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Abstract: In order to investigate the possible mechanisms for eve stripe formation of Drosophila embryo, a spatio-temporal gene/
protein interaction network model is proposed to mimic dynamic behaviors of protein synthesis, protein decay, mRNA decay, protein 
diffusion, transcription regulations and autoregulation to analyze the interplay of genes and proteins at different compartments in 
early embryogenesis. In this study, we use the maximum likelihood (ML) method to identify the stochastic 3-D Embryo Space-Time 
(3-DEST) dynamic model for gene/protein interaction network via 3-D mRNA and protein expression data and then use the Akaike 
Information Criterion (AIC) to prune the gene/protein interaction network. The identified gene/protein interaction network allows 
us not only to analyze the dynamic interplay of genes and proteins on the border of eve stripes but also to infer that eve stripes are 
established and maintained by network motifs built by the cooperation between transcription regulations and diffusion mechanisms 
in early embryogenesis. Literature reference with the wet experiments of gene mutations provides a clue for validating the identified 
network. The proposed spatio-temporal dynamic model can be extended to gene/protein network construction of different biological 
phenotypes, which depend on compartments, e.g. postnatal stem/progenitor cell differentiation.
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Introduction
An early embryonic stage in Drosophila embryogenesis, 
i.e. the syncytial blastoderm stage, is completed two 
hours after the onset of  fertilization and periodic 
segments are then characterized. Before the deter-
mination of periodic segments, the embryo is not 
yet separated by membranes, and macromolecules 
such as transcription factors (TFs) can diffuse freely 
and regulate downstream target genes in neighbor-
ing nucleus. Hence, at the syncytial blastoderm 
stage diffusion mechanism is fast enough to vary the 
concentrations of TFs in transcription regulations. 
Through a series of high/low affinity bindings of tran-
scription regulations, downstream genes are dictated 
to express in their corresponding space of an embryo. 
Therefore, we assume that the transcription regula-
tion and diffusion mechanism may play a cooperative 
role in characterizing embryonic segments.

Although some topics about protein diffusion have 
been well studied,1,2 gradient dynamics of concentra-
tions of transcription factors is still hard to be ana-
lyzed without quantitative inference under dynamic 
modeling. For example, critical boundaries settled 
by protein concentration gradient in dynamic models 
of early embryogenesis have allowed investigators 
to re-examine quantitatively concentration gradi-
ent dynamics.3 Jaeger and his colleagues have used 
mRNA spatial-temporal data and dynamic model 
to characterize the establishment of gap domains.4 
Therefore, in order to analyze the diffusion mecha-
nisms of transcription factors at different domains 
of Drosophila embryo, a spatio-temporal model is 
needed. In recent studies, early embryogenesis in 
Drosophila includes at least 31 genes in subdividing 
the embryonic patterns into 14 segmental primordia 
along the anterior-posterior (A-P) axis .5 In the past 
several decades, the spatio-temporal expressions of 
the early development-related genes (bicoid (bcd), 
caudal (cad), hunchback (hb), giant (gt), knirps (kni), 
Krüppel (Kr), tailless (tll), even-skipped (eve), fushi-
tarazu (ftz), hairy, odd-skipped (odd), paired (prd), 
runt and sloppy-paired (slp)) have been provided 
and studied during the early developmental stages 
of Drosophila melanogaster. The 14 early develop-
ment-related genes can be roughly divided into three 
classes, i.e. maternal genes, gap genes and pair-rule 
genes, which have been regarded as hierarchical 
transcription regulations with positive auto-regulations 

to generate and refine the constitutions of segments.6,7 
At the beginning of early embryogenesis, gap genes 
are regulated by high-level expressions of maternal 
TFs to initiate an early embryo development. Gene 
expression boundaries are determined by thresholds 
of protein concentration, while gene expression bor-
ders are refined by autoregulation and repression.8,9

Three classified genes (i.e. maternal genes, gap 
genes and pair-rule genes) into which the 14 early 
development-related genes can be divided are 
described in detail in the following. The maternal 
genes, i.e. bcd, cad and hb, diffuse and regulate gap 
genes with different expression levels in each spatial 
region along the A-P axis of the Drosophila embryo. 
The gap genes, i.e. gt, hb, kni, Kr and tll, define roughly 
the differences between two neighboring stripes by 
protein diffusion. The pair-rule genes, i.e. eve, ftz, 
hairy, odd, prd, runt and slp, define periodic patterns 
of the embryo by transcription regulation and protein 
diffusion. Two of these pair-rule genes, i.e. eve and ftz, 
are involved in defining even and odd segments of the 
14 segmental primordia along the A-P axis.10,11 The 
odd and even segments of concern are the seven eve 
stripes and seven ftz stripes, respectively. Moreover, 
at the blastoderm stage, along the D-V axis, three main 
regions, i.e. non-neural ectoderm (prospective epider-
mis), neurectoderm (prospective nervous system and 
larval ventral epidermis) and mesoderm (prospective 
muscle and connective tissue) are also divided.12 The 
genes, which determine the three primary regions 
along the D-V axis, are different from these 14 early 
development-related genes which determine peri-
odic segments along the A-P axis. In this study, for 
the convenience of analysis and system identification 
we will define spatial regions in the two-dimensional 
(2-D) space of the embryo along the A-P and D-V 
axes according to the above information. However, 
we only analyze the A-P formation of embryo after 
system modeling of transcriptional regulatory net-
work, and the D-V formation can be analyzed by a 
similar procedure.

At the early developmental stages of Drosophila, 
the three-dimensional (3-D) spatio-temporal express-
ion data of 14 early development-related proteins 
(http://flyex.ams.sunysb.edu/flyex/),13–16 genome-
wide mRNA time-course expression data17 and 
mRNA 3-D spatio-temporal expression data (http://
flyex.ams.sunysb.edu/lab/gaps.html)4,6 have been 
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published and can be used for a system dynamic 
modeling of early Drosophila development. Interest-
ingly, by comparing the normalized protein spatio-
temporal expression data with mRNA spatio-temporal 
expression data, the trends of gene expressions along 
the A-P axis are found.3 In this study, we incorporate 
the mRNA 3-D data with protein 3-D data to con-
struct the gene/protein interaction network for the 
transcription regulations and diffusion mechanisms of 
early embryogenesis via our stochastic 3-D dynamic 
model. However, there are some expression data 
within the 14 early development-related genes are 
unavailable in mRNA 3-D spatio-temporal expression 
database. In recent studies, Neural-Network (NN) 
model, which could be trained to optimize its internal 
network to learn the behaviors of complex systems, 
has been used to not only infer gene network regula-
tory relationships based on genome-wide microarray 
data18 but also build the relationship between input 
and output information by using a back-propagation 
algorithm to learn from the training data.19–22 There-
fore, for the unavailable mRNA data, we will use the 
back-propagation NN training method to obtain the 
mimic mRNA data according to the available protein 
and mRNA 3-D data.

