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The perception of mitochondria as only the powerhouse of the cell has dramatically
changed in the last decade. It is now accepted that in addition to being essential
intracellularly, mitochondria can promote cellular repair when transferred from healthy
to damaged cells. The artificial mitochondria transfer/transplant (AMT/T) group of
techniques emulate this naturally occurring process and have been used to develop
therapies to treat a range of diseases including cardiac and neurodegenerative.
Mitochondria accumulate damage with time, resulting in cellular senescence. Skin cells
and its mitochondria are profoundly affected by ultraviolet radiation and other factors
that induce premature and accelerated aging. In this article, we propose the basis to
use AMT/T to treat skin aging by transferring healthy mitochondria to senescent cells,
possibly revitalizing them. We provide insightful information about how skin structure,
components, and cells could age rapidly depending on the amount of damage received.
Arguments are shown in favor of the use of AMT/T to treat aging skin and its cells,
among them the possibility to stop free radical production, add new genetic material,
and provide an energetic boost to help cells prolong their viability over time. This article
intends to present one of the many aspects in which mitochondria could be used as a
universal treatment for cell and tissue damage and aging.

Keywords: skin, aging, senescence, mitochondria, artificial mitochondria transfer transplant (AMT/T),
MitoCeption, regenerative medicine

INTRODUCTION

Mitochondria are organelles found in eukaryotic cells that have an important role in the
maintenance of homeostasis and tissue health. Mitochondria can produce up to 95% of all ATP in
the cell and sustain metabolic processes such as the tricarboxylic acid cycle (TCA), beta-oxidation,
calcium regulation, protein synthesis, among others (McCormack et al., 1990; He et al., 2012;
Tzameli, 2012; Birsoy et al., 2015). They also play a major role in inducing cell differentiation,
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sustaining proliferation, maintaining cell survival, and triggering
apoptosis, all of which are essential for the development and
maintenance of an organism in time (Vakifahmetoglu-Norberg
et al., 2017; Noguchi and Kasahara, 2018). Mitochondrial
dysfunction increases as age progresses. This organelle
accumulates damage with age and through the constant exposure
to external factors, like ultraviolet radiation (UVR), which harms
its function and genetic patrimony (Naidoo et al., 2018; Cabrera
et al., 2019). The presence of dysfunctional mitochondria has
been associated with neurological and degenerative disorders,
obesity, type 2 diabetes, and cancer (Angelova and Abramov,
2018; Porporato et al., 2018; Cantó, 2019).

The skin is the largest organ in the human body, serving
as our connection to the environment and protecting us from
diverse stressors. A variety of environmental factors affect the
skin, inducing either a positive or negative response. Ultraviolet
radiation induces positive changes in our physiology through
skin sensing and reactions (Slominski A. et al., 2012). Other
factors, such as pollutants and microbial insults, contribute to
skin aging and decrease the functionality of the skin (Bocheva
et al., 2019). The neuroendocrine messengers produced
after UVR exposure include neuropeptides, biogenic amines,
serotonin, and melatonin. These stimulate the hypothalamus,
pituitary gland, and adrenal glands (HPA axis), causing effects
in our mood, immune system, and behavior (Slominski et al.,
2018b). In skin cells, UVR induces the release of neuro-
endocrine-immune messengers into the circulation to maintain
homeostasis, leading to melanogenesis and keratinocytes
proliferation (El-Abaseri et al., 2006; Slominski A. et al.,
2012; Slominski et al., 2018b). The skin mitochondria play an
important role in supporting these processes, as they are an
essential factor in the maintenance of skin health (Slominski
A. et al., 2012; Slominski et al., 2015a, 2017). Excess of UVR,
pollutants, microbial insults, and wounds can accumulate with
time in the skin, causing loss of functionality and cosmetic
appearance (Slominski A. et al., 2012; Birch-Machin et al.,
2013; Hudson et al., 2016). Skin and its cells’ mitochondria
are highly susceptible to detrimental environmental factors.
Ultraviolet radiation causes mitochondrial DNA (mtDNA)
deletions, perturbing the electron flow, and energy production
(Krutmann and Schroeder, 2009). Treating mitochondrial
damage would help to mitigate the cumulative damages caused
by environmental factors.

Mutations related to monogenic mitochondrial disorders
can cause fragmentation of the mitochondrial network in the
cell. Affecting this network hampers its capacity to maintain
mtDNA stability. When good and damaged mitochondria
are unable to fuse within networks, they can’t exchange
healthy mtDNA or get rid of damaged DNA copies. This
ultimately leads to dysfunctions in the cell and premature
senescence (Koopman et al., 2012). For instance, patients with
fibromyalgia suffer from oxidative stress and inflammation of
the skin which has been linked to mitochondrial dysfunction
(Sánchez-Domínguez et al., 2015). Healthy skin depends on
the maintenance of functional mitochondria, which could be
a target for the development of medical and cosmetic anti-
aging treatments.

To our knowledge, there is no effective treatment available to
the public to reverse skin aging by targeting mitochondria. The
few existing therapeutic options focused on the mitochondria
are under development and still, need further in vitro assays and
clinical validation (Krutmann and Schroeder, 2009; US4603146A,
2019 – Methods for retarding the effects of aging of the
skin – Google Patents; Ashrafi and Schwarz, 2013). In
addition, no available products, including topical application
of natural substances and antioxidants, offer a substantial
recovery from many skin aging symptoms such as mtDNA
instability, respiration, collagen production, neovascularization,
and localized inflammation (Krutmann and Schroeder, 2009).

