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Abstract: Coronavirus disease (COVID-19) caused by the SARS-CoV-2 has been an outbreak since
late 2019 up to now. This pandemic causes rapid development in molecular detection technologies to
diagnose viral infection for epidemic prevention. In addition to antigen test kit (ATK) and polymerase
chain reaction (PCR), CRISPR-based assays for detection of SARS-CoV-2 have gained attention
because it has a simple setup but still maintain high specificity and sensitivity. However, the SARS-
CoV-2 has been continuing mutating over the past few years. Thus, molecular tools that rely on
matching at the nucleotide level need to be reevaluated to preserve their specificity and sensitivity.
Here, we analyzed how mutations in different variants of concern (VOC), including Alpha, Beta,
Gamma, Delta, and Omicron strains, could introduce mismatches to the previously reported primers
and crRNAs used in the CRISPR-Cas system. Over 40% of the primer sets and 15% of the crRNAs
contain mismatches. Hence, primers and crRNAs in nucleic acid-based assays must be chosen
carefully to pair up with SARS-CoV-2 variants. In conclusion, the data obtained from this study could
be useful in selecting the conserved primers and crRNAs for effective detections against the VOC
of SARS-CoV-2.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spread
worldwide and led to an outbreak. Until 18 July 2022, more than 567 million people have
been infected, and 6 million people died due to viral infection or its complications [1].
SARS-CoV-2 is an RNA virus that relies on its unique RNA polymerase enzyme to replicate
its RNA in the human host. This process can be erroneous, leading to high mutation rates
in RNA viruses. In September 2020, the Alpha variant (B1.1.7) occurred, followed by the
spread of the Beta variant. In late 2020, the Gamma variant (P.1) had spread, and the
Delta (B.1.617.2) variant had taken over afterward. Now, Omicron variants (both BA.4
and BA.5) are dominating worldwide during 2022 [2]. The mutations in spike proteins in
SARS-CoV-2 for different variants helped the virus evade host immunity. For example, the
D614G mutation observed in all strains enhances viral replication, infectivity, and virion
stability [3]. Other mutations occur at different frequencies and have been summarized
in Figure 1.

To prevent the spread of SARS-CoV-2, molecular diagnostic techniques have been
used to detect and subsequently quarantine the infected cases. The standard detection tech-
nique is reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Briefly,
RT-qPCR works by converting SARS-CoV-2 RNA to cDNA by reverse transcriptase and
then amplifying cDNA by DNA polymerase. This technique has high sensitivity and
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specificity, but it takes time (more than 2 h) and requires an expensive thermocycler. Hence,
there are developments in other techniques, including loop-mediated isothermal amplifica-
tion (LAMP) and recombinase polymerase amplification (RPA). Both LAMP and RPA are
isothermal amplification; hence, they are faster and do not require a thermocycler. However,
they are prone to false positives because of non-specific amplification. Many studies have
incorporated the CRISPR-Cas system to detect the amplification of the target genes. This
incorporation improves the accuracy and specificity comparable to RT-qPCR [4,5].
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Figure 1. Structure of SARS-CoV-2 and summary of key mutations on spike proteins in SARS-CoV-2
variants of concern. ACE2: Angiotensin-converting enzyme 2 receptor. HR1: Heptad repeat 1. HR2:
Heptad repeat 2. RBD: Receptor binding domain. TMPRSS2: Transmembrane protease serine 2. This
figure was created with BioRender.com.

Several CRISPR-based assays for SARS-CoV-2 detection have been developed and
published during the past few years. Nonetheless, SARS-CoV-2 continuously evolves into
several variants of concern (VOC), including Alpha, Beta, Gamma, Delta, and Omicron.
Thus, the diagnostic performance of those CRISPR-based assays could be affected by the
high mutation rate of SARS-CoV-2. In this systematic review, we collected the primers
and crRNAs from previous works that describe the CRISPR-Cas system for SARS-CoV-2
detection up to December 2021 and then analyzed how mutations in different variants of
SARS-CoV-2 could affect each assay.

