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Abstract: There are certain saprophytic fungi in the soil able to develop an antagonistic effect against
eggs of parasites. Some of these fungal species are ingested by animals during grazing, and survive
in their feces after passing through the digestive tract. To identify and isolate ovicidal fungi in the
feces of wild captive animals, a total of 60 fecal samples were taken from different wild animals
kept captive in the Marcelle Natureza Zoological Park (Lugo, Spain). After the serial culture of the
feces onto Petri dishes with different media, their parasicitide activity was assayed against eggs
of trematodes (Calicophoron daubneyi) and ascarids (Parascaris equorum). Seven fungal genera were
identified in the feces. Isolates from Fusarium, Lecanicillium, Mucor, Trichoderma, and Verticillium
showed an ovicidal effect classified as type 3, because of their ability to adhere to the eggshell,
penetrate, and damage permanently the inner embryo. Penicillium and Gliocladium developed a type 1
effect (hyphae attach to the eggshell but morphological damage was not provoked). These results
provide very interesting and useful information about fungi susceptible for being used in biological
control procedures against parasites.
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1. Introduction

Adult stages of certain helminths affecting animals release eggs that are passed out in the feces.
Once in the soil, different phases are accomplished to attain the infective stage, and the life-cycle is
completed when animals feed on pastures [1]. Some of these helminths are zoonotic agents because
they can infect humans also [2].

In the soil, there are several possibilities for the transmission of helminths through eggs shed
in feces: (1) a larva originates inside the egg in the soil, but the larva does not exit from the egg
until it is ingested by the host and excysts at the gut level (nematodes: ascarids, trichurids); (2) the
larva originates in the egg, leaves it, and molts in the environment until the infective stage is reached
(nematodes: strongylids, ancylostomids), or (3) the larva abandons the egg and infects an intermediate
host to reach the infective stage (trematodes, cestodes) [3,4]. In terms of moving capability, parasites
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remain immobile and confined in the eggs until they are ingested (ascarids, trichurids), or leave
actively the eggs and scroll in the environment (trematodes; nematodes: strongylids, ancylostomids).

As occurs with domestic species, wild captive animals maintained always in the same paddock
(continuous grazing) can be at risk of infection by certain helminths, because they are constantly shedding
eggs to the environment. Despite the administration of successful therapy based on anthelmintics, these
animals infect again because of the ingestion of infective stages when feeding on grass [5].

Under natural conditions, the presence of some saprophytic fungi in soil that can develop
antagonistic effects on the eggs of parasites, with the aim to take nutrients as C or N, has
been reported [6]. The ability of some of these fungi to pass through the gastrointestinal tract
of different animal species and survive in their feces has been previously reported, concerning
mainly Duddingtonia flagrans, Pochonia chlamydosporia, or Mucor circinelloides [2,7–9]. Hence, their
employment has been notably advised in the last decades as a contribution to the control of parasites
affecting livestock.

Studies performed on different countries demonstrated the presence of nematophagous fungi in
fecal samples from domestic animal species [4,10–17].

Most known species with ovicidal activity are Verticillium spp., Pochonia chlamydosporia,
Paecilomyces lilacinus, Trichoderma spp., or Mucor circinelloides [18–20]. By developing the phases of
adhesion, colonization, penetration, and deliberation, these fungi develop an ovicidal activity [21,22].
Recently, the role of Trichoderma spp. in the biological control of insects pest such us Xylotrechus arvicola
and Acanthoscelides obtectus has been described [23,24]. The objective of this study was to evaluate the
presence of fungi with ovicidal activity in the feces of wild animals maintained captive at the “Marcelle
Natureza” zoological park (NW Spain).

