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Abstract. Aberrant genomic expression and methylation serve 
important roles in cancer development. Integrated analysis of 
genetic and methylation profiles may identify potential tumor 
marker genes for colorectal cancer (CRC) prediction. In the 
current study, DNA methylation and mRNA expression profiles 
associated with CRC were downloaded from The Cancer 
Genome Atlas database. Differentially expressed mRNAs 
and methylated genes between tumor samples and adjacent 
healthy tissues were identified. Candidate tumor marker genes 
and prognostic clinical factors were screened according to 
univariable and multivariable Cox regression analysis. A total 
of 218 DEGs with aberrant methylation levels were screened 
from tumor samples. A risk prediction model was constructed 
based on identified genes and clinical factors. Randomization 
tests were used to evaluate the performance of the prediction 
model, including area under the curve (AUC) calculation and 
cross-validation. Cox regression analysis revealed that eight 
genes and six prognostic clinical factors were significantly 
associated with survival outcomes. Functional and pathway 
enrichment analysis revealed that the eight genes were mainly 
involved in ‘cell adhesion’, ‘fatty acid metabolism’ and 
‘cytokine receptor interaction’ pathways. After combining 
six clinical factors with eight genes, the accuracy of risk 
prediction model has been increased intensively. The P‑values 
representing the association between risk grouping and prog-
nosis decreased from 0.009 to 0.001 and the AUC increased 
from 0.992 to 0.999, indicating that the comprehensive risk 
prediction model exhibited a good performance for disease 
prognosis prediction. The current study integrated genomic 
and methylation profiles and identified eight tumor marker 

genes in CRC. These candidate genes may improve the 
prediction accuracy of CRC prognosis.

Introduction

Colorectal cancer (CRC) is one of the most common malignant 
tumors and it has exhibited an increasing morbidity rate in the 
past decades. In 2017, ~135,000 individuals were diagnosed 
with CRC in the USA, and the mean 5‑year survival rate was 
<10% once metastasis occurred (1,2). An accumulation of 
genetic and epigenetic changes, including somatic mutations 
in the B-Raf proto-oncogene serine/threonine kinase, KRAS 
proto‑oncogene GTPase and tumor protein 53 genes, contribute 
to the tumorigenesis of CRC. These mutations are observed 
in the majority of patients with CRC (3). Additionally, several 
signaling pathways, including Wnt, Notch, mitogen‑activated 
protein kinase, transforming growth factor-β and phosphati-
dylinositol 3-kinase/protein kinase b pathways, are involved 
in the oncogenic transformation of CRC (4‑6). Furthermore, 
the pathogenesis of a subset of CRC involves mechanisms 
such as aberrant DNA methylation or CpG island methylator 
phenotype (CIMP) in promoter methylation (7).

Previous studies have reported that DNA methylation 
functions as a key regulator of gene expression and contrib-
utes to CRC development (8,9). At the genome level, CRC 
is characterized by absolute hypomethylation compared 
with adjacent healthy tissues, such as hypomethylation level 
in repetitive elements, including long interspersed nuclear 
element‑1 and the Alu element (10). Furthermore, a subset of 
patients with CRC exhibit gene‑specific promoter methylation 
termed CIMP (11). While a number of methylated genes are 
established as tumor suppressors in CRC, the potential roles 
of several methylated genes in tumorigenesis remain unclear. 
For example, McInnes et al (12) analyzed a subset of DNA 
methylation profiles and identified a cohort of hypermethyl-
ated genes in high level CIMP CRC tissues. Xue et al (13) used 
genome-wide methylation analysis to screen several novel 
methylated markers with prognostic value in colon cancer 
and revealed that five genes coincided with seven prognostic 
differentially expressed regions. However, the use of potential 
DNA methylation genes as predictive markers in CRC detec-
tion and prognosis prediction requires further investigation.

The current study analyzed mRNA expression and meth-
ylation profiles to screen differentially expressed mRNAs 
and methylated genes between CRC tumors and adjacent 
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healthy tissues. Univariable and multivariable Cox regression 
analysis identified several candidate tumor marker genes and 
prognostic clinical factors. A risk prediction model based 
on identified genes and clinical factors was constructed. 
Randomization tests were utilized to calculate P‑values of 
performance metrics, and cross-validation was performed to 
evaluate the accuracy of the prediction model. The current 
study integrated genomic and methylation profiles to identify 
candidate tumor marker genes, which may improve prognosis 
prediction in patients with CRC.