2. Mutations in SARS-CoV-2 Variants

SARS-CoV-2 is a positive-sense single-stranded RNA virus. Its genome is about
30,000 nucleotides long, comprising 15 open reading frames (ORFs). The major ORFs
encode non-structural proteins (proteases and RNA polymerase) and structural proteins,
including spike (S), envelope (E), matrix (M), and nucleocapsid (N) proteins. These proteins
are important for viral entry, fusion, and replication in the host cells. The S protein interacts
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with the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease
serine 2 (TMPRSS2) on the host cell membrane, leading to viral entry [6,7]. Since S protein
is on the viral surface membrane, it is one of the target proteins for immune response.
From the SARS-CoV-2 genome database, it has been observed that this S gene has the most
mutation rates, which allows it to escape the host immune system (Figure 1). D614G was
the first mutation identified to increase viral replication, infectivity, and virion stability [3].
Interestingly, this mutation is found in all strains. For Alpha strain, it was first reported in
the United Kingdom and contained three major mutations, del69-70, N501Y, and P681H,
which enhance ACE2 receptor affinity, increase infectivity, and promote viral entry into
respiratory epithelial cells, respectively [8–10]. The beta strain was identified in South
Africa and carried E484K, K417N, and N501Y. The E484 mutation was shown to reduce
the neutralization of polyclonal human plasma antibodies [11]. Similarly, the Gamma
strain contained E484K, K417T, and N501Y, and it was found in Brazil. Delta strain was
discovered in India and comprised G142D, L452R, E484Q, and P681R. L452R mutation was
shown to help in escaping the defense mechanism [12]. Lastly, the Omicron strain was
identified in South Africa. Mainly, it contains many mutations, including del69-70, T95I,
G142D, del143-145, K417N, T478K, N501Y, N679K, and P681H [13]. From this variation in
spike protein, the mutations on the S gene are used to classify its variants. However, there
are high mutation rates in SARS-CoV-2, especially on the S gene; the detection assays for
SARS-CoV-2 RNA need to be designed carefully to prevent false negative detection.

3. CRISPR-Cas Detection System

CRISPR-Cas system is a bacterial defense mechanism against phage. Cas nuclease can
recognize and hydrolyze DNA or RNA targets using CRISPR RNA (crRNA), which has a
complementary sequence to the target. This system has been applied for many applications,
including gene knock-in and knock-out [14]. However, some of the Cas proteins such as
Cas12a, Cas12b, and Cas13 have collateral nuclease activity, meaning that once these Cas
proteins recognize the target, they can cleave nucleotide non-specifically. For Cas12a and
Cas12b, the Cas protein together with its crRNA recognize double-stranded DNA (dsDNA)
target and have the trans-cleavage activity for single-stranded DNA (ssDNA) [15,16]. For
Cas13, the Cas protein, along with its crRNA, can hydrolyze the RNA target and later
cleave single-stranded RNA (ssRNA) non-specifically [4]. This collateral activity has been
utilized for nucleic acid detection (Figure 2).

For CRISPR detection, the major difference between Cas12 and Cas13 is that Cas12
only detects DNA targets with protospacer adjacent motif (PAM) sequence, while Cas13
can detect RNA targets without PAM restriction. To detect SARS-CoV-2, the CRISPR
Cas12-based system needs to convert viral RNA to cDNA, followed by DNA amplification
and detection by Cas12 protein. In contrast, the CRISPR Cas13-based system needs to
turn RNA into cDNA for amplification with the T7 promoter. The resulting DNA was
then in vitro transcribed to generate RNA for Cas13 detection. This additional in vitro
transcription (IVT) could introduce more complications such as misincorporation from T7
RNA polymerase (about 0.005% error rate) [17].

In general, the limit of detection for the CRISPR-Cas system alone is in picomolar
to femtomolar ranges, which is not sensitive enough to detect a few copies of targets
in the attomolar range [4,18,19]. Hence, CRISPR-Cas has been combined with nucleic
amplification techniques, including PCR, RPA, and LAMP, lowering the detection limit to
~10 copies per µL.
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Figure 2. CRISPR-Cas detection system for SARS-CoV-2 RNA. Extracted RNAs from SARS-CoV-2
RNA were reverse-transcribed to cDNA and subsequently amplified by either PCR, LAMP, or RPA.
The amplified DNA together with matched crRNA can activate collateral activity in the Cas12a
enzyme. For Cas13, the amplified DNA is used as the IVT template to generate multiple copies of
RNA targets, which can activate the collateral activity of Cas13 with matched crRNA. The collateral
activity of Cas enzyme can cleave nucleotide reporter for fluorescent readout or lateral flow. This
figure was created with BioRender.com.