In this hypothesis article we present the idea and arguments
of using the artificial mitochondria transfer/transplant (AMT/T)
technique as a possible skin anti-aging therapeutic. We interpret
recent data and findings regarding the use of the AMT/T to repair
cells and tissue damage. It has been observed previously that the
use of AMT/T in vitro, in vivo, and clinically promotes cell and
tissue recovery in different diseases, with effects that could be
used to repair skin damage. For example, MitoCeption, one of
many AMT/T techniques, induces cell proliferation, migration,
and increased respiratory ATP production, processes needed to
repair the damage in aged skin (Caicedo et al., 2015). PAMM
MitoCeption (Primary Allogeneic Mitochondria Mix Transfer
by MitoCeption) repaired UVR damaged cells by recovering
the loss of metabolic activity, mitochondrial mass, mtDNA
sequence stability in addition to decreasing p53 expression
(Cabrera et al., 2019). Published data provided evidence that
syngeneic or allogeneic AMT/T transfer of mitochondria was not
immunogenic, and additionally that AMT/T to proinflammatory
cells, such as TH17, induced cell conversion to Tregs and
promoted immune regulation (Luz-Crawford et al., 2019;
Ramirez-Barbieri et al., 2019). Beyond in vitro applications,
AMT/T showed to have regenerative effects in vivo, in diseases
such as heart and brain ischemia. AMT/T applied clinically to
pediatric patients with myocardial dysfunction has also shown
positive results on ischemic injured tissues (Liu et al., 2014;
Cowan et al., 2016; McCully et al., 2016; Emani et al., 2017). Our
hypothesis regarding AMT/T as an antiaging skin therapeutic
could be tested in vitro, in vivo, and clinically, to promote the
applications of this technique. The possibility to transfer new
mitochondria to senescent or age-induced harmed cells in the
skin could represent a plausible option to treat the effects of aging.

SKIN AGING AND MITOCHONDRIA

Cutaneous aging is a complex and continuous biological process
that depends on intrinsic (genetic) and extrinsic factors. These
factors contribute to approximately a 50% alteration in skin
function when arriving to midlife (WHO, 2009). Physiologically,
the skin undergoes constant changes, with the capacity to
repair and renovate its constituents after damage. Despite this,
environmental factors, biological and chronological aging, all
hamper the skin’s abilities to maintain homeostasis and repair.

Genetic or intrinsic features that trigger aging are inevitable.
It is possible to observe histologic changes that are subtle when
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FIGURE 1 | (A) Skin structure, cells, and energetic status. The skin is divided in three major cell layers: epidermis, dermis, and hypodermis. The epidermis is the
outer layer composed by cells derived from basal stem cells keratinocytes that differentiate, proliferate, and migrate to the surface. The Keratinocytes stem cells are

(Continued)
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FIGURE 1 | Continued
long-lived with a glycolytic metabolism. The proliferating keratinocytes are short-lived with active mitochondria. The Merkel, melanocyte, and Langerhans cells are
long-lived and highly dependent of mitochondria function. (B) Cutaneous aging is triggered by intrinsic and extrinsic factors that could be treated with AMT/T Skin
aging results in the flattening of cell layers and a decrease on cell turnover. This process is accompanied by the decrease of mitochondria function. Time and the
environmental damage accumulates, worsening the loss of skin functionality greatly affecting the mitochondria, generating mtDNA mutations, and the increase of
ROS production. It would be possible to treat skin aging by AMT/T administered by microneedles or microemulsions. Mitochondria can be delivered to the epidermis
possibly resulting in the reconstitution of cellular functionality cell turnover and proliferation. Figure created with BioRender.com.

we become old, but with the years the loss of function becomes
evident. Histologically, skin aging results in a flattening of the
dermoepidermal junction, a smaller amount of epidermal cell
turnover, and a decrease in the number of Langerhans cells with
advance age (Figures 1A,B) (de Araújo et al., 2019; Fernandez-
Flores and Saeb-Lima, 2019). The dermis becomes atrophic
because it has a less dense intercellular matrix caused by a
decrease in the number of fibroblasts and collagen fibers. As
time goes on, collagen fibers become thinner, and after 50 years
the thinner fibers start to fragment and progressively experience
lysis. This also occurs with elastin fibers, but at a different rate
(Yaar et al., 2002).

There is evidence of decreased collagen production in the skin,
correlating it with the severity of UVR damage and other factors
(Figures 1A,B). In the papillary dermis, a loose meshwork of
type I and type III collagen fibers has been observed, where type
III collagen becomes more abundant in the adventitial dermis
(Meigel et al., 1977; Mills, 2012). Immunofluorescence studies
have shown an increase of collagen I and a decrease of collagen
III during the aging process (de Araújo et al., 2019). As an
individual ages, the dermis gradually replaces the loose meshwork
of collagen (type III) with well-distributed dense collagen fibers
(type I) (Yaar et al., 2002).

A 10 to 20% reduction of melanin per decade has been
observed. Is not clear if this reduction is a consequence of
a decreased number or a loss of function of melanocytes
(Figures 1A,B) (Rittié and Fisher, 2015). Extrinsic factors
including, but not limited to, sun exposure, cigarette exposure, bad
nutrition, and low water intake have been seen to induce a process
called elastosis. During this processes many aging processes
are observed including epidermal atrophy, collagen and elastin
fiber fragmentation, and elastin deposition by histopathology
(Khavkin and Ellis, 2011). These extrinsic factors, in addition to
the loss of collagen, decreases the overall strength of the skin,
favors wrinkle formation, and creates a microenvironment that
facilitates tumorigenesis and progression (de Araújo et al., 2019).

The skin joins together various systems with different energy
demands to perform its protective function (Eckhart et al., 2019).
The immune, pigmentary, epidermal, dermal, vascular, and
adnexal systems are together and interact in the skin (Slominski
et al., 2017). Here, the mitochondria plays a major role in
providing the energy support necessary to maintain all systems
working. Mitochondria function in the skin could be divided into
three major categories: energy, homeostasis, and growth (Stout
and Birch-Machin, 2019). Energy consumption and metabolic
activity could be classified as proposed by Eckhart et al. (2019),
suggesting long-lived stem cells with a low metabolic activity,
short-lived differentiating cells with a high metabolic activity
(such as keratinocytes), and long-lived differentiated cells with

high metabolic activity such as Merkel cells (Eckhart et al., 2019).
Interestingly, epidermal keratinocyte stem cells are maintained
in a regular number throughout life (Giangreco et al., 2008) and
depend on anaerobic glycolysis (Hamanaka and Mutlu, 2017).
Later, these cells and their mitochondria are activated, inducing
the differentiation process and proliferation of keratinocytes
(Hamanaka and Mutlu, 2017). Merkel cells and melanocytes
need healthy mitochondria to perform their roles in the skin.
Mitochondrial malfunction malfunction leads to reactive oxygen
species (ROS) production mecanosensoring decrease, decrease
melanin synthesis, and senescence (Eckhart et al., 2019; Gu
et al., 2020). Mutations in mitochondrial repair genes and haem
production have been associated with several skin aberrations
such as lipomas and pigmentation disorders (Stout and Birch-
Machin, 2019). Wound healing and hair growth are also part
of the physiological functions of the skin where mitochondria
support the optimal regeneration and differentiation, respectively
(Stout and Birch-Machin, 2019).