Materials and methods

Data sources. Gene expression, DNA methylation profiles 
and the corresponding clinical information associated with 
CRC were downloaded from The Cancer Genome Atlas 
database (TCGA; https://portal.gdc.cancer.gov/). There were 
329 samples with both gene expression and DNA methylation 
profiles, including 41 adjacent healthy tissues and 288 tumor 
samples. After excluding samples without survival outcome 
information, the microarray data of the 239 tumor samples 
were used as the training dataset.

In addition, two validated datasets, GSE77955 (14) and 
GSE17536 (15,16), were downloaded from Gene Expression 
Omnibus (ht tps://www.ncbi.nlm.nih.gov/geo/). The 
GSE77955 dataset included gene expression data based on 
the GPL96 [hg‑u133] Affymetrix Human Genome U133 plat-
form (Affymetrix, Thermo Fisher Scientific, Inc.) and DNA 
methylation data based on the GPL13534 Illumina Human 
Methylation 450 BeadChip platform (Illumina, Inc.). A total 
of 48 pairs of gene expression and methylation profiles were 
obtained from this dataset, including 14 adjacent healthy 
tissues and 34 tumor samples. These 48 pairs of samples had 
matched gene expression levels and DNA methylation levels 
and corresponding clinical information. This dataset was 
used as validation dataset of SVM classifier. The GSE17536 
dataset consisted of 177 tumor tissue samples with corre-
sponding survival outcomes. The gene expression data were 
based on GPL570 [HG‑U133_Plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array. The human gene expres-
sion profiles of CRC were selected as validation datasets 
containing corresponding survival outcome information. 
This dataset was used as independent validation dataset of 
prognosis model. Clinical information of samples in the 
training set and the two validation datasets are presented in 
Table I.

Differentially expressed mRNAs and methylated genes 
selection. The edgeR package version 30.2.9 (bioconductor.
org/packages/release/bioc/html/edgeR.html) in R software 
(version no. 3.4.1; https://www.r‑project.org/) was used to 
identify the differentially expressed mRNAs and methyl-
ated genes in normal and tumor samples. A false discovery 
rate (FDR) <0.05 and |log2 fold change (FC)|>0.585 were 
considered as thresholds. Furthermore, the Wilcoxon 
signed-rank test (https://www.rdocumentation.org/pack-
ages/stats/versions/3.4.1/topics/wilcox.test) in R was used to 
identify genes with significant differences in DNA methyla-
tion levels between normal and tumor samples. The screening 
criteria were set as FDR<0.05 and |Cancer‑Normal|>0.2.

The oligo package version 1.48 (www.bioconductor.
org/packages/release/bioc/html/oligo.html) in R was used for 
preprocessing of the GSE77955 and GSE31056 datasets. Data 
preparation included original data conversion, missing value 
supplementation, background correction and data normalization.

Correlation analysis between differentially expressed mRNA 
and methylated genes. Overlapping differentially expressed 
mRNA and differentially methylated genes were selected for 
further analysis. The Cor function (https://www.rdocumenta-
tion.org/packages/stats/versions/3.6.1/topics/cor) in R was 
used to calculate the Pearson's correlation coefficients (PCC) 
of gene expression levels and DNA methylated levels. The 
differentially expressed mRNAs with significantly differen-
tial methylated levels were considered as candidate tumor 
biomarkers.

Construction of a sample classifier based on tumor marker 
genes. The recursive feature elimination (RFE) algorithm 
in the caret package version 6.0‑84 (17) (cran.r‑project.
org/web/packages/caret) was used to screen tumor marker 
genes in CRC. The RFE algorithm is an iterative procedure 
that screens and assesses the optimal subsets from the training 
dataset (18) and has been employed for dimensionality reduc-
tion analysis. The gene combination with the highest accuracy 
rate in cross validation of RFE algorithm was taken as the 
optimal combination of tumor markers for validation.