In recent years, since the development of exper-
imental techniques has increased the quality and 
amount of available mRNA and protein expressions, 
many approaches, e.g. fuzzy logic,23,24 recurrent 
neural networks,25–27 Bayesian networks,28,29 Boolean 
networks30,31 and differential equations,32–34 have 
been widely exploited to unravel regulation networks 
from the perspective of systems biological. For the 
well available protein spatio-temporal data in early 
Drosophila development, nonlinear 2-D dynamic 
models have been employed to analyze the transcrip-
tion regulation properties and effect of gap genes on 
eve stripe formation.3,6,16,35–38 However, more efforts 
are needed to incorporate these pathways and gene 
networks with a spatio-temporal gene/protein interac-
tion network to interpret the dynamic system behav-
ior in early Drosophila development since not only 
protein but also mRNA 3-D spatio-temporal data are 
both available for dynamic interplay of genes and 
proteins at different compartments of Drosophila 
embryo in early embryogenesis. The mechanisms of 
early Drosophila development in the whole embryo 
can be unraveled clearly if the dynamic interactions 

of genes and proteins are considered at different 
compartments in early embryogenesis. Therefore, in this 
study, we propose a stochastic 3-D dynamic model 
for constructing the gene/protein interaction network 
of early Drosophila development.

In this study, we focus on the topic of investi-
gating the possible mechanisms for the eve stripe 
formation of Drosophila embryo. In this biological 
development approach, it is assumed that transcrip-
tion regulations consist of cis-effect and trans-
effect. Since edges, i.e. transcription regulations, 
in a gene regulatory network must be constantly 
selected in order to survive randomization forces, 
trans-effects, which are the binding affinities of spe-
cific transcription factors to cis-regulatory regions 
in the promoter of the target gene, would be varied 
rapidly while cis-effects, which are regulated 
directly by physical attachment of TF’s binding 
cis-regulatory regions, are relatively fixed.39 Thus, 
we assume that regulation abilities, i.e. trans-
effects, should vary with different spatial regions 
of the embryo, which results from different bind-
ing affinities of diffusible TFs. Based on the con-
structed stochastic 3-D Embryo Space-Time model 
(stochastic 3-DEST model), we analyze the tran-
scription regulations and diffusion mechanisms for 
gene/protein interaction network. The stochastic 3-
DEST model with 28 state variables is employed 
to represent the transcription/translation regulation 
process between 14 mRNA genes and the corre-
sponding TFs in early embryogenesis. Moreover, 
because we consider both the environmental noises 
and the intrinsic noises in mRNA and protein data, 
stochastic partial differential equations (PDEs) 
are employed for the transcriptional and transla-
tional regulatory model of early embryogenesis. In 
order to understand the roles of TFs in each spatial 
region, according to the signs of diffusion param-
eters of the stochastic 3-DEST model, a TF can be 
considered as a donor (0) or an acceptor (0) 
in each spatial region to balance instant concen-
trations of the whole embryo. Hence, the TF in a 
spatial region that diffuses to (from) the neighbor-
ing spatial regions, is called a donor (acceptor). In 
addition, from previous studies we know that tran-
scription regulations can be inferred by a dynamic 
model via microarray data.33,36,40 However, how to 
sieve out the insignificant transcription regulations 
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from the whole gene/protein interaction network 
is still a problem. For this reason, according to the 
stochastic 3-DEST model, the Akaike Information 
Criterion (AIC)41 for model order detection com-
bined with the maximum likelihood (ML) for param-
eter estimation in system identification is used in 
this study to detect significant upstream regulators 
and to prune insignificant transcription regulations 
for refining the gene/protein interaction network of 
early Drosophila development. From the identified 
stochastic 3-DEST model, we can not only find the 
significant transcription regulations of the corre-
sponding TFs, which control the anterior/posterior 
border formation of eve stripes, but also validate 
these results with wet experiments. In order to vali-
date the identified effect of transcription regulation 
and diffusion on early Drosophila development, the 
wet experiments, i.e. gene mutations,7,9,10,42–46 regu-
latory module classification47 and cis-regulatory 
module detection,48 have been employed to trace 
back the direct or indirect transcription regulations 
and protein diffusions in early Drosophila develop-
ment. From the perspective of the network motifs 
of the identified gene/protein interaction network in 
the embryo, we find that transcription regulations 
and protein diffusion mechanisms may play a coop-
erative role in the formation of eve stripes in early 
Drosophila development.

Methods
System modeling and identification 
for gene/protein interaction network
To identify the dynamic behavior of the early devel-
opment-related genes, the procedure of system 
identification in early embryogenesis is divided into 
four steps. First, utilizing fully the well-published 
spatio-temporal data and the prior knowledge of 
early embryogenesis, we construct a stochastic 
3-DEST model to identify the molecular dynamics 
of gene/protein interaction network in early embr-
yogenesis. Second, for system modeling, we use 
Eve’s spatial expression at the cleavage cycle 14A 
temporal class 8 (c14A8) of the nuclear cleavage 
to settle stripe boundaries and region boundaries 
of each stripe for dividing the embryo into seven 
eve stripes along the A-P axis and into three spatial 

regions (i.e. anterior part, middle part and posterior 
part) along the D-V axis, respectively. Third, for 
the early development-related genes, since a part 
of the mRNA spatio-temporal data are unavail-
able, we incorporate the available mRNA and 
protein spatio-temporal expression data with the 
back-propagating NN training method to train and 
simulate the mimic data for the unavailable mRNA 
spatio-temporal expression data (see Appendix I). 
Fourth, we identify the model parameters and select 
the significant regulatory parameters for the stocha-
stic 3-DEST model to construct the transcriptional 
regulatory network in every spatial region by the 
ML estimation method and the AIC backward elimi-
nation method, respectively. Finally, the transcrip-
tional regulatory networks in every spatial region 
are connected together to construct the entire spatio-
temporal gene/protein interaction network for early 
Drosophila development.

Remark: If the information of cooperation bind-
ings is richer in future, the transcriptional regu-
lations due to cooperation binding can be easily 
extended to the regulation candidates of the 3-DEST 
model, which can improve the proposed model of 
gene/protein network but with increased computa-
tion burden when using the AIC method in early 
embryogenesis.

Stochastic PDes model in eve  
stripe formation
In previous studies, dynamic models with protein 
synthesis, protein diffusion and protein decay have 
been utilized in the description of the mechanism 
of embryonic development.3,4,6,35–38 To analyze the 
dynamic interplay of genes and proteins in early 
embryogenesis, six stochastic molecular dynamics are 
incorporated in the 3-DEST model, i.e. (1) protein 
synthesis, (2) protein decay, (3) mRNA decay, 
(4) protein diffusion, (5) transcription regulations, 
and (6) autoregulation. In addition, in order to dif-
ferentiate mRNA expressions from protein expres-
sions, we define two state variables Xi and Yi to 
represent the 3-D spatio-temporal mRNA profiles 
of the ith target gene and its corresponding TFs, 
respectively. According to the transcription regula-
tion model proposed in previous studies,6,33,36,40 the 
stochastic 3-DEST model for the ith target gene 
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and their upstream regulatory TFs in the gene/protein 
interaction network of Drosophila development is 
proposed as follows:
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where Xi(t, x, y) represents the mRNA expression 
of the i  th target gene, Yj(t, x, y) denotes the 
expression of the jth TF of the target gene, and  
f   (Yj(t, x, y)) defined as f    (Y) = Y   n/(Ρ     n + Y    n) is a sig-
moid function to denote the regulatory bindings 
of TFs on the promoters of targets.39,49,50 Here, P is 
defined as the means of protein expressions, which 
imply cis-effects of transcription regulations. The 
term Σ j ij j jx y f Y t x y= -1