4. Mismatches in the Amplification Step and CRISPR-Cas Detection Step

Three major DNA amplification techniques have been used in combination with
CRISPR-based assays. The first one is PCR. This approach is conventional, where the
amplification consists of three main steps: denaturation at 95 ◦C, annealing of primers at
50–60 ◦C, and extension at 68–72 ◦C. The second one is LAMP. LAMP uses 4–8 primers
binding to distinct regions. With the special design of the assay, DNA polymerase would
amplify DNA products with a loop-like structure, enhancing its further amplification of
numerous repeat sequences of the target. This reaction occurs at a single temperature of
around 60–65 ◦C. The third one is recombinase-based assay, which is commercialized under
recombinase polymerase amplification (RPA), recombinase-aided amplification (RAA), or
enzymatic recombinase amplification (ERA). In this technique, the recombinase pairs the
primers to the complementary sequence in the DNA target. The resulting displaced strand
is secluded by single-stranded DNA-binding protein (SSB), followed by primer extension
and DNA amplification by a strand displacing DNA polymerase. This process can happen
isothermally at 37–42 ◦C.

Since SARS-CoV-2 has different mutations across the variants, the primers must be de-
signed carefully to avoid mismatches. PCR has higher primer specificity than LAMP or RPA
due to higher temperature during amplification [20]. However, the position of mismatches
on the primer could also affect DNA amplification differently. The mismatches within the
3′ ends of primers are typically more detrimental than the internal mismatches [21,22].

In the CRISPR-Cas detection step, mutations of the virus can affect the binding of
crRNA, resulting in compromising collateral activity. However, there is no generalizable
rule to predict the effect of the mismatch positions on the trans-cleavage activity. Ooi et al.
had shown that Cas12a from Acidaminococcus spp. with E174R/S542R/K548R (enAsCas12a)
can tolerate mutation better than wild-type AsCas12a and Lachnospiraceae bacterium Cas12a
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(LbCas12a) [23]. In addition, the study also presented that the mismatches at positions
7–9 and 19 of crRNA have the most detrimental effect, while positions 1 and 17 have less
effect. For Cas13, there is no systematic study on how the mismatch affects its collateral
activity. However, Abudayyeh et al. reported that a single mismatch in gRNA only
minimally affects Leptotrichia shahii Cas13a’s knockdown ability, while double mismatches
in any positions in gRNA reduce knockdown efficiency dramatically [24]. For Cas13d,
Wessels et al. demonstrated that the knockdown is most affected by mismatches in the seed
region of gRNA between nucleotides 15–21 [25].

5. Mismatches in Published CRISPR-Cas Detection System

Firstly, the search was conducted electronically on PubMed from January 2020 to De-
cember 2021. The search strategy included keywords within titles or abstracts “((SARS-CoV-
2) OR (severe acute respiratory syndrome coronavirus 2) OR (COVID-19) AND (CRISPR))”.
Search results were imported into Covidence (https://www.covidence.org/ (accessed on
20 December 2021) for systematic review management. The abstracts of 258 candidate pub-
lications were evaluated by three reviewers focusing on the articles related to the molecular
techniques (amplification-free or PCR or LAMP or RPA) combined with a CRISPR-based
assay for SARS-CoV-2 detection. Review articles and irrelevant studies were excluded
during the evaluation process. Finally, the primer and crRNA sequences were retrieved
from the full texts of 53 candidate articles (Table S1). Genome sequences of SARS-CoV-2,
including Alpha, Beta, Gamma, Delta, and Omicron variants, were multiple aligned and
then analyzed for primer and crRNA binding sites. The mismatches or deletions within the
primers or crRNA binding sites were illustrated in Figure S1.

For our compilation, 33% (4/12) of PCR primer pairs have mismatches for different
variants, while there are 21% (7/33) and 54% (26/48) of LAMP and RPA/RAA primers
containing mismatches, respectively (Table 1). However, in the PCR-based assay, only one
of the crRNAs (1/12) has mismatches with the Omicron variant. For LAMP-based assay,
6% (2/34) of the crRNAs have mismatches with Alpha, Beta, and Omicron variants. For
RPA/RAA-based assay, 23% (11/48) of the crRNAs have mismatches with Alpha, Gamma,
Delta, and Omicron variants.