Following the identification of optimal marker genes using 
RFE algorithm, Support Vector Machine (SVM) package 
version 1.6.8 (cran.r‑project.org/web/packages/e1071) (19) was 
utilized to construct a SVM classifier (kernel function, sigmoid 
kernel; cross, 10‑fold cross validation) and the performance 
of SVM classifier was validated using the GSE77955 dataset. 
Additionally, the pheatmap package version 1.0.8 (bioconductor.
org/packages/release/bioc/html/pheatmap.html) (20) in R was 
used to perform bidirectional hierarchical clustering analysis 
using the centered Pearson's correlation algorithm (21). In 
order to investigate the functions of the tumor marker genes, 
Gene Ontology (GO)-biological processes (BP) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways of these 
genes were analyzed using DAVID version 6.7 (https://david.
ncifcrf.gov/) without any cut‑off.

Screening tumor marker genes and prognostic clinical 
factors. To further investigate the optimal tumor marker 
genes, multivariate and univariate cox regression analysis in 
the survival package version 2.42‑3 (https://cran.r‑project.
org/web/packages/survival/index.html) in R (22) were 
performed to assess prognostic values of the selected genes 
and clinical factors. P<0.05 was considered to indicate a statis-
tically significant difference. Survival curves were generated 
by the Kaplan-Meier method and log-rank test.

Risk prediction model construction based on tumor marker 
genes and prognostic clinical factors. The prognostic index 
(PI) of each sample was calculated according to the following 
formula: PIgenomic = βgene 1 x Expgene 1 + βgene 2 x Expgene 2 + βgene 3 x 
Expgene 3 +…+ βgene n x Expgene n, where β represents the regres-
sion coefficient and Exp represents expression level of a gene. 
Samples in the training set were divided into high and low risk 
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groups using the median score of the PI as the cut‑off value. 
Kaplan Meier survival curves and long‑rank test in the survival 
package were used to analyze the associations between risk 
model and disease survival outcome (23). Additionally, receiver 
operating characteristic (ROC) curves were plotted to calculate 
the area under the curve (AUC). The GSE17536 dataset was 
used to perform further data validation.

Based on the risk prediction model of prognostic clinical 
factors, the PI of each sample was re‑calculated according to the 
following formula: PIclinical = ∑βclinical x Statusclinical, where βclinical 
represents the regression coefficient and Statusclinical represents 
the value of a clinical factor (0 or 1). Samples in the training 
sets were divided into high‑ and low‑risk groups by using the PI 
median score as the cut‑off value. The Kaplan‑Meier survival 
curves and log‑rank test were used to evaluate the associations 
between the risk model and prognosis. Additionally, ROC 
curves were plotted to calculate the AUC.

The weight coefficients of optimal tumor marker genes 
and prognostic clinical factors were integrated and a compre-
hensive predictive risk model was constructed. The PI value 
of each sample was re‑calculated according to the following 
formula: PIcombine = PIgenomic + PIclinical. Kaplan‑Meier survival 
curves and log‑rank test were generated to evaluate the asso-
ciations between the risk group and the overall survival (OS) 
times. ROC curves were plotted to calculate the AUC.

Results

Screening the differentially expressed mRNAs and differ-
entially methylated genes. A total of 1,706 differentially 
expressed mRNAs were identified between 329 tumor and 
adjacent healthy tissues, including 676 upregulated and 1,030 
downregulated genes. Moreover, 1,568 differentially methyl-
ated genes were screened using the Wilcoxon signed‑rank 
test, including 878 hypomethylated and 690 hypermethylated 
genes.

Correlation analysis for the gene expression and DNA 
methylation. There were 228 overlapping differentially 
expressed mRNAs and differentially methylated genes 

available for screening the critical tumor marker genes. 
Correlation analysis was performed to reveal correlations 
between gene expression and methylation levels (Fig. 1). A 
total of 54 genes were downregulated with hypermethylated 
levels, while 164 genes were upregulated with hypomethyl-
ated levels. The overall PCC value was ‑0.668, suggesting a 
significant negative correlation between methylation and gene 
expression levels. The 218 differentially expressed mRNAs 
with negative correlations between gene expression and meth-
ylation levels were considered as candidate tumor biomarkers 
for further investigation.

SVM method for sample classification. The RFE algorithm 
was used to identify 47 optimal marker genes from the 
aforementioned 218 candidate genes. An SVM classifier was 
constructed using the 47 optimal marker genes, achieving 
a mean accuracy rate of 100% (Fig. 2A). ROC curves were 
plotted to calculate the AUC (Fig. 2B and D). Furthermore, 
the GSE77955 dataset was used to independently validate the 
sample classification efficiency, and a mean accuracy of 97.9% 
was achieved (Fig. 2C and E).