In the skin and other organs, damage in mtDNA increases with
age (Figure 1B). Specific mutation patterns have been reported
for skin cell mitochondria DNA, or more specifically, for its
promoter (T414G transversion). This mutation has been also
found in other aging tissues, such as the muscle and colon. Studies
on skin samples have shown that mtDNA damage is correlated
with oxidative stress, especially in exposed skin areas to UVR,
such as the face and hands (Hudson et al., 2016). In these areas
of increased sun exposure, Ray et al. found more epidermal skin
mtDNA deletions in comparison to other less exposed areas.
Furthermore, aged human fibroblasts have shown a raise in
point mutations, meaning that different forms of mtDNA damage
contributes to skin aging (Michikawa et al., 1999). The increase
of 4977bp and 3895 bp deletion have been associated with skin
age, it has been observed in the dermis of older individuals
with excessive sun exposure (Eshaghian et al., 2006; Powers
et al., 2016). As documented by several studies, the oxidative
stress induced by UVR [Ultraviolet Radiation Type A (UVA)
and Ultraviolet Radiation Type B (UVB)] produces alterations
in the dermis, specifically in the DNA. The damage increases
the mitochondrial dysfunction which will produce more ROS
(Figure 1B) (Hudson et al., 2016). In consequence, many studies
take the mtDNA as a skin aging marker, typically caused by UVR.

Time and external factors definitely affect the mitochondria
and mtDNA (Figure 1B). It has been shown that hydrocarbons
such as cigarette smoke and particulate matter (PM) are toxic
to mitochondria and increase ROS production (Meyer et al.,
2013). The information presented in this article and in other
studies highlights that besides the increase in mtDNA mutations,
there is a decrease in its content producing dysfunctions in the
oxidative phosphorylation process. Interestingly, modifying the
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mtDNA polymerase γ (POLG1) in a mouse induced the mtDNA
depletion mimicking the phenotypic changes related to aging and
less activity of OXPHOS complex. The first changes were related
to hair loss (alopecia), wrinkles, hyperkeratotic and hyperplastic
epidermis, dermal inflammation, and acanthosis (Singh et al.,
2018). These characteristics are comparable to aged human skin,
which has leathery, increased laxity, uneven pigmentation, and
brown spots (Hudson et al., 2016). After restoring mtDNA (Singh
et al., 2018), mice have been shown to recover most of its normal
phenotype. With this information, the possibility to replenish
the defective mitochondrial content of aged cells in the skin by
AMT/T could represent a viable option to restore healthy mtDNA
copies and new functional mitochondria.

THE AMT/T TECHNIQUE

The mitochondria transfer between cells has been studied in vitro
and in vivo and associated with cell repair or improvements
in cellular physiology (Paliwal et al., 2018). Among all cells
that have the capacity to transfer mitochondria, mesenchymal
stem/stromal cells (MSCs) have shown to induce remarkable
properties by this process. Mesenchymal stem/stromal cells are
able to transfer mitochondria to different cell types, including
damaged cells, cancerous cells, and lung cells. They have shown
positive effects reflected in cell repair, gain of function, and
improving the cell’s overall energetics (Islam et al., 2012; Caicedo
et al., 2015). In another example, astrocytes are able to exchange
mitochondria as a key factor for neuron survival in a mouse
model. After stroke, injured neurons release mitochondria, which
are collected and recycled by astrocytes. In return, astrocytes
share healthy mitochondria to neurons in order to enhance
their recovery (Hayakawa et al., 2016). Cells naturally exchange
mitochondria as repairing mechanisms. This process has inspired
the development of new therapies, some of which have been
developed by several researchers and are currently used in vitro,
in vivo, and in clinical applications (Emani et al., 2017; Gollihue
et al., 2018; Cabrera et al., 2019).

The use of mitochondria as a therapeutic agent by artificial
mitochondria transfer/transplant (AMT/T) is gaining more
evidence of its regenerative effects from in vitro to in vivo
approaches, treating ischemic diseases in the majority of cases
(Caicedo et al., 2015, 2017; Emani et al., 2017; Cabrera et al.,
2019). This process aims to use mitochondria to repair damaged
cells and tissue, alone or as a complement to current standards
of therapy. AMT/T could be applied to enhance proliferation,
migration, tissue regeneration and stress resistance of recipient
cells (Caicedo et al., 2015; Lin et al., 2015; Emani et al., 2017;
Cabrera et al., 2019). In vitro, Clark and Shay (1982) were the
first to show that AMT/T is able to effectively transfer antibiotic
resistance coded by the mtDNA to sensitive mammalian cells
when they received exogenous mitochondria (King and Attardi,
1988). King and Attardi (1988) showed that reinjecting isolated
mitochondria in mitochondria depleted mammalian cells can
restore energy production based on respiration.

Since the first assays of AMT/T, different approaches have
been developed in order to improve and simplify this process.

Among the most common, are those related to chemical agents
or physical adaptations to facilitate the transfer (Kitani et al.,
2014; Lin et al., 2015; Kesner et al., 2016; Chang et al., 2017;
Cabrera et al., 2019). Most of these methods are restricted
to in vitro applications, however, it could be advantageous to
transfer mitochondria to specific cells (ex vivo AMT/T) and
reintroduce them back in the organism. Additionally, it could be
a viable option to first isolate mitochondria and then modify them
by coating or encapsulating them within membranes or vesicles.
This could improve their internalization when applied in situ or
systemically to treat an affected tissue.