Table 1. Mismatches in primers and crRNAs in different detection assays.

Title Target Amp

Primers Match for Variants of
Concern Cas crRNA Remark Ref

α β γ δ O

A CRISPR-based and
post-amplification coupled

SARS-CoV-2 detection with a portable
evanescent wave biosensor

S - - - - - - Cas13a 3

[26]
N - - - - - - Cas13a 3

Orf1ab - - - - - - Cas13a MM1/MM2
MM1:

β, γ, δ, O
MM2: α

A Novel Miniature CRISPR-Cas13
System for SARS-CoV-2 Diagnostics N LAMP 3 3 3 3 3 mCas13 3 [27]

A one-step, one-pot CRISPR nucleic
acid detection platform (CRISPR-top):

Application for the diagnosis of
COVID-19

Orf1ab LAMP 3 3 3 3 3 Cas12b 3 [28]

A Saliva-Based RNA Extraction-Free
Workflow Integrated With Cas13a for

SARS-CoV-2 Detection

N LAMP 3 3 3 MM1 3 Cas12b 3

[29]S RPA 3 3 3 3 3 Cas13a 3
Orf1ab RPA 3 3 3 3 3 Cas13a 3

A Scalable, Easy-to-Deploy Protocol for
Cas13-Based Detection of SARS-CoV-2

Genetic Material

N1 PCR 3 MM1 3 3 3 Cas13a MM1 Omicron
[30]N2 PCR 3 3 3 3 3 Cas13a 3

N3 PCR 3 3 3 3 3 Cas13a 3

A smartphone-based visual biosensor
for CRISPR-Cas powered SARS-CoV-2

diagnostics
N PCR MM4 MM1 MM3 MM1 MM3 Cas12a 3 [31]

https://www.covidence.org/
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Table 1. Cont.

Title Target Amp

Primers Match for Variants of
Concern Cas crRNA Remark Ref

α β γ δ O

A smartphone-read ultrasensitive and
quantitative saliva test for COVID-19

Orf1ab PCR 3 3 3 3 3 Cas12a 3 [32]N PCR MM4 MM1 MM3 MM1 MM3 Cas12a 3

A Thermostable Cas12b from
Brevibacillus Leverages One-pot

Detection of SARS-CoV-2 Variants of
Concern

N LAMP 3 3 3 3 3 Cas12b 3 [33]

Amplification-free detection of
SARS-CoV-2 with CRISPR-Cas13a and

mobile phone microscopy
N - - - - - - Cas13a 3

All three
crRNAs are

perfect
match

[34]

An engineered CRISPR-Cas12a variant
and DNA-RNA hybrid guides enable
robust and rapid COVID-19 testing

S LAMP 3 MM1 3 3
Del3,
Ins9 Cas12a 3 [23]

Application of the amplification-free
SERS-based CRISPR/Cas12a platform

in the identification of SARS-CoV-2
from clinical samples

N - - - - - - Cas12a 3 [35]

Clinical validation of a Cas13-based
assay for the detection of SARS-CoV-2

RNA

S RPA 3 DEL9 3 3 3 Cas13a 3

[36]Orf1ab RPA 3 3 3 3 3 Cas13a DEL3 Omicron
Orf1b RPA 3 3 3 3 3 Cas13a 3

N RPA MM1 3 3 3 3 Cas13a MM1 Delta

Contamination-free visual detection of
SARS-CoV-2 with CRISPR/Cas12a: A
promising method in the point-of-care

detection

E LAMP 3 3 3 3 MM1 Cas12a 3

[37]Orf1ab LAMP 3 3 3 3 3 Cas12a 3
N LAMP MM1 3 3 3 3 Cas12a MM1 Alpha

CRISPR/Cas12a Technology
Combined with RT-ERA for Rapid and

Portable SARS-CoV-2 Detection

N ERA 3 3 3 3 3 Cas12a 3
[38]