Cluster analysis was performed based on the expression 
values and methylation levels of the 47 optimal marker genes. 
The 239 samples from TCGA were divided into two groups, 
cluster 1 and cluster 2 (Fig. 3A), including 114 and 125 tumor 
samples, respectively. Kaplan‑Meier survival curves for 
the samples in the two groups are presented in Fig. 3B. The 
log P‑value was 0.006, indicating a significant association 
of the samples with survival outcome. The mean OS time 
in cluster 1 was significantly longer than that in cluster 2 
(33.890±33.790 months vs. 25.660±26.640 months; P=0.042). 
Moreover, the corresponding clinical information of two 
cohort samples was analyzed. As presented in Table II, the 
distributions of the node and disease stage were significantly 
different between two clusters.

GO-BP terms and KEGG analyses were performed for 
the 47 candidate genes, and a total of 20 biological processes 
and 4 pathways were identified (Table III; Fig. 3C). The 
results revealed that these genes were significantly enriched 
in ‘cell adhesion’, ‘biological adhesion process’, ‘fatty acid 

Table I. Clinical characteristics of the training and validation datasets.

Clinical characteristic TCGA (n=239) GSE77955 (n=34) GSE17536 (n=177)

Age, years (mean ± SD) 65.260±13.170 61.560±16.050 ‑
Sex (male/female) 130/109 18/13/3 -
Pathologic M (M0/M1/-) 159/33/44/3 - -
Pathologic N (N0/N1/N2) 137/64/38 - -
Pathologic T (T1/T2/T3/T4/-) 5/40/162/31/1 - -
Pathologic stage (I/II/III/IV/‑) 41/88/71/34/5 ‑ ‑
Lymphatic invasion (yes/no/-) 67/151/21 - -
History of colon polyps (yes/no/-) 44/142/53 - -
New tumor (yes/no/‑) 51/180/8 ‑ ‑
Alive (yes/no/-) 179/60/ - 103/74
Overall survival time (months, mean ± SD) 29.690±30.020 ‑ 48.650±32.460 

TCGA, The Cancer Genome Atlas; SD, standard deviation; ‑, information unavailable; M, metastasis; N, node; T, tumor.
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metabolism’ and ‘cytokine receptor interaction signaling’ 
pathways.

Screening prognostic tumor biomarker genes and associated 
clinical factors. Univariable and multivariable Cox regression 
analyses were performed to screen tumor biomarker genes 
and prognostic clinical factors. Eight genes were significantly 
associated with survival outcomes (Table IV), including 
endothelial cell‑specific molecule 1 (ESM1), pre‑B‑cell 
leukemia transcriptional factor 3 (PBX4), acetyl‑coenzyme A 
acyltransferase 2 (ACAA2), chromobox homolog 7 (CBX7), 
transcriptional enhancer factor TEF‑3 (TEAD4), claudin‑1 
(CLDN1), eukaryotic translated initiation factor 4E family 
member 3 (EIF4E3) and zymogen granule protein 16 (ZG16). 
Furthermore, there were six clinical factors associated with 
OS times according to Kaplan‑Meier survival curve analysis, 
including metastasis stage (M0/M1/-), node stage (N0/N1/N2), 
tumor stage (T1/T2/T3/T4/-), histological differentiation  
(I/II/III/IV/-), lymphatic invasion (Yes/No/‑) and new tumor 
(recurrence or not) (Table V; Fig. 4). Furthermore, multivariable 
Cox regression analysis revealed that new tumor is an indepen-
dent clinical factor for CRC prognosis (P=0.001; Table V).

Risk prediction model construction based on tumor marker 
genes. A risk prediction model was constructed based on the 
eight tumor marker genes identified through Cox regression 
analysis. The PI of each tumor sample was calculated and the 
samples in the two training sets were divided into high-risk 

and low‑risk groups with the median score (7.220) of PI as the 
cut‑off value.