2. Material and Methods

2.1. Marcelle Natureza Zoological Park

The current investigation was conducted in “Marcelle Natureza”, a 20 ha zoological park located
in NW Spain (Outeiro de Rei, Lugo) (43◦4′4.71′ ′ N, 7◦37′53.50′ ′ W). Collection animals live in fenced
semi-free ranging parcels of various sizes. The animals are routinely dewormed in spring and autumn
by adding granulated anthelmintic preparations to their diet. Removal of fecal material is performed
daily in the paddocks by the keepers, before the visitors arrive.

2.2. Collection and Analysis of Fecal Samples

Freshly deposited feces were taken in the morning from a total of 60 paddocks, then put into
plastic flasks, and finally brought to the lab. Each fecal sample was analyzed by the flotation test to
determine the presence of coccidian cysts/oocysts, eggs of cestodes and nematodes [25]. Briefly, 3 g
of feces were emulsified in 42 mL of water, stirred shortly, and passed through a 150 µm mesh. The
filtered solution was collected into two 15 mL tubes and centrifuged at 2500 rpm for 10 min. The
supernatant was discarded and 10 mL of saturated NaCl solution (ρ = 1.2 g/cm3) was added to each
tube. After 2 min, aliquots of 300 µL were taken and observed in a McMaster chamber under a light
microscope (4−10×) (Leica DM 2500, Barcelona, Spain).

The existence of eggs of trematodes in feces was investigated by means of the sedimentation
probe [1]. Five grams of feces were blended with water, filtered through a 150 µm sieve, and passed
to a 1 L conic cup. After decanting three times for 15 min, the content was reduced to 50 mL. Finally,
aliquots of 300 µL were collected to fill a McMaster chamber, and then observed under an optical
microscope (4−10×) (Leica DM 2500).

2.3. Isolation of Fungi from the Feces

By means of the flotation test, captive animals passing eggs of strongyles in their feces were
identified. One gram of each fecal sample was placed onto a Petri dish containing water agar with
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chloramphenicol (WA) and incubated at 25 ◦C for 15 days [26]. Four replicates were considered for
each sample.

Once fungal growth was recorded, fungal isolates were subcultured twice in malt extract agar
(MEA; Drogallega, A Coruña, Spain) and corn meal agar (CMA, Sigma, MO, USA) for purification and
subsequent identification, following standard protocols [27,28].

Monosporic cultures were obtained on potato glucose agar (PGA, Drogallega) for morphometric
and cultural characterization. In some cases, subcultures were made on wheat extract agar with
chloramphenicol (AT). Plates were incubated at 18–22 ◦C in the dark.

2.4. Identification of Fungal Species

The microscopic characterization of the fungal isolates consisted of measurements of 40 conidia,
conidiophores, spores/chlamydospores, and sporanges by using an optical microscope (Olympus
CX23LEDRFS1, Ashburton, New Zealand) equipped with a digital camera. Measurements were
performed with an eyepiece micrometer scale. Identification of the fungal isolates was based on
morphological features from pure cultures fungi, by means of keys and species descriptions [29–33].

2.5. Obtaining Parasites

Feces of cattle and horses with previous records of infection by parasites were collected and
analyzed by using coprological probes. After the observation of eggs of Calicophoron daubneyi (gastric
fluke) in bovine feces by using the sedimentation test, eggs were concentrated to 800 eggs/mL.

By applying the flotation probe, eggs of roundworms (Parascaris equorum) were identified in the
feces of horses, then purified [21], and finally kept at a concentration of 800 eggs/mL.

2.6. Parasiticide Activity Testing Assays

Two assays were developed by using CMA plates. For each fungus isolated, two sets of plates
were prepared; Set 1 received 400 eggs of C. daubneyi, and Set 2 received 400 eggs of P. equorum. Ten
replicates were carried out for each fungus and parasite.

Ten plates without fungi were provided with 400 eggs of C. daubneyi as controls, and the same
was done with eggs of P. equorum.