Orf1ab ERA 3 3 3 3 3 Cas12a 3

CRISPR/Cas12a-mediated gold
nanoparticle aggregation for

colorimetric detection of SARS-CoV-2

N LAMP 3 3 3 3 3 Cas12a 3
[39]

E LAMP 3 3 3 3 3 Cas12a 3

CRISPR-Cas12-based detection of
SARS-CoV-2

N LAMP 3 3 3 3 3 Cas12a 3
[40]E LAMP 3 3 3 3 3 Cas12a 3

Detection of Infectious Viruses Using
CRISPR-Cas12-Based Assay S RPA 3 MM1 MM1 MM1 MM3 Cas12a 3 [41]

Detection of SARS-CoV-2 by
CRISPR/Cas12a-Enhanced

Colorimetry

E RPA 3 MM1 3 3 MM1 Cas12a 3

[42]
Orf1ab RPA 3 3 3 3 3 Cas12a 3

N1 RPA MM1 3 3 3 3 Cas12a 3
N2 RPA 3 3 3 3 3 Cas12a 3

Detection of severe acute respiratory
syndrome coronavirus 2 and influenza

viruses based on CRISPR-Cas12a

S1 RPA 3 3 3
MM1,
DEL6 MM1 Cas12a 3

[43]
S2 RPA 3 3 3 MM1 MM2 Cas12a MM3 Omicron

Detection of the SARS-CoV-2 D614G
mutation using engineered Cas12a

guide RNA
E RPA 3 MM1 3 3 MM1 Cas12a 3 [44]

Development and evaluation of a rapid
CRISPR-based diagnostic for

COVID-19
Orf1ab RPA 3 3 3 3 3 Cas13a 3 [45]

Development of a Broadly Applicable
Cas12a-Linked Beam Unlocking

Reaction for Sensitive and Specific
Detection of Respiratory Pathogens

Including SARS-CoV-2

S RPA DEL6 3 3 3
MM1,
DEL6 Cas12a 3 [46]

Development of a Rapid and Sensitive
CasRx-Based Diagnostic Assay for

SARS-CoV-2

S3 RPA MM1 3 3 3 3 Cas13d 3
[47]

N1 RPA 3 3 3 3 3 Cas13d 3
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Table 1. Cont.

Title Target Amp

Primers Match for Variants of
Concern Cas crRNA Remark Ref

α β γ δ O

Digital CRISPR/Cas-Assisted Assay
for Rapid and Sensitive Detection of

SARS-CoV-2
N RPA MM4 MM1 MM5 MM1 MM3 Cas12a MM1

Delta: One
crRNA has
MM. The
other has

PM.

[48]

Electric field-driven microfluidics for
rapid CRISPR-based diagnostics and

its application to detection of
SARS-CoV-2

N LAMP 3 3 3 3 3 Cas12a 3

[49]
E LAMP 3 3 3 3 3 Cas12a 3

Enhancement of trans-cleavage activity
of Cas12a with engineered crRNA

enables amplified nucleic acid
detection

N1 LAMP MM1 MM2 3 DEL6 3 Cas12a 3
[50]

N2 LAMP 3 3 3 3 3 Cas12a 3

Fluorescence polarization system for
rapid COVID-19 diagnosis

N1 RPA MM4 MM1 MM5 MM1 MM3 Cas12a MM1 Delta
[51]N2 RPA 3 3 3 3 3 Cas12a 3

Instrument-free, CRISPR-based
diagnostics of SARS-CoV-2 using

self-contained microfluidic system
N RPA 3 3 3 3 3 Cas12a 3 [52]

iSCAN: An RT-LAMP-coupled
CRISPR-Cas12 module for rapid,

sensitive detection of SARS-CoV-2
E LAMP 3 MM1 3 3 3

Cas12a 3
[53]

Cas12b 3

Isothermal Amplification and Ambient
Visualization in a Single Tube for the

Detection of SARS-CoV-2 Using
Loop-Mediated Amplification and

CRISPR Technology

N LAMP 3 3 3 3 3 Cas12a 3

[54]

E LAMP 3 3 3 3 3 Cas12a 3

MeCas12a, a Highly Sensitive and
Specific System for COVID-19

Detection
E RPA 3 MM1 3 3 MM1 Cas12a 3 [55]