Kaplan‑Meier survival curves were plotted based on the 
risk prediction model of prognostic tumor marker genes for 
the TCGA training set. The results revealed that patients in the 
low‑risk group had a significantly longer OS time compared 
with those in the high‑risk group (30.060±30.810 vs. 21.900
±20.250 months, respectively; P=0.009; Fig. 5A). Prognosis 
prediction performance of this model was assessed using a 
ROC curve, and an AUC of 0.981 was obtained (Fig. 5B).

In addition, the OS and disease‑free progression survival 
(DFS) times were validated in the training set GSE17536. For 
the OS time validation, patients in the low‑risk group exhib-
ited a longer OS time compared with patients in the high-risk 
group (52.510±31.230 vs. 44.740±33.380 months. respectively; 
P=0.025; Fig. 5C). The ROC curve is presented in Fig. 5C and 
the AUC was 0.979. Moreover, patients in the low‑risk group 
exhibited a longer DFS time compared with patients in the 
high‑risk group (42.390±32.770 vs. 33.440±32.590 months, 
respectively; P=0.008; Fig. 5D). The AUC value was 
0.992 (Fig. 5D).

Risk prediction model construction related to prognostic 
clinical factors. The risk prediction model of six clinical 
factors was constructed based on Cox regression. Kaplan‑Meier 
survival curves were used to assess the prognosis prediction 
performance. Patients in the low‑risk group had a longer OS 
time compared with those in the high‑risk group (30.480±32.740 

Figure 1. Correlation analysis of gene expression levels with methylation levels for the differentially expressed mRNAs and differentially methylated genes. 
The horizontal axis represents relative mRNA intensity (log2fold change) while the vertical axis represents relative methylation intensity. Green represents 
hypermethylated genes with decreased expression. Red represents hypomethylated genes with increased expression. Black represents the genes with positive 
correlations between mRNA levels and methylation levels. CC, correlation coefficient. 
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Figure 2. Construction of the SVM classifier for tumor marker genes. (A) Screening the optimal tumor marker genes according to the recursive feature 
elimination algorithm. (B) Classification scatterplot of samples in the TCGA training set. Red and green dots represent tumor and normal healthy samples, 
respectively. The x‑ and y‑axes represent the first dimension and second dimension, respectively. (C) Classification scatterplot of tumor samples in the valida-
tion dataset GSE77955. Red and green points represent tumor and normal type samples, respectively. (D) The ROC curve of the SVM classifier for samples 
in the TCGA training set. (E) The ROC curve of the SVM classifier for samples in the validation set GSE77955. SVM, support vector machine; TCGA, The 
Cancer Genome Atlas; ROC, receiver operating characteristic.
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Figure 3. Clustering analysis and enrichment analysis for the tumor marker genes. (A) Bidirectional hierarchical clustering analysis based on the expression 
values (upper) and methylation levels (lower) of the 47 tumor marker genes. Six clinical factors were successively distributed under the cluster tree, including 
pathologic N, pathologic M, pathologic T, histological differentiation, lymphatic invasion and new tumor (recurrence or not). Red color represents upregulation 
and green color represents downregulation. (B) Kaplan‑Meier curves presenting the association of tumor samples and survival outcomes in Clusters 1 and 2. 
(C) GO and Encyclopedia of Genes and Genomes pathway enrichment analysis for the tumor marker genes. The horizontal axis represents the number of genes, 
while the vertical axis represents the functions and pathways. Dot size represents the number of related genes. Dot color change from red to green represents 
an increase in the P‑value. GO, Gene Ontology.
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vs. 24.820±28.950 months, respectively; P<0.001; Fig. 6A). 
The ROC curve of prognostic discrimination accuracy of the 
samples is presented in Fig. 6A, and the AUC was 0.976.

The comprehensive predictive risk model was constructed 
based on the integrated weight coefficients of the eight 
tumor marker genes and six clinical factors. The PI of 

Table II. Clinical information and Chi‑square test information for cluster 1 and 2 samples.

Clinical characteristic Cluster 1 Cluster 2 χ2 P‑value

Pathologic M (M0/M1) 76 10 - - 76 22 - - 3.018 0.082
Pathologic N (N0/N1/N2) 75 18 17 - 57 44 20 - 13.107 0.001
Pathologic T (T1/T2/T3/T4) 4 18 78 9 1 19 80 21 6.043 0.114
Histological differentiation (I/II/III/IV) 21 48 30 10 18 17 39 23 14.306 0.003
Lymphatic invasion (yes/no) 23 79 - - 38 70 - - 3.474 0.062
New tumor (yes/no) 19 88 ‑ ‑ 28 88 ‑ ‑ 1.006 0.316 

M, metastasis; N, node; T, tumor; ‑, information unavailable. 