As mitochondria have an important role in cell survival,
transferring or transplanting them from healthy cells or tissue
to damaged sites in the body has emerged as a rising
therapeutic option. McCully’s team in 2018 was the first
to use mitochondrial transplantation on human beings. His
team transplanted respiratory competent mitochondria into
ischemic injured tissues in pediatric patients with myocardial
dysfunction. Indeed, ischemia-reperfusion induces loss of
viable mitochondria, decreases ATP production, and leads to
myocardial hypoxemia and necrosis. McCully and his team
treated five children, three females and two males of different
ages (4 days, 6 days, 25 days, 6 months and 2 years). All of them
were suffering from congenital cardiac malformations and during
surgery they endured ischemia-reperfusion damages requiring
extracorporeal membrane oxygenation (ECMO), which is a
mechanical circulatory support. Children were eligible for
mitochondrial transplantation if they already had a recent cardiac
surgical procedure preceding an acute onset of coronary artery
obstruction. During a second intervention, they were injected
with isolated autologous healthy mitochondria directly into
the myocardium affected by ischemia which was identified by
echographic hypokinesis. The outcome was an improvement of
global cardiac function, regional myocardial hypokinesis, and
mortality. Four patients improved their left ventricular function,
but two out of five died: the first, despite myocardial function
improvement, showed failure in other organs and the second one
died because of respiratory issues. Given the small number of
patients and lack of a control group, it is difficult to attribute the
effects of improvement in ventricular function to mitochondrial
transplantation (Emani et al., 2017; Emani and McCully, 2018).
However, their study shows that this technique may be expanded
to treat other forms of myocardial ischemic injuries or organs
damaged by ischemia-reperfusion. It is also recommended a
prospective clinical trial to assess the safety, efficacy, and optimal
dosing of mitochondria for clinical use (Emani et al., 2017; Emani
and McCully, 2018).

AMT/T APPLICATIONS TO TREAT
TISSUE DAMAGE

Artificial mitochondria transfer/transplant has so far shown
positive effects in cellular and tissue repair, and recent
literature highlights its potential medical use. Many types of
diseases or damaged associated conditions could be treated
with AMT/T. Most of them are related to ischemic events,
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metabolic conditions, aging degeneration, and inflammatory
associated diseases (Lin and Beal, 2006; Islam et al., 2012;
Masuzawa et al., 2013; Emani et al., 2017). Conditions involving
cardiovascular diseases treated with AMT/T in vivo, in vitro,
and in humans have been widely studied (McCully et al., 2009;
Masuzawa et al., 2013; Kaza et al., 2017; Emani and McCully,
2018). Other promising therapeutic targets of AMT/T are
neurodegenerative diseases, spinal cord injury (Kang et al., 2016),
and mitochondria hereditary conditions (Chang et al., 2016;
Gollihue and Rabchevsky, 2017; Gollihue et al., 2018). AMT/T’s
ability to repair damaged cells and renew the mitochondrial
pool has changed the view of the mitochondria as a powerhouse
of the cell to a therapeutic agent and a key element in
regenerative medicine.

Important advances have been evidenced, especially in vivo,
regarding the application of AMT/T after cardiovascular
ischemic events with healthy autologous or allogeneic
mitochondria. These assays have shown that AMT/T repairs
the damage in the affected tissue and favors the recovery of
mitochondria functions (McCully et al., 2009; Masuzawa et al.,
2013; Kaza et al., 2017; Shin et al., 2017; Emani and McCully,
2018). Most of the time, ischemic cardiovascular diseases are
the result of a lack of oxygen carrying blood reaching tissues.
Ischemia alters mitochondrial function inducing ROS generation,
decreasing ATP production, promoting cellular stress, and
leading to apoptosis (Chen et al., 2011; Kalogeris et al., 2014).
AMT/T could be a promising cardioprotective or therapeutic
treatment, if injected into infarcted areas. For example, it has
been observed that AMT/T could prevent ischemia-reperfusion
injury. Autologous mitochondria injections in ischemic induced
lesions in rabbits’ hearts enhanced oxygen consumption, cell
viability, and post-infarct cardiac function. It was shown
that transplanted mitochondria are quickly internalized by
cardiac cells, helping to restore normal energy synthesis
(Masuzawa et al., 2013).

Other studies showed benefits of mitochondria transfer in
heart ischemia in vivo. Myocardial ischemia was induced in pigs
where autologous mitochondria were injected directly into the
ischemic region for the tested group while the control group
did not receive any treatment, only a vehicle. Assessment of
the ischemic markers showed a significant increase in cardiac
troponin I and creatine kinase levels in the control compared to
the tested group, suggesting a better post-ischemic myocardial
function after AMT/T (Cowan et al., 2016; Kaza et al., 2017). It
has been shown that the delivery of mitochondria through the
coronary vasculature protects the ischemic myocardium. As part
of this study, rabbits’ hearts were exposed to 30 min of ischemia
and then 10 and 120 min of reperfusion. Mitochondria were
either injected in the ischemic region or delivered by vascular
perfusion through the coronary arteries at the beginning of the
reperfusion procedure. Mitochondria were found near the site of
delivery in the in situ administration, however, vascular perfusion
had better dispersion through the heart and better protective
effects after 10 and 120 min reperfusion (Cowan et al., 2016).

Heart transplant is a procedure that involves keeping a
donor’s heart preserved outside the body until it is received
by the patient. During the process the donor’s heart passes,
in the first instance, through cold ischemia time (CIT), which

is about 4–6 h for humans. Cold ischemia time starts after
cutting circulation and putting the organ in a cold transport
solution. Then the transplanted heart is connected to the patient’s
circulation where ischemia reperfusion (IR) can cause injury as
well. It has been shown that CIT causes IR injury to the heart
mitochondria affecting myocardial function and tissue viability.
Heterotopic heart transplantation was performed in mice and
AMT/T was delivered in the coronary arteries before and after
CIT. The experiments showed that mitochondrial transplant
enhances heart function, decreases tissue injury, and reduces cold
graft failure, thus improving the transplantation success after
prolonged CIT (Moskowitzova et al., 2019).