14 β τ( , ) ( ( , , )) denotes the tran-
scription regulation, i.e. trans-effect, on the ith target 
gene from its TFs. αi(x, y) stands for mRNA decay 
rate for the ith gene and is equal to the synthesis rate 
of the ith protein, and λj(x, y) stands for protein decay 
rate. κi(x, y) and ϖj(x, y) are basal level of mRNA 
and protein generation, respectively, and they sat-
isfy κi(x, y), ϖj(x, y)  0. The diffusion operator 
∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator in 
2-D to denote the diffusion of protein at the location 
(x, y). In Eq. (1), mRNA expressions are transcription-
ally regulated by TFs (i.e. Σ j ij j jx y f Y t x y= -1

14 β τ( , ) ( ( , , ))) 
and translated for protein synthesis αi(x, y) Xi(t, x, y) 
in the downstream translation process. In the second 
equation of Eq. (1), the jth TF, Yj (t, x, y), is assumed to 
be produced in the translation process by the corre-
sponding mRNA αi(x, y) Xi (t, x, y) from the upstream 
transcription process and decayed by degradation 
λj (x, y) Yj (t, x, y) and diffusion γj  (x, y)∇2Yj (t, x, y).51 
Diffusion coefficients of the jth TF are represented by 
γj (x, y). βij (x, y) denotes the regulatory ability of the 

j  th TF (or regulatory protein), Yj, on the promoter 
region of the target gene Xi. βij(x, y)  0 stands for 
the ith target gene activated by the jth TF (prospective 
activator) or not repressed by the j th TF (prospective 
repressor) while βij(x, y)  0 stands for the ith target 
gene not activated by the jth TF (prospective activator) 
or repressed by the jth TF (prospective repressor).39 
Therefore, the gene/protein interaction network of 
early Drosophila development is constructed by link-
ing up all target genes through the regulations of 
their upstream TFs, Σ j ij j jx y f Y t x y= -1

14 β τ( , ) ( ( , , )) 
in Eq. (1). Moreover, the productions of Yj in Eq. (1) are 
synthesized by the corresponding mRNA Xj and dif-
fused from Yj in the neighborhood. Model uncertainty, 
fluctuations of the basal levels and measurement 
noises in the mRNA (transcription) dynamics and 
protein (translation) dynamics are denoted by sto-
chastic noise υi(t, x, y) and ζj(t, x, y), respectively. 
x and y denote the location of the embryo in the 
2-D space, i.e. the coordination in the x-axis and 
y-axis.

Remark: The dynamic model in Eq. (1) is to inter-
pret the transcription/translation regulation processes of 
14 genes in early embryogenesis. The first Equation 
of Eq. (1) describes the transcription regulation 
of the ith gene; and the mRNA productive rate 
is mainly due to the transcription regulations of 
14 proteins (i.e. TFs), the influence of basal level and 
degradation of mRNA. The noise υi(t, x, y) denotes 
the fluctuation of basal level, measurement noise 
and modeling residue. Since the expression levels 
of TFs can be altered with different spatial regions 
of the whole embryo by diffusion mechanism, the 
relationship of transcription regulation between one 
TF and its target gene is also different in different spa-
tial regions. The second equation of Eq. (1) describes 
protein production in the translational diffusion 
process at the location (x, y). The protein produc-
tive rate is mainly influenced by the translation 
of mRNA, diffusion from the neighboring space, 
and degradation rate of the protein. The noise 
ζj(t, x, y) is due to the fluctuation of the basal level of 
protein, measurement noise and modeling error. The 
model in Eq. (1) describes the interplay of gene/protein 
interactions at the location (x, y). The parameters 
of the stochastic spatio-temporal dynamic model in 
Eq. (1) can be estimated by the spatio-temporal profile 
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of mRNA data and protein data in each spatial region. 
The regulatory gene/protein network can be linked 
gene by gene through the transcription regulations 
Σ j ij j jx y f Y t x y= -1

14 β τ( , ) ( ( , , ))  to other regulatory 

TFs iteratively.
In the proposed stochastic dynamic model in Eq. 

(1), the interplay of six stochastic processes, i.e. pro-
tein synthesis, protein decay, mRNA decay, protein 
diffusion, transcription regulations and autoregula-
tion, mimics the dynamics in early embryogenesis. 
We are the first to combine mRNA dynamic equa-
tions with protein dynamic equations to mimic the 
dynamic interaction network of target genes and their 
regulatory proteins via 3-D mRNA and protein data 
at different compartments in early Drosophila devel-
opment. Our main purpose is to infer the possible 
mechanisms of eve stripe formation by investigating 
the estimated parameters κi, ϖj, αj, βij, λj and γj, i = 
1, 2, …, 14 of the system dynamic model in Eq. (1) 
via mRNA and protein data. Since it is hard to solve 
directly the identification problem of the continuous 
3-DEST model in Eq. (1), we discretize the continu-
ous 3-DEST model in Eq. (1)52 and the location (x, y) 
on the continuous plane is transformed into the loca-
tion (l, m) on the discrete plane. The discrete 3-DEST 
model is shown as follows:

and h is the distance between two locations along two 
axes, i.e. A-P axis (hx) and D-V axis (hy). The parameters 
are defined as follows: di,l,m = ki(xl, ym)⋅∆t, wj,l,m = ϖj 
(xl, ym)⋅∆t aj,l,m = αj(xl, ym)⋅∆t, bij,l,m = βij(xl, ym)⋅∆t, 
cj,l,m = 1 - λj(xl, ym)⋅∆t, and ρj,l,m = γj(xl, ym)⋅∆t where 
∆t ≈ 2 568.  minutes. Then, by using the discrete 
3-DEST model in Eq. (2) and mRNA and protein data, 
the parameters ki(xl, ym), ϖj(xl, ym), αi(xl, ym), βij(xl, ym), 
λj(xl, ym) and γj(xl, ym) in Eq. (2) can be estimated by 
the system identification method in a spatial region 
one by one, which will be described in the sequel. 
Therefore, before the system identification of discrete 
3-DEST model in Eq. (2), we need to define the 2-D 
spatial regions of Drosophila embryo in the following 
section.

Specification of 2-D spatial regions  
of Drosophila embryo
To identify the discrete 3-DEST model in Eq. (2), 
we have to define (l, m) as the center of the spatial 
regions of the embryo by specifying the boundaries 
of the spatial regions. Along the A-P axis, two bound-
aries of the ith eve stripe are denoted by Bi and Bi + 1, 
respectively. The boundaries of seven eve stripes along 
the A-P axis are denoted by {B1, B2, …, B8} 
(Fig. 1a). Each of the eve stripes along the A-P axis 
is separated into three parts, and the boundaries of 
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(see Appendix II), where k denotes the kth time point, 
l and m denote the location (l, m) on the discrete plane, 

the middle part of the eve stripe i are denoted as 
Bia and Bip (Fig. 1b). Therefore, there are totally 
21 spatial regions (i.e. m = 1, 2, …, 21 in Eq. (2)) 
within seven eve stripes along the A-P axis, and the 
22 boundaries of the 21 spatial regions are specified 
as follows:
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{B1, B1a, B1p, B2, B2a, B2p, …, B7 B7a, 
B7p, B8} = {25%, 29%, 32.5%, 35%, 38.26%, 
40.44%, 42.17%, 47%, 49%, 50%, 54.5%, 55.5%, 
57.5%, 62%, 64%, 67%, 69%, 72%, 75%, 79%, 
81%, 85%}.