Table III. GO and KEGG pathways enrichment analysis for 47 candidate tumor genes. 

A, GO pathway enrichment analysis

Term Count P‑value

GO: 0007155~cell adhesion 11 <0.001
GO: 0022610~biological adhesion 11 <0.001
GO: 0010605~negative regulation of macromolecule metabolic process 8 0.002
GO: 0010558~negative regulation of macromolecule biosynthetic process 7 0.003
GO: 0031327~negative regulation of cellular biosynthetic process 7 0.003
GO: 0009890~negative regulation of biosynthetic process 7 0.003
GO: 0010557~positive regulation of macromolecule biosynthetic process 7 0.006
GO: 0016481~negative regulation of transcription 6 0.006
GO: 0045893~positive regulation of transcription, DNA‑dependent 6 0.007
GO: 0051254~positive regulation of RNA metabolic process 6 0.008
GO: 0031328~positive regulation of cellular biosynthetic process 7 0.008
GO: 0009891~positive regulation of biosynthetic process 7 0.008
GO: 0010629~negative regulation of gene expression 6 0.009
GO: 0051172~negative regulation of nitrogen compound metabolic process 6 0.010
GO: 0045892~negative regulation of transcription, DNA‑dependent 5 0.013
GO: 0051253~negative regulation of RNA metabolic process 5 0.014
GO: 0045941~positive regulation of transcription 6 0.014
GO: 0010628~positive regulation of gene expression 6 0.016
GO: 0010604~positive regulation of macromolecule metabolic process 7 0.022
GO: 0051173~positive regulation of nitrogen compound metabolic process 6 0.024

B, KEGG pathway enrichment analysis

Term Count P‑value

hsa00071: Fatty acid metabolism 2 0.069
hsa04060: Cytokine-cytokine receptor interaction 3 0.075
hsa04670: Leukocyte transendothelial migration 2 0.191
hsa04530: Tight junction 2 0.214 

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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each sample was re‑calculated and Kaplan‑Meier survival 
curves were plotted to evaluate prognosis prediction perfor-
mance. Patients in the low‑risk group had a longer OS time 
compared with those in the high‑risk group (31.690±34.010 
vs. 21.890±20.710 months, respectively; P<0.001; Fig. 6B). The 
AUC value was 0.999 (Fig. 6B).

Discussion 

In this present study, a total of 218 DEGs with negative 
correlation between gene expression and methylation levels 
were identified between CRC and healthy samples. Following 
the construction of the SVM classifier, 47 genes were further 

identified as potential tumor marker genes. GO and KEGG 
enrichment analysis revealed that these genes were mainly 
associated with ‘cell adhesion’, ‘fatty acid metabolism’ and 
‘cytokine receptor interaction signaling’ pathways. Among 
these genes, univariable and multivariable Cox regression 
analysis revealed that eight genes (ESM1, PBX4, ACAA2, 
CBX7, TEAD4, CLDN1, EIF4E3 and ZG16) were significantly 
associated with the survival times of patients with CRC. The 
prognostic risk prediction models were constructed based on 
these genes, six prognostic clinical factors or the combina-
tion of the eight marker genes with the six clinical prognostic 
factors. The performance of each prediction model was evalu-
ated by using the training and validation datasets. The eight 

Table IV. Candidate tumor marker genes significantly associated with prognosis of colorectal cancer.

Gene name Coefficient Hazard ratio P‑value

Endothelial cell‑specific molecule 1 0.448 1.565 0.001
Pre‑B‑cell leukemia transcriptional factor 3 0.341 1.406 0.007
Acetyl‑coenzyme A acyltransferase 2 ‑0.413 0.662 0.008
Chromobox homolog 7 0.409 1.506 0.015
Transcriptional enhancer factor TEF‑3 0.363 1.44 0.022
Claudin‑1 0.124 1.132 0.038
Eukaryotic translated initiation factor 4E family member 3 ‑0.159 0.853 0.039
Zymogen granule protein 16 ‑0.047 0.955 0.040 

P‑value was calculated using log‑rank test.