Stroke or “brain attack” is a neurovascular disease whose
characteristics and consequences could be treated with AMT/T.
A decreased blood flow induces ischemia in specific regions
of the brain, leading to oxygen and nutrient deprivation and
causing tissue death. Mitochondria function and dynamics
are particularly damaged, especially regarding its capacity to
maintain the respiratory chain proton gradient and produce
ROS. This leads to further structural damage, apoptosis, cell
degradation, and inflammation (Sims and Anderson, 2002;
Niizuma et al., 2010; Yang et al., 2018). Stroke can affect specific
brain areas, damaging memory, muscle control, or inducing
visual loss (Siesjö, 1992; Hossmann, 2006; Teasell and Hussein,
2013). Testing the possibility to repair the loss of healthy
mitochondria due to stroke by AMT/T has shown so far to
improve recovery in preclinical assays. It has been observed that
the use of xenogeneic mitochondria from hamsters to treat acute
injurious ischemic stress in the central nervous system by AMT/T
resulted in enhanced neuronal survival and recovery of motor
activity (Huang et al., 2016).

Neurodegenerative diseases including Parkison’s, Alzheimer’s,
and Huntington’s are characterized by the progressive loss of
neurons and induced death related to protein aggregation and
inclusion body formation in cells (Ross and Poirier, 2004;
Krols et al., 2016). Together with these factors, mitochondria
dysfunction seems to play an important part in the progression
of these diseases. Parkinson’s disease (PD) is mainly due to
a progressive degeneration of dopaminergic neurons, located
in the substantia nigra (Moore et al., 2005; Chaudhuri and
Schapira, 2009). Lack in dopamine secretion causes symptoms
such as tremor, akinesia, and muscular hypertonia. Parkinson’s
progression is linked to misfolding and aggregation of α-
synuclein. It has been reported that a type of α-synuclein
aggregate, smaller and distinct in its conformation, called pα-
syn∗, is particularly affecting mitochondria, causing its damage
and mitophagy (Grassi et al., 2018). As mitochondria is affected
in Parkinson, it has been proposed to treat the disease with
AMT/T. It has been observed in a PD-mice model that AMT/T
led to an increase in the striatal mitochondrial activity and
ATP production, a decrease of ROS levels, and improvements
in Parkinson’s symptoms (Shi et al., 2017). Parkinson’s disease-
induced rats treated with AMT/T showed that allogeneic
mitochondria transplantation improves their motor activities,
and pointed out a substantial decrease in dopaminergic neuron
loss (Chang et al., 2016). Understanding how AMT/T can
improve PD could open new treatments for this disease
including using it together with current therapeutic options.
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Parkinson’s disease is not the only neurodegenerative pathology
that could be treated by AMT/T. Literature also discussed
the role of mitochondria in Huntington disease, Alzheimer’s
disease, Amyotrophic Lateral Sclerosis, and Friedreich’s Ataxia,
highlighting the potential application of AMT/T in rare
neurodegenerative pathologies (Lin and Beal, 2006; Kim et al.,
2010; Carvalho et al., 2015). There is a scientific and clinical
need to perform more studies where AMT/T could be used as
a treatment for neurodegenerative diseases.

The exposure to toxic substances could induce liver
mitochondrial dysfunction, leading to a diverse array of acute or
chronic injuries (Deavall et al., 2012; Gu and Manautou, 2012).
Acetaminophen-induced liver injury causes mitochondrial
oxidative stress, worsening the disease (Yan et al., 2018).
Toxins, such as ethanol and a variety of drugs, can impair beta-
oxidation directly or through affects mitochondrial function.
Mitochondrial dysfunction leads to abnormal permeability
transitions, initiating hepatocyte apoptosis and necrosis
(Pessayre et al., 1999; Shi et al., 2018). AMT/T was used to
treat the damage induced by Acetaminophen liver failure by
paracetamol intoxication. Mitochondria were isolated from
human hepatic cells and injected intravenously in mice injured
liver. After mitochondria administration, transaminase activity
significantly decreased, indicating that exogenous mitochondria
were protecting cells against toxicity. Mitochondria spread in
several tissues and increased hepatocyte energy production,
reduced ROS levels, and improved tissue regeneration (Fu et al.,
2017; Shi et al., 2018). This study suggests that AMT/T may
prevent acetaminophen-induced liver injury.

From the first assays of AMT/T by Clark and Shay in 1982
to the clinical application of mitochondria by McCully’s team in
2018, there is strong evidence showing that receiving exogenous
healthy mitochondria by damaged cells or tissues help them to
recover (Clark and Shay, 1982; Caicedo et al., 2017; Emani et al.,
2017). Not only does AMT/T improve tissue recovery but it
also has been shown to promote immune regulation. It has been
observed that syngeneic or allogeneic mitochondria delivered by
intraperitoneal injection in mice does not cause an immunogenic
reaction, thus opening the possibility to use mitochondria
from different donors to heal damaged tissue (Ramirez-Barbieri
et al., 2019). It has been shown that AMT/T has important
intracellular consequences leading to short-term improvement of
bioenergetics and a “supercharged” state. However, the resulting
state disappears over time (Ali Pour et al., 2020). These work
together with the use of AMT/T to turn TH17 cells into
Tregs promoting an immune regulatory effect. Also, the use of
PAMM to repair the UVR damage of mitochondria supports the
hypothesis of the possible use of mitochondria, from different
donors, like PAMM to treat skin aging.