Additionally, three spatial regions (i.e. l = 1, 2, 3 in 
Eq. (2)) along the D-V axis are defined with their bound-
aries {bh1, bh2, bh3, bh4} = {8.54%, 33.67%, 
61.40%, 82.25%} (Fig. 1b). For the convenience of 
illustration, we define a symbol, Rstripe,lk, to be a spatial 
region of the location (l, k) in the stripe-th eve stripe. 
The transformation from (l, m) in the whole embryo 
to (l, k) in the stripe-th eve stripe, i.e. Rstripe,lk, is given 
by m = k + 3*(stripe-1). For example, (l, k) = (3, 3) 
in the second eve stripe, i.e. the spatial region R2,33 
corresponds to (l, m) = (3, 6) in the whole embryo, 

with l = 3 and m = 3 + 3*(2–1) = 6 (Fig. 1b). After the 
determination of the spatial regions, expression 
levels of protein and mRNA are interpolated to 
the determined spatial regions, which will be used 
for model identification of Eq. (1).

System identification for stochastic  
3-DeST gene/protein interaction 
networks in different spatial regions  
of Drosophila embryo
When the data points {Xi(k, l, m), Yj(k, l, m)} for 
i, j ∈ {1, 2, …, 14}, k ∈ {1,2, …, N}, l = {1, 2, 3}, 
m = {1, …, 21} are ready, the parameters of stochastic 
3-DEST model can be estimated using Eq. (2) for 
gene/protein interaction networks in each spatial 
region of Drosophila embryo. For the convenience 
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Figure 1. Determination of eve stripe boundaries at c14A8. A) Along the A-P axis and D-V axis, seven eve stripe boundaries {B1, B2, …, B8} and three 
spatial region boundaries {bh1, bh2, bh3, bh4} are defined, respectively. B) The yellow square frame as shown in (a) is enlarged for the second eve stripe. 
nine spatial regions with symbol Rstripe,lk are defined in each stripe.
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of parameter estimation, Eq. (2) with N data points can be translated into the following linear regression 
matrix form:

 Yl,m = Φl,mΘl,m + El,m, l = {1, 2, 3}, m = {1, 2, …, 21} (3)

where
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Suppose the noise components εi(k, l, m) and 
δj(k, l, m) are normally distributed, and the noise 
matrix El,m has an unknown covariance matrix Σl,m to 
be estimated. Then we use the ML method to solve 
the parameter estimation problem with the optimum 
solution ˆ

,Θl m and ˆ
,Σ l m. The likelihood function of Yl,m 

is defined as follows:41
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The log-likelihood function for the given M data 
points in Yl,m, i.e. M = 2⋅14(N - 1), can be defined as41
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We can estimate the unknown parameters Θl,m 
and the covariance matrices of noise Σl,m by maxi-
mizing the log-likelihood function Ll,m(Θl,m, Σl,m), i.e. 
∂
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In order to satisfy the following stability 
constraints di,l,m  0, wj,l,m  0, |1 - aj,l,m|  1, 
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  in the dis-
crete 3-DEST model (Eq. 2), a Matlab function, lsqlin, 
is used in the estimation procedure of the parameter 
identification of the stochastic 3-DEST model (see 
Appendix III). For the stochastic 3-DEST model 
of gene/protein interaction network in each spatial 
region of embryo, the number of estimated regulatory 
parameters is 266. We have a total of 28 dynamic equa-
tions which will be solved simultaneously. To avoid 

overfitting in parameter estimation and to find a more 
robust solution, we should interpolate these data points 
by the cubic spline method. Hence, we will test the 
robustness of system parameters on different numbers 
of interpolating data points from four times to six times 
the number of estimated parameters in the sequel.

According to the Akaike Information Criterion 
(AIC) method, we will let bij,l,m = 0 while the transcrip-
tion regulation between the jth transcription factor 
and the ith target gene in the spatial region Rstripe,lk is 
insignificant. We use the AIC to prune some insig-
nificant regulatory parameters of TFs in Eq. (7). The 
AIC is defined to include both the residual variance 
in parameter estimation and the model complexity 
into one statistics for model order detection as41

, , , , ,

1 2ˆ ˆ( ) log ( ) ( ) = - - +  l m l m l m l m l m
T pAIC p Y Y Y Y

M M   
 

(8)

where p is the number of reserved parameters in the 
backward elimination method of the AIC. Regulatory 
parameters are pruned one by one as p is decreased 
until the smallest AICl,m in the smaller p is larger than 
the AICl,m value of the previous pruning step. While 
the minimum AICl,m is achieved, the most adequate 
transcription regulations for each target gene could be 
obtained from the most adequate model order point 
of view.53

Data and Materials
In this study, we incorporate two spatial-temporal data, 
protein data (http://flyex.ams.sunysb.edu/flyex/)13–16 
and mRNA data (http://flyex.ams.sunysb.edu/lab/
gaps.html),4,6 into the stochastic 3-DEST model to 
investigate how the transcription regulations and dif-
fusion mechanisms cooperatively pattern eve stripes in 
the early embryogenesis of Drosophila. The spatial 
regions are first defined as shown in Figure 1 by Eve 
at cleavage cycle 14A and temporal class 8 (c14A8) in 
the embryo. Subsequently, the NN model combined 
with the method is trained by the available protein and 
mRNA data to simulate and mimic the unavailable 
mRNA data. The training of the NN model by the 
available data is achieved by minimizing the training 
error and maximizing the output correlations. 
Additionally, to avoid overfitting in system iden-
tification, we must interpolate the data points to an 
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adequate number. However, over-interpolated data 
will lose the low-frequency (or long-range) behavior 
of the development system. Moreover, using different 
numbers of interpolated data in system identification 
may also cause significant differences in parameter 
estimations, especially in the AIC method. Hence, the 
robustness of the stochastic 3-DEST model will also 
be tested by different numbers of interpolated data as 
an assessment to choose an adequate number of inter-
polation in the sequel, because the robustness prin-
ciple has been employed to check if a model can work 
in the real cell and is employed to narrow down the 
range of models to the few in the modeling procedure 
of biological networks, i.e. robustness can help theo-
rists identify the correct dynamic model.39 From the 
ML parameter estimation method, the dynamic model 
in early Drosophila development is constructed. Then, 
we incorporate the AIC method into the identification 
process to prune the insignificant regulatory param-
eters and refine the model. This allows us to pick up 
the TFs, which are the most significant regulators for 
controlling the downstream genes in the early devel-
opment of Drosophila.