2.7. Evaluation of the Fungal Parasiticide Activity

Twenty-two days after placing the parasites, the CMA plates were observed under an optical
microscope (Leica DM2500) for recording the changes in the eggs in comparison with their respective
controls. Assessment of fungal damage on eggs was carried out according to the following alterations [34]:

- Type 0: Eggs are viable and damage or alterations are not observed.
- Type 1: Hyphae attached to the eggshell but morphological damage was not provoked.
- Type 2: The eggshell and embryo show damage without penetration.
- Type 3: Fungal hyphae enter the egg, grow, and destroy the embryo.

3. Results

A total of 13 captive animals passing eggs of strongyles in their feces were detected by means of
the flotation test, thus these fecal samples were cultured and subcultured in search of fungal species
with activity against parasite eggs.

In all the isolates, a mycelium was developed in the presence of eggs of C. daubneyi and P. equorum,
and hyphae attached to the eggshell (type 1 activity) (Figure 1). Isolates identified as Gliocladium (two
fecal samples) and Penicillium (n = 3) displayed only a type 1 ovicidal effect. The contact area between
the hypha of fungi and the egg surface is smooth at the first stage. No damage of superficial structures
of eggshell can be observed during this period. During the interaction with the egg, some hyphae of
these fungi formed a lentiform penetration organ (appresorium) on the undeveloped egg surface. This
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is considered an important organ involved in the mechanism of penetration of the fungi through the
solid eggshell.
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Finally, after attaching to the eggshells and penetrating them, the interior was colonized and, 
the inner embryo was destroyed (Figures 3 and 4), so this ovicidal activity was classified as type 3. 
The consumption stage of the process begins here. The branching fungus starts to gradually 
liquidate the egg contents irrespective of the developmental stage of the embryo. The layer of the 
eggshell is already deformed. 

Figure 1. Hyphae of Trichoderma isolated from feces of captive wild animals developed in the presence
of eggs of C. daubneyi.

Nine of the fungal isolates were also able to penetrate inside the eggshell after 6–10 days when
the penetration organ (haustorium) started to damage the superficial structures of the chitin-protein
layer of the envelope. As soon as the fungus has penetrated into the egg, it starts to form branches,
and the formation of new hyphae was observed (Figure 2).
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Figure 2. Eggshell of Parascaris equorum is penetrated by hyphae of Mucor spp.

Finally, after attaching to the eggshells and penetrating them, the interior was colonized and, the
inner embryo was destroyed (Figures 3 and 4), so this ovicidal activity was classified as type 3. The
consumption stage of the process begins here. The branching fungus starts to gradually liquidate
the egg contents irrespective of the developmental stage of the embryo. The layer of the eggshell is
already deformed.
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Figure 4. Destruction of the embryo inside egg of P. equorum exposed to Verticillium.

The last stage of the ovicidal process begins, when the ovicidal fungus leaves the liquidated
and dead remnants of the nematode egg. In some cases, spores were also observed within the eggs
(Figure 5). These isolates were identified as Fusarium, Lecanicillium, Mucor, Trichoderma, and Verticillium.

As summarized in Table 1, the number of fungal species with ovicidal activity in each of the fecal
samples ranged between 1 and 2, whereas the most abundant predaceous fungi were, in four samples,
Trichoderma and Verticillium, in three samples, Fusarium, Mucor, and Penicillium, Gliocladium in two
samples, and Lecanicilium only in one.

No morphological differences regarding the effect the soil fungi developed have been recorded.
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Table 1. Isolation of predaceous fungi with ovicidal activity against eggs of the helminths Calicophoron daubneyi and Parascaris equorum, in feces of wild captive animals
(“Marcelle Natureza” zoological park, NW Spain). WA: water agar. MEA: malt extract agar. CMA: corn meal agar. PGA: potato glucose agar. AT: wheat extract agar
with chloramphenicol.