AMT/T FOR THE ANTIAGING USE OF
MITOCHONDRIA

The skin is a mixture of different layers of cells working together
with the immune, nerve, and vascular systems. Aging affects
all skin components differently, but the transfer of healthy

mitochondria could be a viable option to repair skin cell
senescence and loss of function. Skin contains sets of cells
with different viability during time and energy consumption.
Epidermal keratinocytes stem cells and other stem cells have a
long period for permanence in skin and are very susceptible to
damage (Panich et al., 2016; Eckhart et al., 2019). Keratinocytes
are cells that have a short lifespan and high metabolic activity and
needs (Eckhart et al., 2019). Cells such as Merkel and melanocytes
are long-lived and have a high metabolic activity, prompting
them to accumulate damage with time (Figure 1B) (Eckhart et al.,
2019). Among these cells, fibroblasts, keratinocytes, immune cells
(such as Langerhans, mechanoreceptors), as merkel cells and
melanocytes, are all susceptible to aging and its damaging effects
(Quan et al., 2015; Blatt et al., 2017; Tobin, 2017; Kaddurah
et al., 2018). However, all these cells have the potential to
internalize mitochondria and be repaired. It has been shown that
cells in vitro and in vivo are capable of uptaking mitochondria
by different and active mechanisms like macropinocytosis and
actin dependent internalization (Kitani et al., 2014; Pacak et al.,
2015). Once inside, it seems that isolated mitochondria fuse
with the endogenous mitochondria by the activity of mitofusins
MFN1, MFN2 on the outer membrane and OPA1 on the
inner membrane (Alavi and Fuhrmann, 2013; Cowan et al.,
2017). The understanding of the energetic and survival fate of
exogenous mitochondria inside the recipient cells is moving
forward, however, important questions are still unanswered. So
far the energetic boost and possibly renewal of the endogenous
mitochondria pool could explain part of transfer/transplant
regenerative properties (Ali Pour et al., 2020).

It has been reported that keratinocytes and fibroblasts
accumulate mtDNA mutations after UVR exposure, increasing its
biological aging and stress (Figure 1B) (Koch et al., 2001; Birket
and Birch-Machin, 2007; Paz et al., 2008; Cazzato et al., 2018;
Parrado et al., 2019). These cells could internalize mitochondria,
repairing their viability and providing an “energetic boost” in
the basal membrane (Koch et al., 2001; Ali Pour et al., 2020).
The energetic boost could have positive effects on the fibroblasts
and keratinocyte’s proliferation and migration. Less Langerhans
cells are present in aged skin where a cascade of regulatory
and proinflammatory cytokines takes place (Kabashima et al.,
2003; Bocheva et al., 2019). Ultraviolet radiation induces
immunosuppression and tolerance on Langerhans cells, due the
presence of TNF-a, prostaglandin PGE2, and IL-10 (Parrado
et al., 2019). However, a great quantity of ROS is induced by UVR,
resulting in skin photoaging and inflammation (Pillai et al., 2005;
Awad et al., 2018). The mitochondria transfer to immune cells by
PAMM or by the isolation of MSC’s mitochondria repairs UVR
damage and changes the cells from proinflammatory to immune
regulatory (Cabrera et al., 2019; Luz-Crawford et al., 2019). The
interaction between mitochondria and immune cells in the skin
is puzzling as it could induce an immune regulatory effect in
Langerhans cells, however, it would help them to survive and
proliferate. Mitochondria transfer/transplant to nerve cells has
shown to have effects such as improving their activity, growth
and viability (Chang et al., 2019). When Merkel cells are exposed
to the sun, their cellular density increases in a process that
accumulates with age, leading to carcinogenesis, especially in
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elderly white men (Moll et al., 1990; Coggshall et al., 2018).
A loss in the perception, fromsoftouch to itching has been
associated with aging (alloknesis). This problem is correlated with
a low number of merkel cells (Feng et al., 2018). Merkel cells
have a long-term permanence in the skin where the AMT/T
would help them to stay viable for a longer period of time
(Eckhart et al., 2019) (Figure 1B).

Melanocytes interact and influence keratinocytes metabolism
through melanosomes transfer. Melanocytes affected by aging
play a crucial role in disseminating damaging factors among
cells in the skin. Melanogenesis is a multistep process regulated
by melanocortins (MSH) and adrenocorticotropins, leading to
the control of the tyrosinase enzyme using L-tyrosine as a
precursor (Slominski et al., 2004; Slominski A. et al., 2012). L-
tyrosine is also a precursor of thyroid hormones which in turn
regulate melanin pigmentation (Slominski et al., 2004). There
exist two major melanine variants: pheomelanin (red head and
freckles) and eumelanin (dark haired individuals), depending
on the MCR1 (melanocortin 1 receptor) gene regulation (Stout
and Birch-Machin, 2019). The first has been associated with a
higher prooxidant effect because its synthesis consumes cysteine
and glutathione antioxidant (Birch-Machin and Bowman, 2016).
In this context, it has been hypothesized that stimulation of
eumelanin has a protective effect on mtDNA copy number
(Stout and Birch-Machin, 2019). However, interactions between
mtDNA and pheomelanin/eumalin ratio have not been properly
researched. It has been shown that Melanocytes are able to
express senescence markers such as p16INK4A, HMGB1, in
addition to having dysfunctional telomeres. Interestingly, aged
melanocytes can induce telomere dysfunction and senescence
in surrounding cells via CXCR3 activation and ROS production
(Victorelli et al., 2019).

Melanocytes are sensitive to oxidative stress due to the
pro-oxidant state induced during melanogenesis (Denat et al.,
2014; Slominski and Carlson, 2014). This process is confined
to the melanosomes, which protects the cell from oxidative
damage (Denat et al., 2014). Interestingly, melanosomes switch
from oxidative catabolism to anaerobic glycolysis, activating the
pentose phosphate pathway in the keratinocytes and possibly
protecting them from oxidative damage (Slominski et al., 1993,
2014, 2015b). It has been observed that Alpha-melanocyte-
stimulating hormone (alpha-MSH) stimulates melanogenesis,
thus leading to the protection of keratinocytes from UVR induced
DNA and mtDNA damage (Böhm and Hill, 2016). Mitochondria
in melanocytes interact with melanosomes suggesting an
induction of melanosome biogenesis and melanin production
(Naidoo et al., 2018; Stout and Birch-Machin, 2019). Melanin
protects cells and their mtDNA from stressors such as UVA,
UVB and H2O2 (Swalwell et al., 2012). Both the reduction of
aerobic metabolism and the protection of mtDNA damage by
melanosome transfer from melanocytes to keratinocytes could
prevent accelerated skin aging. It is possible that renewing the
mitochondrial pool in both cells could have beneficial effects in
reducing the damage of UVR and environmental factors.