The real biological systems are always robust. 
Therefore the model of a biological system should be 
robust and the robustness is a validation of dynamic 
models for biological systems.39 To test the robust-
ness of the 3-DEST model by different number of 
data points, we interpolate the time-course data from 
38 data points (i.e. four times the number of param-
eters) to 57 data points (i.e. six times the number of 
parameters), i.e. there are 20 test cases. However, 
among the 20 test cases only six test cases, which 
are respectively those with 38, 39, 40, 41, 42 and 
44 interpolated data points, meet the model’s sta-
bility constraints di,l,m  0, wj,l,m  0, |1 - aj,l,m|  1, 

c h h

c
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j l m j l m

, , , , , ,

, , , ,
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≤ ≥

 - -4 1 0

1 0
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  in Eq. (2), 
when the AIC values of the model are minimized. 
Therefore, only six kinds of data interpolations to 
meet robustness test can be used for the parameter 
identification of the 3-DEST model. Here, only the 
robustness test of the 3-DEST system in the spatial 
region R2,22 is discussed for further choice of data 
interpolations. The robustness of the estimated basal 
levels and the regulatory abilities in the six test cases 
in the spatial region R2,22 are shown in Table 1. As can 

be seen, there are a few changes such as basal levels 
2 5ˆ( ( , ))i x yκ  of runt at N = 39 and hairy at N = 41 

(N represents number of interpolated data points), 
and there is no significant change in basal levels 
of protein 2 5

ˆ( ( , ))ϖ j x y . In addition, the regulatory 
abilities , 2 5

ˆ( ( , ))βeve j x y  of both runt and slp at N = 38 
and 39 are pruned by the AIC method when compared 
with the others. Therefore, except a few variations in 
N = 38, 39 and 41 the other cases, i.e. N = 40, 42 and 
44, are robust for system identification. Here, mRNA and 
protein data with 44 interpolation time points are cho-
sen for parameter estimation of the stochastic 3-DEST 
model of the whole embryo. When spatio-temporal 
data are ready and the number of interpolated data points 
is decided (N = 44), system identification for parameter 
estimation in Eqs. (6)(7) and (8) can be performed.

Results
After the parameters in Eq. (1) are estimated by ML 
and pruned by the AIC in Eqs. (6)–(8), the identified 
3-DEST models for gene/protein interaction networks 
in the spatial regions of Drosophila embryo are given 
in the following.

1

2

( , , ) ˆ ( , )

ˆ ( , ) ( , , )

ˆ ( , ) ( ( , , ))

( , , )
( , , ) ˆ ( , )

ˆ ( , ) ( , , )
ˆ ( , ) ( , , )

ˆ ( , ) ( , , )

( , , )

i l m
i l m

i l m i l m
M

ij l m j j l m
j

i l m

j l m
j l m

j l m j l m

j l m j l m

j l m j l m

j l m

X t x y x y
t

x y X t x y

x y f Y t x y

t x y
Y t x y

x y
t

x y X t x y

x y Y t x y

x y Y t x y
t x y

κ

α

β τ

φ

ϖ

α

λ

γ

ϕ

=

∂
=

∂
-

+ -

+
∂

=
∂

+

-

+ ∇

+

∑
 

(9)

where i, j = 1, 2, …, 14, l = 1, 2, 3, m = 1, 2, …, 21. 
κ̂ i, ϖ̂ j, α̂ i, β̂ij, λ̂ j and γ̂ j

 are estimated by Eq. (7) and 
the covariance matrices of the stochastic noises φi 
and φj can be estimated in Eq. (6).

After system identification, the simulation results 
of the system model obtained using the ML estimation 
method and the AIC method are shown in Figure 3(b) 
(protein) and 3(d) (mRNA) compared with the original 
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data in Figure 3(a) (protein) and 3(c) (mRNA), 
respectively. The 3-DEST gene/protein interaction 
networks in different spatial regions are constructed 
in Figure 4 through the diffusion coefficients γ̂ j

 
and regulatory abilities îjβ  of the identified 3-DEST 
dynamic model in Eq. (9). The changes in these diffu-
sion coefficients and regulatory abilities in eve stripes 
will be simultaneously investigated to see whether 
there are some cooperative effects on them, which 
may give a clue of eve stripe formation.

Previous research48 on cis-regulatory module detec-
tion shows that the enhancer element of the second 
eve stripe contains the binding sequences of Krüppel, 
Giant, Bicoid and Hunchback, and the second eve 
stripe can be activated by Bicoid, Hunchback, and 
repressed by Giant and Krüppel (Table 1 and Fig. 4).

In the analysis of eve stripe formation, the bound-
aries of eve stripe can be affected by diffusion 
from the neighboring regions where Eve serves as 
a donor to the regions where it plays the role of an 
acceptor. Figure 4 shows that Hunchback in R2,22, 
R3,11, R3,33, R4,31, R6,11, R6,13, and R7,31 and Knirps in 
R1,12, R4,13, R5,23 and R7,13 positively and negatively 
regulate eve, respectively, and Eve in these regions 

simultaneously serves as a donor which diffuses 
through and affects the boundaries, i.e. stripe 1–2, 
stripe 3–4, stripe 4–5, stripe 5–6 and stripe 7-terminal 
(Fig. 4). Therefore, it shows that stripe boundaries 
are broken in the embryo with hunchback and knirps 
double mutant and the phenotype is similar to the 
embryo with a strong eve mutant.10 In addition, eve 
in R2,11 and R2,23, which plays the role of donor and is 
repressed by Giant and Krüppel respectively, would 
locally affect the anterior and posterior of the second 
eve stripe, respectively (Fig. 4).7,45,54 Moreover, the 
effect of Giant and Krüppel respectively on the ante-
rior and posterior of the second eve stripe should 
be diffusively reinforced by the same repressive 
transcription regulations in R2,22. In the boundaries 
of the third eve stripe, eve in R3,31 and R4,31, which 
is negatively regulated by Hunchback and Knirps 
respectively, would diffuse to and affect on anterior 
and posterior boundaries of the third eve stripe, respec-
tively (Fig. 4).7,45,54 Moreover, we find that Giant and 
Hairy have no effect on the boundaries stripe 4–5 and 
stripe 5–6, respectively.

From the transcription regulations shown in 
Figure 4, we believe that most of them are new 

Table 1. Robustness tests of parameters, ˆ ( , )i l mx yκ , ˆ ( , )j l mx yϖ  and ,
ˆ ( , )eve j l mx yβ  (shown in eq. (9)), of R2,22 (i.e. l = 2 and 

m = k + 3*(stripe-1) = 2 + 3*(2 – 1) = 5) in the six test cases, i.e. the six test cases individually have 38, 39, 40, 41, 42 and 
44 interpolated data points denoted by n = 38, n = 39, n = 40, n = 41, n = 42 and n = 44, respectively.

parameters 2 5ˆ ( , )i x yκ 2 5
ˆ ( , )j x yϖ , 2 5

ˆ ( , )eve j x yβ

n 38 39 40 41 42 44 38 39 40 41 42 44 38 39 40 41 42 44
bicoid 8.18 8.26 8.34 8.41 8.47 8.60 29.54 29.15 28.75 28.39 28.05 27.37 584.11 580.97 714.09 794.65 721.02 719.16
caudal 30.73 30.69 30.59 85.11 30.39 30.22 58.60 58.12 57.78 22.43 57.25 56.67 0 0 0 0 0 0
eve 0 0 0 0 0 0 0 0 0 0 0 0 -1040.69 -1063.51 -1972.63 -1881.88 -1763.69 -1590.02
ftz 0 0 0 0 0 0 37.59 37.69 37.79 37.88 37.96 38.08 1340.85 1343.18 3338.48 3172.99 3112.51 2913.20
giant 0.72 0.72 0.72 1.65 2.07 0.72 19.82 19.64 19.43 13.85 15.33 16.72 -101.86 -106.81 -445.25 -414.64 -439.09 -429.87
hairy 18.58 17.65 60.80 0 65.51 66.21 58.03 58.66 80.99 80.91 80.84 80.69 0 0 -1178.98 -1039.98 -1101.73 -1033.91
hunchback 10.32 11.45 12.41 13.13 14.03 15.65 105.69 104.42 103.70 103.26 102.40 100.84 227.98 245.25 194.56 73.79 86.04 2.15
knirps 3.40 3.53 3.38 3.56 3.43 3.45 5.03 4.56 5.51 4.02 4.83 4.25 163.00 164.28 638.90 546.26 566.78 505.28
krüppel 0.86 0.86 0.86 0.86 0.86 0.86 23.05 22.54 22.05 21.60 21.16 20.33 -1010.23 -1003.42 -2153.69 -1946.24 -1980.59 -1827.30
odd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
paired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557.86 497.67 555.37 549.33
runt 0 17.94 0 0 0 0 0 0 0 0 0 0 0 0 589.60 467.39 522.54 465.37
slp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tailless 0 0 0 0 0 0 20.74 20.50 20.29 20.09 19.89 19.53 0 0 0 0 0 0
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Table 1. Robustness tests of parameters, ˆ ( , )i l mx yκ , ˆ ( , )j l mx yϖ  and ,
ˆ ( , )eve j l mx yβ  (shown in eq. (9)), of R2,22 (i.e. l = 2 and 