Captive Animals Fungal Isolation

Common Name Scientific Name Parasites Diagnosed Culture Subculture 1 Subculture 2 Genera Identified

Coati Nasua nasua Nematodes: Strongyles WA
MEA Trichoderma

CMA
Trichoderma
Verticillium

Raccoon Procyon lottor Nematodes: Strongyles WA
MEA Mucor

CMA Mucor

Eurasian lynx Lynx lynx Nematodes: Strongyles WA
MEA

PGA
Fusarium

CMA Gliocladium

Brown bear Ursus arctos Nematodes: Strongyles WA
MEA Trichoderma

CMA Trichoderma

Goat Capra hircus spp. Coccidia
WA

MEA
PGA

Verticillium

Nematodes: Strongyles CMA Verticillium

Mouflon Ovis musimon Coccidia WA MEA
Fusarium

Penicillium

Nematodes: Strongyles CMA Fusarium

Gazelle Gazella cuvieri
Coccidia

WA
MEA Mucor

Nematodes: Strongyles CMA
Mucor

Penicillium

Axis Axis axis Nematodes: Strongyles WA/AT
MEA

Verticillium
Lecanicillium

CMA
Verticillium

Lecanicillium
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Table 1. Cont.

Captive Animals Fungal Isolation

Common Name Scientific Name Parasites Diagnosed Culture Subculture 1 Subculture 2 Genera Identified

Bison Bison bison
Coccidia

WA
MEA Trichoderma

Nematodes: Strongyles CMA Trichoderma

Dromedary Camelus dromedarius Nematodes: Strongyles WA
MEA

PGA
Trichoderma

CMA
Trichoderma
Verticillium

Guanaco Lama guanicoe Coccidia
WA

MEA
PGA

Gliocladium

Nematodes: Strongyles CMA Gliocladium

Falabella Equus caballus Coccidia WA
MEA Fusarium

CMA
Fusarium

Penicillium

Wallaby Macropus rufogriseus - WA
MEA Mucor

CMA (Sordariaceae)



J. Fungi 2017, 3, 29 8 of 12

J. Fungi 2017, 3, 29 6 of 12 

 

 
Figure 5. Chlamydospores of Mucor inside of an egg of P. equorum. 

As summarized in Table 1, the number of fungal species with ovicidal activity in each of the 
fecal samples ranged between 1 and 2, whereas the most abundant predaceous fungi were, in four 
samples, Trichoderma and Verticillium, in three samples, Fusarium, Mucor, and Penicillium, Gliocladium 
in two samples, and Lecanicilium only in one. 

No morphological differences regarding the effect the soil fungi developed have been recorded. 

Figure 5. Chlamydospores of Mucor inside of an egg of P. equorum.

4. Discussion

The presence of soil fungi antagonists of egg parasites in fecal samples of wild captive animals
was investigated. Formerly, only eggs of strongyles were detected in their feces. After culturing
these fecal samples, seven isolates with ovicidal activity were obtained. Two of them, identified to
genus level as Gliocladium and Penicillium, were able to adhere to eggshell only and therefore classified
as type 1 ovicidal fungi. These are specimens found frequently in soil samples [35,36], and there is
no available information concerning their effect on the eggs of helminths infecting animals. Some
investigations reported their usefulness as a biocontrol agent against plant pathogens as Rhizoctonia
solani, Phytium ultimum, and Meloydogine incognita [37–39].

Five fungal specimens isolated from the feces of the captive animals were identified to the genus
level as Fusarium, Lecanicillium, Mucor, Trichoderma, and Verticillium. When eggs of the gastric fluke
Calicophoron daubneyi and the roundworm Parascaris equorum were exposed to these fungi, it was
observed that hyphae attached to the eggshells and penetrated and destroyed the inner embryo, so
they were classified as type 3 ovicidal fungi. If the mechanical pressure was the main factor enabling
the penetration of the hypha through the eggshell, then the fungi should be fixed to the egg surface in
such a way that it would be able to develop a high pressure on the structure of eggshell, particularly
on the mechanically resistant chitin–protein complex of the chitinous layer of Ascaris lumbricoides eggs.
The penetration organ physically damages the eggshell, though specific enzymes may be involved. The
damaged ascarosid layer no longer performs its role of the osmotic barrier. The embryo, if it has not
yet been infected by the fungus, can be killed by the injurious substances from the outer environment,
which can freely diffuse into the egg [34].