Melatonin is a hormone product of the pineal gland that
regulates the circadian rhythm. It has been observed that
melatonin can be produced by epidermal and hair follicle

keratinocytes (Kleszczynski and Fischer, 2012; Slominski et al.,
2020, 2008). Melatonin has ROS scavenging properties it
promotes antioxidant and DNA repair mechanisms, inducing
immune modulation and antitumor properties (Slominski
et al., 2018a). Interestingly, melatonin can be transferred
to mitochondria by the peptide transporter PEPT1/2. This
improves the mitochondrial membrane potential by inhibiting
the activation of the permeability pore, stimulating the activity
of uncoupling proteins (UCPs), and inducing an increase
in ATP production (Slominski et al., 2018a). Melatonin
and its derivatives N1-acetyl-N2 -formyl-5-methoxykynurenine
(AFMK) and N-acetyl serotonin (NAS) are expressed in the
human skin and have shown antioxidant and antiapoptotic
activity (Skobowiat et al., 2018; Slominski et al., 2020). The
secretion of melatonin by the pineal gland declines with
age (Hardeland, 2012) and possibly affects the presence and
production of melatonin in the skin. Melatonin strongly interacts
with mitochondria, protecting them from UVR, ROS, and
aging damage. Mitochondria are also able to produce melatonin
in the mitochondrial matrix (Hardeland, 2012; Tan et al.,
2016). Understanding the relationship between melatonin, its
derivatives and AMT/T is key to mitigating the loss of skin
functionality during the aging process (Figure 1B).

Mitochondria may also interact with melanocyte proliferation
and tyrosinase activity as in vitro experiments have shown
their inhibition in the presence of melatonin, a hormone that
heavily relies on mitochondria and ROS signaling (Stout and
Birch-Machin, 2019). This is how mitochondrial damage may
contribute to an alteration of skin pigmentation and aging.
Melanocyte degeneration, cell cycle arrest, and apoptosis have
been associated with oxidative stress due to mitochondrial
dysfunction in Vitiligo (Tang et al., 2019; Yi et al., 2019).

Mitochondria, as a modulator of skin pigmentation, play
an important role in the initial protection against UVR (Stout
and Birch-Machin, 2019). More pigmentation (more melanin)
is inversely related to DNA lesions in humans. mtDNA damage
is vastly seen in photoexposed skin, leading to cellular damage
and death (Stout and Birch-Machin, 2019). Even though aging
would eventually happen due to the shortening of the telomere
caps in nuclear DNA and consequent senescence, UVR is a
major key factor in aging pathogenesis. This “photoageing” needs
to be clarified as many aspects have been studied over the
years: collagen, mtDNA damage, increased ROS production, and
others (Birch-Machin and Bowman, 2016). Ultraviolet radiation
causes inflammation that breaks down matrix proteins and
the activation of the ROS signaling pathways. This activates
NFkB and AP-1, which inhibits collagen formation while old
collagen is being destroyed. mtDNA damage in photoexposed
areas increases ROS production and may accelerate skin aging
(Stout and Birch-Machin, 2019). Skin exposed to UVR causes
deletions of mtDNA, increased up to tenfold, compared with
sun-protected skin of the same individuals (Berneburg et al.,
1999). In human skin, UVR-induced deletions were found to
persist for years and their levels increased after cessation of UVR
irradiation even in the absence of further exposures (Krutmann
and Schroeder, 2009; Krutmann, 2017). As was mentioned before,
there are differences in the composition of extracellular matrix
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of papillary and reticular dermis. They differ also in rate of
cell division, contraction, and in expression of various collagens
and proteoglycans. Fibroblasts are responsible for synthesizing
all types of fibers and ground substance, but their function
depends on the specific tissue compartment where they reside
(Lynch and Watt, 2018).

Majora et al. (2009) seeded human skin fibroblasts into
collagen gels to generate dermal equivalents. These cells
were either derived from Kearns-Sayre syndrome patients,
who constitutively carry large amounts of the UVR-inducible
mitochondrial common deletion, or normal human volunteers
(Majora et al., 2009). Human skin fibroblasts carrying large
amounts of the UVR-inducible common deletion in their
mitochondrial genome translate functional and structural
alterations into the dermal equivalent.

Ultraviolet radiation damages skin cells, especially their
genetic material, leading to cancer (Rybchyn et al., 2018;
Singh, 2019). Furthermore, UVR negatively affects mitochondria
structure and function, thus leading to the generation of
ROS and decreased ATP production (Rybchyn et al., 2018).
Interestingly, it has been reported that 1α,25-Dihydroxyvitamin
D3 (1,25(OH)2D3) induces an energy-conserving mechanism,
which reduce UVR-DNA damage and skin carcinogenesis
(Rybchyn et al., 2018; Chaiprasongsuk et al., 2019). This
mechanism works by increasing glycolysis in the affected
cells, arresting mTORC1 and growth, activating autophagy and
inhibition of proliferation, and repairing mitochondria (Rybchyn
et al., 2018). This evidence could lead to a treatment of UVR
harmed skin that includes the administration of mitochondria
mixed with 1,25(OH)2D3. If 1,25(OH)2D3 is inducing an
energy-conserving mechanism, it would be possible to use
the AMT/T after the autophagic mechanism, to help cells
restore their mitochondrial patrimony and even mix with the
transferred mitochondria.

In several reports, human dermal fibroblasts in tissue culture
showed that carbonylated proteins, a marker for severe and
chronic oxidative stress, were elevated in the last third of life
(Stadtman and Levine, 2000). Disturbance in the prooxidant-
antioxidant balance causes oxidative stress that is associated with
aging and senescence. ROS are mainly produced by mitochondria
during normal metabolism. High ROS levels produced by
dysfunctional mitochondria have been suggested as the main
cause of aging (Barja, 2014).