Minimally instrumented SHERLOCK
(miSHERLOCK) for CRISPR-based

point-of-care diagnosis of SARS-CoV-2
and emerging variants

N RPA MM1 3 3 3 3 Cas12a 3 [56]

One-tube SARS-CoV-2 detection
platform based on RT-RPA and

CRISPR/Cas12a

RdRp RPA 3 3 3 3 3 Cas12a MM1 Delta
[57]

N RPA MM4 MM1 MM5 MM1 MM3 Cas12a 3

Point-of-care CRISPR-Cas-assisted
SARS-CoV-2 detection in an automated
and portable droplet magnetofluidic

device

N RPA MM4 MM1 MM5 MM1 MM3 Cas12a MM1 Delta [58]

Point-of-care testing for COVID-19
using SHERLOCK diagnostics N LAMP 3 3 3 3 3 Cas12b 3 [59]

Rapid and sensitive detection of
COVID-19 using

CRISPR/Cas12a-based detection with
naked eye readout,

CRISPR/Cas12a-NER

Orf1a RPA 3 3 3 3 MM1 Cas12a 3

[60]
Orf1b RPA 3 3 3 MM1 3 Cas12a 3

E RPA 3 MM1 3 3 MM1 Cas12a 3

N RPA 3 3 3 3 3 Cas12a MM1 Alpha

Rapid and Sensitive Detection of
SARS-CoV-2 Using Clustered
Regularly Interspaced Short

Palindromic Repeats

M RPA 3 3 3 3 3 Cas12a 3
[61]N2 RPA 3 3 3 3 3 Cas12a 3

S2 RPA 3 3 3 3 3 Cas12a MM1 Gamma,
Omicron

Rapid Detection of 2019 Novel
Coronavirus SARS-CoV-2 Using a

CRISPR-based DETECTR Lateral Flow
Assay

N2 RPA 3 3 3 3 3 Cas12a 3

[62]
E RPA 3 3 3 3 3 Cas12a 3
N LAMP 3 3 3 3 3 Cas12a 3
E LAMP 3 3 3 3 3 Cas12a 3

Rapid detection of SARS-CoV-2 with
CRISPR-Cas12a

Orf1ab LAMP 3 3 3 MM1 3 Cas12a 3
[63]N LAMP MM3 MM1 MM5 MM1 MM3 Cas12a 3
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Table 1. Cont.

Title Target Amp

Primers Match for Variants of
Concern Cas crRNA Remark Ref

α β γ δ O

Rapid SARS-CoV-2 testing in primary
material based on a novel multiplex

RT-LAMP assay

Orf1a LAMP 3 3 3 3 3 Cas13a 3

[64]

N LAMP 3 3 3 3 3 Cas13a 3
ORF7a LAMP 3 3 3 3 3 Cas13a 3
ORF3a LAMP 3 3 3 3 3 Cas13a 3
Orf1ab RPA 3 3 3 3 3 Cas13a DEL3 Omicron

S RPA 3 DEL9 3 3 3 Cas13a 3

Reverse Transcription Recombinase
Polymerase Amplification Coupled
with CRISPR-Cas12a for Facile and

Highly Sensitive Colorimetric
SARS-CoV-2 Detection

Orf1ab RPA 3 3 3 3 MM1 Cas12a 3

[65]
N RPA MM4 MM1 MM3 MM1 MM3 Cas12a 3

SARS-CoV-2 detection with CRISPR
diagnostics RdRp RAA MM1 3 3 MM1 3 Cas12b 3 [66]

SARS-CoV-2 Direct Detection Without
RNA Isolation With Loop-Mediated

Isothermal Amplification (LAMP) and
CRISPR-Cas12

N LAMP 3 3 3 3 3 Cas12a 3 [67]

SARS-CoV-2 RNA Detection by a
Cellphone-Based Amplification-Free

System with CRISPR/CAS-Dependent
Enzymatic (CASCADE) Assay

Orf1ab PCR 3 3 3 3 3 Cas12a 3 [68]

Sensitive and Easy-Read CRISPR Strip
for COVID-19 Rapid Point-of-Care

Testing
N RAA 3 3 3 3 3 Cas13a 3 [69]