Prior investigations indicated the antagonistic activity of several fungal species belonging to the
genera Fusarium and Trichoderma on eggs of the roundworm Toxocara canis [40–42]. The ovicidal activity
of Pochonia chlamydosporia (formerly Verticillium chlamydosporium) has been widely reported on eggs of
trematodes (Echinostoma paraensei, Fasciola hepatica) and ascarids (T. canis, P. equorum) [19,20,43].

Transmission of many parasites affecting animals occurs in the soil, where the infectious agents
develop part of their life-cycle. This enhances the importance to control the numbers of infective
stages of parasites, especially when animals are maintained always in the same paddocks, where the
continuous shedding of eggs favors the accumulation of infective stages [5].
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Different actions have been suggested to minimize the risk of infection in grazing animals, such as
the rotation of pastures, the alternation of animal species pasturing in the same paddock, the manual
collection of manure or drainage [44,45]. Nevertheless, these procedures can not be applied in different
regimes, as occurs in zoological parks, and the number of dewormings per year is frequently increased
to eliminate parasitic infections in the animals. As a consequence, selection of parasite strains resistant
to different chemical compounds [46].

Nematodes in the soil are exposed to many organisms such as bacteria, viruses, fungi, predatory
nematodes, and mites, and some have the ability to parasite and destroy them [47]. These beneficial
organisms are called biological agents, which should be highly antagonistic to parasites, selective in
their activity (acting on parasites but not on crop plants or higher animals), to growth on artificial
media at suitable pH and temperature ranges, and easy to formulate in a working way [48]. In the
current research, five of the isolated fungi developed in plates containing a medium composed of corn
meal agar and a type 3 effect on eggs of C. daubneyi and P. equorum was recorded. No pathogen effects
have been reported after the administration of M. circinelloides, D. flagrans, or Pochonia chlamydosporia
to sheep, cattle, and domestic and wild horses [2,5,7,49,50]. In recent years, the formulation of fungi in
pelleted feed by adding mycelium or spores of D. flagrans and M. circinelloides provided successful
results in terms of preventing infection by helminths in horses, enhancing thus their distribution as
biocontrol agents [2,51].

Parasitic stages present in soil can also affect humans. Soil-transmitted helminth infections caused
by ascarids, such as Toxocara canis, Ascaris suum, Toxascaris leonina, and Baylisascaris procyonis, and
trichurids are transmitted to humans through the accidental ingestion of eggs containing a second
stage larva inside [21,42]. Larvae of ancylostomids can penetrate through the skin and especially
affect people enjoying recreational locations with, for example, sandy areas or recreational surfaces
in parks [52,53]. Parasiticide fungi could be distributed by spraying them into aqueous solutions,
providing a useful tool for lessening the risk of infection to children playing in those places or adults
taking a sunbath.

Our results demonstrated the existence of saprophytic fungi with ovicidal activity in the feces of
captive animals from the “Marcelle Natureza” zoological park (Lugo, NW Spain), and a similar variety
of predaceous fungi was observed in all samples examined. Most of the former surveys conducted on
fecal samples collected from domestic livestock have been focused on the finding predaceous fungi
with larvicidal activity only [4,13,14,54].

In the present investigation, the presence of fungal specimens in feces indicates that they can
survive the gastrointestinal tract, and the observation of an ovicidal type 3 effect in five of the isolates
demonstrates that fungi retained their biological activity on the eggs of helminths, confirming thus
their potential as biological control agents against helminths transmitted through eggs. Their impact
on the eggs of strongyle nematodes remains unknown because, according to the weather and/or
season, the development of a mobile phase (larva) inside might be slower than the time required for
the fungi to develop their ovicidal activity. Further studies are in progress to elucidate this issue.
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