m = k + 3*(stripe-1) = 2 + 3*(2 – 1) = 5) in the six test cases, i.e. the six test cases individually have 38, 39, 40, 41, 42 and 
44 interpolated data points denoted by n = 38, n = 39, n = 40, n = 41, n = 42 and n = 44, respectively.

parameters 2 5ˆ ( , )i x yκ 2 5
ˆ ( , )j x yϖ , 2 5

ˆ ( , )eve j x yβ

n 38 39 40 41 42 44 38 39 40 41 42 44 38 39 40 41 42 44
bicoid 8.18 8.26 8.34 8.41 8.47 8.60 29.54 29.15 28.75 28.39 28.05 27.37 584.11 580.97 714.09 794.65 721.02 719.16
caudal 30.73 30.69 30.59 85.11 30.39 30.22 58.60 58.12 57.78 22.43 57.25 56.67 0 0 0 0 0 0
eve 0 0 0 0 0 0 0 0 0 0 0 0 -1040.69 -1063.51 -1972.63 -1881.88 -1763.69 -1590.02
ftz 0 0 0 0 0 0 37.59 37.69 37.79 37.88 37.96 38.08 1340.85 1343.18 3338.48 3172.99 3112.51 2913.20
giant 0.72 0.72 0.72 1.65 2.07 0.72 19.82 19.64 19.43 13.85 15.33 16.72 -101.86 -106.81 -445.25 -414.64 -439.09 -429.87
hairy 18.58 17.65 60.80 0 65.51 66.21 58.03 58.66 80.99 80.91 80.84 80.69 0 0 -1178.98 -1039.98 -1101.73 -1033.91
hunchback 10.32 11.45 12.41 13.13 14.03 15.65 105.69 104.42 103.70 103.26 102.40 100.84 227.98 245.25 194.56 73.79 86.04 2.15
knirps 3.40 3.53 3.38 3.56 3.43 3.45 5.03 4.56 5.51 4.02 4.83 4.25 163.00 164.28 638.90 546.26 566.78 505.28
krüppel 0.86 0.86 0.86 0.86 0.86 0.86 23.05 22.54 22.05 21.60 21.16 20.33 -1010.23 -1003.42 -2153.69 -1946.24 -1980.59 -1827.30
odd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
paired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 557.86 497.67 555.37 549.33
runt 0 17.94 0 0 0 0 0 0 0 0 0 0 0 0 589.60 467.39 522.54 465.37
slp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
tailless 0 0 0 0 0 0 20.74 20.50 20.29 20.09 19.89 19.53 0 0 0 0 0 0
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Figure 2. normalized mRnA and protein expressions. Solid line and dashed line denote protein and mRnA expressions, respectively. The expressions 
of knirps (cyan line), krüppel (green line) and giant (black line) are plotted in time profiles.
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predicted except those discussed here because most 
of genetic studies in Drosophila are not easy to 
find direct transcription regulations without chro-
matin immunoprecipitation microarray (ChIP-chip) 
experiments. In this study, we provide a direction for 
other biologists at the wet experiments of transcription 

regulations especially in ChIP-chip experiments. For 
example, according to the robustness tests in Table 
1, we show that eve in R2,22 is positively regulated by 
Ftz and Knirps and is negatively self-regulated. The 
robust regulations are the most probable suggestion 
in transcription regulations of eve stripe formation.

Dorsal

Ventral

A
nt

er
io

r P
osterior

KnirpsKruppelOdd SlpPaired Runt TaillessEveCaudalBicoid Ftz Giant Hairy

Figure 4. 3-DesT dynamic gene/protein interaction network for diffusion and transcriptional regulation mechanisms in different spatial 
regions in the whole embryo. The notations, R1,11, R1,12, R1,13, R1,21, …, R7,31, R7,32, R7,33, are the 63 spatial regions of the whole embryo which is specified 
by Figure 1(a). in each spatial region Rstripe,ij, the colors of the outer ring in the color circle are specified by the 14 gene names, which are given by the color 
bar below the figure, respectively. Each color of the outer ring is specified by each gene. The solid lines that connect color circles stand for transcription 
regulation between genes in each spatial region based on regulatory abilities îjβ  of the identified 3-DEST dynamic model in Eq. (9). Positive and negative 
regulations are denoted by arrows and bars at the end of solid lines, respectively. Additionally, the colors of the inner circle, i.e. the black and white circle, 
inside the color circle stand for the TFs’ roles, i.e. donor or acceptor of the transcriptional regulation network, respectively. The bold color lines that connect 
the same genes in neighboring spatial regions with different roles stand for protein diffusions from donor (black inner circle) to acceptor (white inner circle) 
in neighboring spatial regions based on the diffusion coefficients γ̂ j of the identified 3-DEST dynamic model in Eq. (9). The specification of the colors in 
bold color lines is consistent with the colors in the outer ring of the color circle, which are specified by the color bar. For example (see also Fig. 5a), Caudal 
in R4,11 with green color in outer ring and black color in inner circle found regulates ftz (yellow) and runt (navy blue) and plays as a donor, which can diffuse 
to the neighboring regions. A clearer figure is available online at the website, http://www.ee.nthu.edu.tw/bschen/Drosophila_Fig4.pdf.
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Moreover, in the large network, there exist a huge 
number of interaction patterns. Only a few types of 
interaction patterns called network motifs, which 
are embedded in the network and connected to each 
other, allow them to carry out their functions even 
in the presence of additional interactions. Mangan 
and Alon55 have analyzed two feedforward network 
motifs, i.e. coherent feedforward loops (C-FFL) and 
incoherent feedforward loops (I-FFL), and found 
that C-FFL acted as sign-sensitive delays, and I-FFL 
acted as sign-sensitive accelerators.55 Moreover, Han 
et al56 propose that a signaling module composed 
of a C-FFL and an I-FFL causes an early transient 
response and a delayed prolonged response after a 
short stimulus.56 The early transient responses and 
delayed prolonged responses plausibly depend on 
post-translation modification of existing proteins and 
new protein synthesis, respectively. The combinative 
signaling module is suggested and found in drug 
therapy. Therefore, we obtain C-FFL and I-FFL 
from the constructed network (Fig. 5) according to 
the following rules. One relationship of the tran-
scription regulations in Figure 5 serves as an edge 
of FFL, when the regulation relationship exists in at 
least four neighboring regions among its nine neigh-
boring regions. For example (Fig. 5a), a C-FFL C15 
found in Figure 5 is composed of three transcription 
regulations (Caudal-Ftz in R3,13, Runt-Ftz in 
R3,13 and Caudal-Runt in R4,11) and two diffusions 
(Caudal and Runt are both diffused from R4,11 to R3,13). 
In addition, these three regulatory relationships exist 
respectively in at least four neighboring regions, i.e. 
Caudal-Ftz in R3,13, R3,12, R4,11 and R4,31, Runt-Ftz 
in R3,13, R3,12, R3,33 and R4,31 and Caudal-Runt in 
R4,11, R3,13, R4,12 and R4,31. Therefore, C15 is one of the 
FFLs (Fig. 5b) found in our network. By the same 
procedure, not only can we find 25 C-FFLs and 18 
I-FFLs (Fig. 5b) but also 13 possible combinative 
signaling modules among 25 C-FFLs and 18 I-FFLs, 
i.e. Odd in R1,12, R1,11 (C3 and I1 in Fig. 5b), R1,13 and 
R1,23 (C1 and I1), Slp in R2,12, R2,22 (C7 and I5), R3,31 
(I12 and C18) and R3,12 (C19 and I4), Eve in R3,12, 
R3,13 (C14 and I9) and R4,11 (C13 and I9), and Ftz in 
R3,13 (C21 and I15) and R6,13 (C25 and I17). Among 
these modules, we find that Hunchback acts as a 
source of FFLs to activate Ftz as an output expressed 
in eve stripes 3, 4, 6 and 7. From the embryo with 
hb- mutants, eve stripes 2, 3, 4 and 7 are partially 