Sensitive and rapid on-site detection of
SARS-CoV-2 using a gold

nanoparticle-based high-throughput
platform coupled with

CRISPR/Cas12-assisted RT-LAMP

N LAMP 3 3 3 3 3 Cas12a 3 [70]

Sensitive tracking of circulating viral
RNA through all stages of SARS-CoV-2

infection
Orf1ab PCR 3 3 3 3 3 Cas12a 3 [71]

Streamlined inactivation, amplification,
and Cas13-based detection of

SARS-CoV-2
Orf1ab RPA 3 3 3 3 3 Cas13a 3 [72]

Ultra-sensitive and high-throughput
CRISPR-powered COVID-19 diagnosis

Orf1ab PCR 3 3 3 3 3 Cas12a 3
[73]N PCR MM4 MM1 MM3 MM1 MM3 Cas12a 3

Ultrasensitive and visual detection of
SARS-CoV-2 using all-in-one dual

CRISPR-Cas12a assay
N RPA MM4 MM1 MM5 MM1 MM3 Cas12a MM1

Delta: use 3
crRNAs and
one crRNA

has one MM

[74]

UnCovid: A versatile, low-cost, and
open-source protocol for SARS-CoV-2

RNA detection

Orf1ab PCR 3 3 3 3 3 Cas12a 3 [75]

N PCR 3 3 3 3 3 Cas12a 3

Universally Stable and Precise
CRISPR-LAMP Detection Platform for

Precise Multiple Respiratory Tract
Virus Diagnosis Including Mutant

SARS-CoV-2 Spike N501Y

N LAMP 3 3 3 3 3 Cas12a 3

[76]

RdRp LAMP 3 3 3 3 3 Cas12a 3

S LAMP 3 3 3 MM1 3 Cas12a MM1,
MM3

Alpha and
Beta strains
have MM1.
Omicron
strain has

MM3.

Unlocking SARS-CoV-2 detection in
low- and middle-income countries

N LAMP 3 3 3 3 3 Cas12a 3
[77]Orf1ab LAMP 3 3 3 3 3 Cas12a 3

α, β, γ, δ, and O mean Alpha, Beta, Gamma, Delta, and Omicron variants, respectively. MMn = n number of
mismatches. INSn = n number of inserted nucleotide. DELn = n number of deleted nucleotides.
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Considering which viral genes have the most mismatches in amplification primers,
we found that the S gene has the most mismatches (82%), while the E and N genes have
50% and 39% mismatches, respectively. This result agrees that the S gene has the highest
variation among the genes in the SARS-CoV-2 genome. Strain-wise, the primer pairs have
the lowest mismatches for gamma strain (11%), while mismatches in other strains (alpha,
beta, delta, and Omicron) are almost double (18%, 21%, 19%, and 22%, respectively).

Next, we examined CRISPR-Cas reactions, and we found that 15% of the CRISPR-
Cas reactions have mismatches between the viral genome and crRNA. Dividing by type
of Cas (Cas12 versus Cas13), crRNAs in Cas12 has slightly lower mismatch percentages
than crRNA in Cas13 (14% versus 20%, respectively). Strain-wise, crRNAs have the most
mismatches with Delta and Omicron (7%), while Beta, Gamma, and Alpha have 2%, 2%,
and 4% mismatches, respectively. Considering the target genes, the S gene has the most
mismatches with crRNAs (25%), while E, ORF1ab, and N genes have mismatches at 0%,
15%, and 17%, respectively. This suggests that crRNAs of the E gene are robust for SARS-
CoV-2 detection. Hence, the E gene could have potential use as a universal detection gene,
while the S gene could be beneficial for designing assays to differentiate viral strains.

6. Conclusions

During the era of the SARS-CoV-2 pandemic, early diagnosis and screening are crucial
to prevent the spread of the virus. However, due to the rapid mutation rate of the viral
genome, molecular detection assays, such as RT-qPCR and CRISPR-Cas systems, that rely
on nucleotide sequence need to be implemented cautiously. For the CRISPR-Cas system, we
found that one-third of the primer sets in the reported studies and 15% of those assays have
mismatches with crRNAs. Thus, for the current and upcoming variants of SARS-CoV-2, the
primer and crRNA sequences need to be aligned with the current spreading viral genome
to ensure the accuracy and specificity of the result.
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