a division of labor
between Th2 cells contributing early in the response and ILC2-
derived cytokines that contribute at a later stage to lung repair via
the production of amphiregulin (237). Recent studies have also
identified a specific population of SIRPa+IFNAR+ conventional
DC2 with strong capacities to activate antiviral CD4+ and CD8+ T
cell responses (238). Such DC responses are dependent on type-I
interferons, which are high during antiviral responses and are
known to inhibit ILC2 functions (239). However, within the Th2
environment, the levels of type-I interferons may be lower and this
may impact the function of SIRPa+IFNAR+ DC2s and the
subsequent antiviral response. It is still unclear how exactly
type-I interferons, SIRPa+IFNAR+ DC2s, and virus-induced
asthma exacerbations are linked. Nonetheless, it is tempting to
speculate that increased levels of IL-33, produced by airway
epithelial cells upon respiratory viral infection, and stronger
activation of Th2 cells and ILC2, would enhance asthmic
features, including BHR and eosinophilia.

A common feature of the asthmatic lung is the disruption of
the airway epithelium (240). An increase of epithelial cells in the
sputum (sometimes referred to as Creola bodies) of pediatric
asthma patients was found during acute exacerbations (241,
242). These exacerbations were related to increased IL-8, which
recruits neutrophils and in turn eosinophils to the lungs (243).
Similar findings were reported in a model of rhinoviral-induced
asthma exacerbation (244), with type 2 cytokines potentially
enhancing the epithelial production of CXCL10, IL-8 and GM-
CSF (245). Of note is the observation that the immune response
to RV is changed by mepolizumab, without directly affecting
eosinophil functioning (246). Taken together, it is clear that both
neutrophils and eosinophils enhance RV exacerbations in
asthmatics (243).

Human eosinophils express several functional Toll-like
receptors (TLRs), including TLR1, 2, 3, 4, 5, 6, 7, and 9, with
some heterogeneity associated with atopic status (247, 248).
Besides, supporting a potential role for eosinophils in PAMP
recognition, TLR expression can provide a mechanism by which
bacterial or viral infections exacerbate allergic disease (249).
However, to complicate things, eosinophils may play an
important role in the protection against viral and bacterial
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pathogens. Mouse studies with the murine equivalent of RSV,
pneumonia virus of mice indicated that eosinophil degranulation
was associated with a more favourable outcome in infected mice
(250). Although, in human rhinovirus infection, eosinophils were
found to lower epithelial interferon production, thereby increasing
viral load (251). In patients with RSV infection, eosinophil
degranulation products, such as ECP and EDN, have been
isolated from the bronchoalveolar lavage of the lower airways
(252). More recently, it has been shown that EDN can enter viral
capsids and degrade RNA from RSV (253). Eosinophils have even
been shown to quickly internalize and inactivate RSV and
influenza virus in vitro; a characteristic that was defective in
eosinophils from asthmatics (254). From murine studies, it is
clear that mice overexpressing both IL-5 and eotaxin-2 were
protected against lethal pneumovirus infection (250).
Eosinophil-driven antiviral activity has further been
demonstrated for other respiratory viruses, including influenza,
parainfluenza, and HIV, although the exact mechanisms by which
eosinophils protect from viral infections have still to be elucidated
(253, 255, 256). Taken together, there is a complexity within
eosinophil function in viral infection and it is unclear how
eosinophil-viral interactions are regulated. As the majority of
the eosinophil-viral interactions comes from RSV research, the
investigation of other viruses, like rotavirus or SARS-CoV2, may
provide further insights regarding eosinophil-viral interactions.
CONCLUDING REMARKS AND
FUTURE DIRECTIONS

Our perspective on the lung has changed dramatically over the
last decades, culminating in the view of the lung as a place where
epithelial cells, stromal cells, and immune cells support a
multifaceted frontline defense system focused on inducing
tolerance, supporting highly-efficient injury-repair responses,
as well as (destructive) inflammatory responses, like asthma.
Indeed, not a single cell seems to be left out of the inflammatory
response to airborne allergens. Over the last years, mouse models
of asthma have evolved from primarily focusing on the role of
eosinophils as proinflammatory cells, to a consensus that
eosinophils have a divers set of functions ranging from
proinflammatory to immune modulating. In these nuanced
disease settings, it can be questioned whether, where, and
when eosinophils are contributing cells, rather than primary
mediators. Shifting the focus of eosinophils being the primary
promotors of the inflammatory cascade, towards a view where
eosinophils play multiple defined roles along the disease
progression trajectory. This may explain the mixed results of
eosinophil-depleting therapies in asthma and other
inflammatory diseases. The traditional view of eosinophils as
being released into circulation as terminally differentiated cells
led us to ask the question at which level within the developmental
pathway functional differentiation and plasticity is arranged.
Recent findings on other granulocytes like neutrophils have
addressed similar questions on plasticity in the overarching
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developmental trajectory and into inflammatory situations. For
example, certain combinations of transcription factors govern
specific parts of the neutrophil inflammatory response (257).
Interestingly, neutrophils are released into circulation in a
circadian rhythm and a recent study showed that this
chronicity (termed “neutrotime”) largely determines the core
transcriptional profile of neutrophils (258), with limited
transcriptional change inducible by external input. Whereas
these significant advances are made possible using scRNA
sequencing, the eosinophil is notoriously difficult to capture in
single cell transcriptomics. Hypotheses that are currently
entertained include the possibility that RNAses are abundant
present in eosinophils and may break down mRNA before it can
be amplified, and the terminally differentiated status that simple
excludes active transcriptional plasticity. A recent study using the
10X scRNAseq platform showed that the transcriptome of
circulating eosinophils is very low, even though eosinophils
can be readily detected by RNA-barcoded antibodies in the
same setup (CITEseq) (259). Even if transcriptional changes
can be found in eosinophils between conditions of in vivo
allergen challenge in asthmatics, it is unclear whether the
readout arises from transcriptional changes in resident
eosinophils or the transcriptionally pre-activated circulating
eosinophils infiltrating the inflamed lung. The study from
Mesnil and colleagues support the latter option, where
“inflammatory” eosinophils are proposed to accumulate
independent of resident eosinophils. This raises the question at
which level local adaptation can occur; are eosinophils victims of
predetermined signaling cascades or can they still change their
core programs upon receiving environmental cues?

The modulation of eosinophils in the allergic lung, and beyond,
may otherwise entail post-transcriptional changes like metabolic
switches or translational modifications. We have recently shown
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that eosinophils participate in the competition for glucose in the
tumor microenvironment of lung metastases, inhibiting anti-
tumor NK cells (260). Interestingly, eosinophils appear to
display greater metabolic flexibility compared to neutrophils,
and can switch metabolic programming during in vitro
differentiation. Hence, eosinophil swarming in the allergic lung
will undoubtedly affect local immunometabolism (261, 262).

Current eosinophil depleting strategies may pose, currently
unknown, pre-dispositions to other diseases. Thus warranting a
more sophisticated approach to modulating their function. If we
are to understand eosinophil functioning in space and time, we
will undoubtedly need to resort to new and more refined modes
of measuring eosinophil states along the developmental
trajectory. As the last frontier in myeloid developmental
understanding on the single cell level, the eosinophil may yet
prove to be a new dimension.
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