or completely deleted.10 Although Ftz in R6,12 and 
R6,13 is activated respectively by I-FFL and combi-
native signaling module with Hunchback as an input 
source, Ftz in R6,12 and R6,13 is respectively nega-
tively regulated and does not regulate eve. There-
fore, we suggest that C-FFL, I-FFL and combinative 
signaling module are respectively important in 
activating speedy responses in R4,11, R4,12 and R7,11, 
activating a delayed response in R7,13 with the ability 
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Figure 5. coherence and incoherence feedforward loops of 3-DesT 
dynamic gene/protein interaction network. (A) According to the 
rule that each of the regulation relationships of FFLs must exist in at 
least four neighboring spatial regions, parts of gene/protein interaction 
network (left) in R3,2, R3,3, R4,1 and R4,2 are examples of feedforward loops, 
and can be redrawn as C15 (right). (B) From the above rule, we find 
the network motifs, i.e. 25 C-FFLs (C1∼C25) and 18 i-FFLs (i1∼i18), 
for the cooperation of transcription regulations with diffusions in early 
embryogenesis. The color bars denote diffusions, which are the same 
as those in Figure 4. A clearer figure is available online at the website, 
http://www.ee.nthu.edu.tw/bschen/Drosophila_Fig5.pdf.
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of noise filtering and activating a delayed prolonged 
response in R3,13.

Discussion and conclusion
In this study, we are the first to combine mRNA 
dynamic equation with protein dynamic equa-
tion using spatio-temporal model to construct the 
gene/protein interaction network to investigate 
the gene/protein regulatory mechanisms of eve stripe 
formation in the early development of Drosophila. 
However, there are still three mechanisms of concern 
in Drosophila embryogenesis, i.e. protein-protein 
interactions, translation regulations and epigenetic 
regulations. In a recent study, protein-protein direct 
interactions are not found between the 14 early 
development-related TFs of Drosophila embryo,57 
although there may exist some interactions which 
require a co-factor(s). For example, Bicoid has self-
inhibitory property which requires a co-factor(s), and 
the binding site at the N-terminal region of Bicoid is 
evolutionarily conserved.58 However, the understand-
ing of protein–protein interactions via a co-factor(s) 
is limited. Moreover, cooperative bindings through 
sigmoid function have been implicitly concerned in 
previous models.38 However, since the prior informa-
tion of cooperative bindings in early embryogenesis 
is also limited, cooperative binding is not consid-
ered in our model. If the information of coopera-
tive binding is most available, cooperative bindings 
can be considered easily as regulation candidates in 
the 3-DEST model, i.e. the cooperation regulation 

βijk
j k

f Y t x y f Y t x yj k( ( , , )) ( ( , , ))
,

∑  could be considered 

in Eq. (1). In addition, there are two translation regu-
lations of concern in early embryogenesis.59 The first 
is Bicoid which binds to maternal caudal to repress 
its translation,60,61 and the second is Nano which 
binds to the nanos response element (e.g. Pumilio) 
located within the 3’ untranslated region of maternal 
hunchback and then results in maternal hunchback, 
which cannot be translated.62–64 Since the understand-
ing of translation regulations is limited so far, transla-
tion regulations are not yet included in the stochastic 
3-DEST dynamic model yet. Finally, epigenetic 
regulations, such as DNA methylation, histone 
modification and RNAi, are able to play important 
roles in the regulation of gene expression, but they 
always interact to accomplish their responsibilities. 

Combinations of several epigenetic regulations 
conduct complex silencing such as chromosome inac-
tivation and gene imprinting. For example, during 
Drosophila embryogenesis the proteins of the trithorax 
(trxG) and Polycomb groups (PcG) modify chromatin 
via interacting with chromosomal elements, Cellular 
Memory Modules (CMMs). A nearby gene can be 
continuously transcribed through mitotic cell division 
and meiosis by a switched activated state of CMMs 
during Drosophila embryogenesis. Thus, CMMs could 
affect the patterning of cells by the transcriptional 
control of genes involved in embryonic patterning. In 
conclusion, trxG and PcG confer epigenetic regula-
tions for different binding affinities of transcription 
regulation, i.e. trans- effect, that result in embryonic 
patterning throughout Drosophila embryogenesis.65–67 
In the 3-DEST model, the space-variant parameters 
of regulatory abilities βij(x, y) and basal levels of 
protein generation ϖj(x, y) have implied the affec-
tion of epigenetic regulations on transcription regula-
tions throughout eve stripe patterning of Drosophila 
embryogenesis. An example is shown in Table 1. 
As seen in N = 40, 41, 42 and 44, epigenetic regula-
tion of Hairy, which has been speculated by68 in the 
terminal system of the larvae, is probably identified 
that Hairy is encoded to transcriptionally regulate eve 
in R2,22 in eve stripe formation.