Intrinsic changes in the aged fibroblast, as well as exposure
to environmental insults, lead to a progressive increase
in connective tissue damage. This is mediated by matrix
metalloproteinases (MMPs) and a reduction in new collagen
synthesis. As the connective tissue becomes progressively
damaged, it eventually becomes a stimulator of reduced fibroblast
synthetic function.

The fibroblast growth factor (FGF) has a relevant role in anti-
aging therapy as it is related to collagen and elastin synthesis
activation, which is responsible for skin resistance and elasticity,
characteristics that are diminished with skin aging (Maddaluno
et al., 2017). The progressive decline in the antioxidant capacity

associated with age results in increased production of reactive
oxygen species from oxidative metabolism in skin cells (Fabi and
Sundaram, 2014), and diminished mitophagy (Höhn et al., 2017)
could be treated by AMT/T possibly in combination with other
factors such as FGF.

Hair quality may be also considered as a marker of aging.
Melanocytes and keratinocytes determine hair color and growth.
It has been hypothesized that mtDNA damage increases oxidative
stress in the context of an acquired base pair deletion and is
responsible for hair graying (Stout and Birch-Machin, 2019). Hair
loss is a marker of aging and may be related to nutrient deficiency,
alopecia, and androgen stimulation. In non-balding regions,
there is an increased cytoplasmic and mitochondrial expression
of superoxide dismutase (Stout and Birch-Machin, 2019). This
represents a protective mechanism that promotes oxidative
resistance and a repair function. Although very important
questions need to be answered regarding AMT/T, hypothesizing
that isolated mitochondria could be internalized by melanocytes
to help cells produce energy more efficiently, less ROS (Zhang
et al., 2019), and ultimately fewer mutations are plausible.

It is our belief that the procedure for delivering mitochondria
by AMT/T to the skin and its cells is key to inducing its
repair mechanisms. The kind of mitochondria, their origin, and
if they have been modified in any way should be considered
when evaluating its regenerative capacities (Caicedo et al.,
2017; Miliotis et al., 2019). After defining determining the best
mitochondria, one method of delivering them could be to transfer
it ex vivo to patient’s skin cells by MitoCeption and reintroducing
them in the affected area (Caicedo et al., 2015, 2017; Cabrera et al.,
2019; Miliotis et al., 2019). Delivering mitochondria with needles,
especially microneedles (Sun et al., 2015), could be an option,
however, special attention should be made as skin is very thin in
some areas and it is important to traverse the stratum corneum
(Kochhar et al., 2013). Microneedle patches have shown to be
painless and easy to use, with modulable parameters desirable
for drug delivery (Prausnitz, 2017). Microneedle patches could
be designed for mitocondria delivery and tested together with
in vivo experiments. As previously mentioned, mitochondria
doesn’t seem to need encapsulation or additives to be uptaken
by cells, however, how mitochondria is going to be suspended
or if an emulsion or microemulsion (Hajjar et al., 2017) is
needed to traverse the stratum corneum, will need further
research (Figure 1B).

CONCLUSION

Environmental factors besides time can induce the acceleration
of aging and the mitochondrial dysfunction of skin (Panich
et al., 2016; Victorelli et al., 2019; Gu et al., 2020). Exposure to
these factors, such as sunlight, could be prevented by sunscreens
or simply by limiting the exposition to UVR. However, they
are difficult to repair once damage is present (Hudson et al.,
2016). Even if mitochondrial dysfunction is mitigated through
intracellular mechanisms, such as the quality control process
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(Suliman and Piantadosi, 2016), damages still accumulate with
time, decreasing the overall life-span of a person (Martínez-
Cisuelo et al., 2016; Nacarelli et al., 2016). Based on these
observations, it is plausible to propose AMT/T as a way to
enrich the endogenous pool with healthy mitochondria, even if
questions about intracellular interactions and transfer effects still
remain today (Ali Pour et al., 2020).

Skin function relies on many cellular and intracellular
mechanisms, among them mitochondria integrity. Many of the
mechanisms contributing to skin aging are not fully understood;
nevertheless, it is clear that mitochondria play an important
role within a complex network (Birket and Birch-Machin,
2007; Hudson et al., 2016; Gu et al., 2020). Among them,
mitochondria metabolism of substances like melanin maintain
intracellular homeostasis by photoprotective processes (Naidoo
et al., 2018; Tang et al., 2019). As a result, the accumulation
of small abnormalities or deficits may lead to larger negative
effects on the skin and its components if cells endogenous
mitochondria is not treated.

The skin is a complex tissue of layers and cells that play
different functions (Tobin, 2017). Skin cells and structures suffer
differently after being exposed to aging inducing factors such as
UVR, where mitochondria are one of the most affected organelles
(Hudson et al., 2016). As seen in literature, the AMT/T is
able to repair damage, especially hypoxia, in many cells and
tissues (Berridge et al., 2016; Torralba et al., 2016; Caicedo
et al., 2017; EP3169338A1, 2019; – Methods for the intercellular
transfer of isolated mitochondria in recipient cells – Google
Patents). AMT/T has shown regenerative effects in vitro and
in vivo. Isolated mitochondria could be an interesting therapeutic
agent of choice to neurodegenerative and cardiovascular diseases
(McCully et al., 2016; Boukelmoune et al., 2018). Here we propose
the hypothesis that AMT/T would help the skin and its cells to
persist or recover after aging inducing factors exposition and be
viable for a longer alone or as a complement to current standards
of care and prevention.

Still many challenges need to be overcome in order to
generalize the application of mitochondria as a therapeutic agent
to accelerate aging and disease. What is the effect of isolated
mitochondria from different tissues on different tissues, do they
behave the same. Different methods of administration must be
tested in order to find the best for each application (Cowan
et al., 2016; Ramirez-Barbieri et al., 2019). How to protect the
isolated mitochondria during the process of transfer/transplant,
are there mitochondria that are more resistant than others as
it seems that some can normally exist outside cells without a
cover membrane (Al Amir Dache et al., 2020; Bertero et al., 2020;
McCully et al., 2020). This article intends to present one of the

many aspects in which mitochondria could be used as an
universal treatment for cell damage and aging.
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