In early embryogenesis, diffusion mechanism is 
needed not only for maternal genes but also for gap 
genes and pair-rule genes to regulate their target 
genes in the neighboring spatial regions, which can 
determine the roles of TFs in each region, i.e. donor/
acceptor. Without the dynamic space-time model, 
the dynamics of TFs’ diffusions may not be easily 
observed from a system point of view, especially in 
2-D space. The contributions of this study include the 
following. (1) Construction of a stochastic 3-DEST 
dynamic model for gene/protein interaction network 
which not only contains the concentration-dependent 
transcriptional abilities but also includes six stochas-
tic processes to mimic the spatio-temporal dynamic 
interplay among the target genes and their regulatory 
TFs at the early embryonic stage (i.e. the following 
six processes (i) protein synthesis, (ii) protein 
decay, (iii) mRNA decay, (iv) protein diffusion, 
(v) transcription regulations, and (vi) autoregulation 
are involved in our dynamic model). (2) Utilization of 
the AIC to refine the stochastic 3-DEST dynamic model 
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for gene/protein interaction network via pruning the 
insignificant transcription regulations in each spatial 
region. (3) Findings of transcription regulations in the 
seven eve stripes in the stochastic 3-DEST gene/pro-
tein interaction network. (4) Validating of the iden-
tified gene/protein interaction network by literature 
reference with the wet experiments of gene muta-
tions. (5) Inference of transcription regulations and 
diffusion mechanisms for playing a cooperative role 
in the creation of FFLs to build eve stripes by speedy 
responses, delayed responses with the ability of noise 
filtering and delayed and prolonged responses. For 
the possible experimental validation of the feedfor-
ward loops (FFLs) in 3-DEST dynamic gene/protein 
interaction network, biologists can follow the similar 
experimental design in69 and.9,10,43,45,46 For example, 
if the two FFLs, X Y Z  and X Y Z  are consid-
ered, biologists can examine gene Z’s expression in 
the corresponding region found in Figure 5 of cellular 
blastoderm wild-type and Y- embryos by filtered flu-
orescence imaging after immunoperoxidase staining 
with polyclonal antibodies specific for Z. By compar-
ing gene Z’s expression in wild-type with Y- embryos, 
the suggested FFLs in Figure 5 can be validated. 
In the future, the proposed spatio-temporal dynamic 
model and construction algorithm can be extended to 
gene/protein network construction of different bio-
logical phenotypes, which depend on compartments, 
especially in early embryonic development, e.g. post-
natal stem/progenitor cell regulation and differen-
tiation, differentiation of Hematopoietic stem cells 
(HSCs), the segmentally modulated Hox expression 
patterns and patterning of the wing in Drosophila 
development.

However, one of the weaknesses in system 
identification is the increase in computation burden 
due to the use of the AIC method. Because one of 
our main purposes is to extract the significant tran-
scription/translation regulations via pruning the 
insignificant transcription/translation regulations by 
using the AIC method, we use an explicit scheme 
with some stability constraints on the parameters to 
construct and then refine the gene/protein interaction 
network. Additionally, computation complexity will 
be increased, when the spatial regions are precisely 
specified. Moreover, a plenty of spatio-temporal data 
are needed in parameter estimation of the 3-DEST 
model. Although we know that eve stripes of the 

Drosophila embryo is probably not just built by 
the 14 early development-related genes, it is not a 
problem to estimate a more complicated dynamic 
regulatory network by the proposed method if much 
more mRNA and protein data are available in the 
future.
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Appendix I: Reconstruction  
of Unavailable Data  
by neural-network Learning
Because there are some deficiencies in the mRNA 
data, recovery of these missing data is needed when 
the data are used for system identification. For the 
deficiencies of mRNA data, a back-propagation NN 
training method is employed to reconstruct them. 
Three classes of genes, i.e. maternal genes, gap 
genes, and pair-rule genes, into which the 14 early 
development-related genes are divided, are utilized 
for the reconstruction of these unmeasured data in 
their classes of genes, individually. For each data 
reconstruction process, we individually train and 
reconstruct these data in each class of genes along 
the A-P axis, since the protein and mRNA data of 
each class of genes along the A-P axis are roughly 
similar (Fig. 2).3 Note that the downstream class of 
genes with missing mRNA data is reconstructed by 
the upstream class of genes via the back-propaga-
tion NN training method. The training methods, i.e. 
Broyden, Fletcher, Goldfard and Shanno (BFGS), 
Levenberg-Marquardt, Powell-Beale Restarte, 
Polak-Ribiere, Fletcher-Reeves, and Rprop, have 
been employed to test the performance of data 
reconstruction. In this study, NN combined with 
the BFGS method is used for training and simulat-
ing the unmeasured mRNA data,70 because the NN 
plus BFGS method has the best performance in our 
tests (data not shown). In order to obtain an opti-
mal NN training results, we maximize the output 
correlations and minimize the training errors in the 
training processes. A few of the unmeasured pro-
tein data points are also reconstructed by the same 
learning and simulating processes. For example, 
if the mRNA data of gene A is unknown, a back-
propagation NN is trained by the protein data of the 
upstream class of gene A as input and the protein 
data of gene A as output. Then the mRNA data of 
gene A can be simulated by the mRNA data of the 
upstream class of gene A through the well-trained 
back-propagation NN. After these missing data are 
simulated, the parameter estimation for the system 
identification of stochastic 3-DEST gene/protein 
interaction network model in Eq. (1) or Eq. (2) is 
introduced in the following section.

Appendix II: stability of Discrete  
3-DesT Model 
Lemma 171

Let X k l m g e ek il im( , , ) = 1

Φ Φ  and Y k l m g e ek il im( , , ) = 2

Θ Θ

where X(k, l, m) ∈ Ωx := {Xi(k, l, m)} and Y(k, l, m) ∈ 
Ωy  := {Yj(k, l, m)} for i, j = 1, 2, … 14 in Eq. (2).

An one-step finite difference scheme (with con-
stant coefficient) is stable if and only if |g1(Φ)|  1, 
|g2(Θ)|  1 and g1(Φ) and g2(Θ) both are independent 
of l and m.

Substituting X k l m g e ek il im( , , ) = 1

Φ Φ and Y k l m( , , ) =  
g e ek il im

2

Θ Θ in Eq. (2), we obtain g e e ak il im
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We can obtain g1 = 1 - al,m and g cl m l m2 4= -, ,ρ
( )sin ( / ).h hx y

- -+2 2 2 2Θ
Thus, according to Lemma 1, the scheme is stable 

if and only if |1 - al,m|  1 and 
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Appendix III: procedure of stability 
constrained estimation
The stability constrained estimation of parameters 
can be performed by a Matlab function, lsqlin.

A procedure for the parameter estimation is given 
as follows:

1. First, assume ρj,l,m  0 with the constraint |cj,l,m|  1 
for j = 1, 2, … 14 in Eq. (2) and estimate the 
parameters, ˆ , ˆ ˆ ˆ ˆ ˆ

, , , , , , , , , , , ,d w a c bi l m j l m i l m j l m j l m i j l mρ{ }, under 
the constraints, di,l,m  0, wj,l,m  0, |cj,l,m|  1 and 
|1 - aj,l,m|  1.

2. Change the assumption of ρj,l,m according to the 
estimated , ,ρ̂ j l m  of the previous step, and estimate 
the parameters under the constraints, di,l,m  0, 
wj,l,m  0, |1 - aj,l,m| 1 and |cj,l,m|  1 if the diffu-
sion coefficient estimated by the previous step for 
some j (i.e. some TFs) is non-negative, , ,ˆ 0.j l mρ ≥  
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But otherwise the constraints of the other TFs 
with negative diffusion coefficients, ˆ ,, ,ρ j l m < 0  
estimated by the previous step are changed 
to be di,l,m  0, wj,l,m  0, |1 - aj,l,m|  1 and
c h hj l m j l m x y, , , , ( ) .- + ≤- -4 12 2ρ

3. Stop and obtain the estimated parameters if 
the sign of the estimated ˆ

, ,ρ j l m  for each j is not 
changed anymore in the last two estimation steps, 
otherwise go back to step 2.
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