Figure 4. Kaplan‑Meier curve analysis for the associations of clinical factors with survival times. The six clinical factors are (A) pathologic M, (B) pathologic 
N, (C) pathologic T, (D) pathologic stage, (E) lymphatic invasion and (F) new tumor.
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genes were integrated with the six clinical factors, and the 
accuracy of the integrated risk prediction model increased. 
The P‑value associated with risk grouping and prognosis 
increased from 0.009 to 0.001. The AUC value improved from 
0.992 to 0.999, suggesting the comprehensive risk prediction 
model exhibited a good performance for disease prognosis 
prediction.

ESM1 is a protein that is mainly expressed on endothelial 
cells in lung and kidney tissues (24). It serves a major role 
in endothelium‑dependent pathological disorders (25). The 
prognostic value of serum ESM1 expression in patients with 
CRC has been previously explored in a Chinese popula-
tion, and the results revealed that abnormal high expression 
of ESM1 was significantly associated with histological 
differentiation, TNM stage, tumor invasion and lymph node 
metastasis (26). Kang et al (27) demonstrated that activation 
of the nuclear factor‑κB signaling pathway is regulated by 
ESM‑1, and was associated with cell survival, migration 
and tumor invasion in CRC. The present study revealed 
that upregulated ESM1 expression and downregulated 
methylation levels were observed in CRC tissues compared 
with adjacent tissues, and the abnormal expression level was 
associated with the decreased OS time, which was consistent 
with previous studies (28,29). These results indicated ESM1 
expression may aid prognosis prediction for patients with 
CRC.

The results obtained in the current study revealed that 
the 47 tumor marker genes are associated with cell adhesion. 
Claudin proteins are cell membrane proteins associated with 
tight junctions of epithelial cell polarity (28,29). Reduced 
cell polarity and cell differentiation are frequently observed 
in cancer, and are associated with tumor invasion and metas-
tasis (30). Abnormal expression levels of claudin proteins 
have been reported in several types of adenocarcinomas. For 
example, upregulation of claudin‑3 was reported in ovarian 
and prostate carcinomas, and downregulated claudin‑7 has 
been found in several types of carcinoma, including thyroid 
neoplasms, head and neck squamous cell carcinoma and 
invasive esophageal cancer (31-33). Correlation between 
CRC and CLDN1 expression has exhibited opposite results. 

Shibutani et al (34) demonstrated that low expression of 
CLDN1 in CRC tissues was correlated with poor prognosis in 
patients with CRC and Bujko et al (35) revealed that upregu-
lation of CLDN1 was observed in CRC tissues compared 
with healthy adjacent tissues. Although altered CLDN1 
expression has been observed in colon carcinoma, there are 
few studies investigating the roles of epigenetic changes 
of this gene in CRC. Hahn-Strömberg et al (36) recently 
demonstrated that CLDN1 is significantly hypomethylated in 
CRC tumor samples compared with paired normal mucosa 
samples. The present study demonstrated that upregulated 
CLDN1 expression with abnormal low methylation levels 
in tumor tissue and associated with OS time. Furthermore, 
CLDN1 hypomethylation was associated with differences 
in biological properties of the tumor, including pathological 
stage, metastasis and prognosis.

CBX7 downregulation has been reported in multiple 
human cancer tissues, including CRC (37). A previous study 
revealed that the downregulation of CBX7 was negatively 
associated with survival outcomes in patients with CRC (38). 
TEAD4 promotes tumorigenesis by transcriptionally targeting 
yes-associated protein (YAP)1 in CRC progression (39). 
Upregulation of TEAD4 may improve its nuclear localization 
level, subsequently resulting in the epithelial‑mesenchymal 
transition through a YAP‑independent manner (40). ZG16 
is located on human chromosome 16 and serves as a tumor 
suppressor by decreasing CRC cell proliferation via its 
carbohydrate‑binding sites (41). Reduced ZG16 expression is 
associated with pathological phenotypes of CRC (42). Based 
on the results obtained in the aforementioned studies, CBX7, 
TEAD4 and ZG16 may be associated with CRC progression. 
To the best of our knowledge, the current study is the first to 
systemically demonstrate that the aberrant expression and 
methylation levels of ESM1, PBX4, ACAA2, CBX7, TEAD4, 
CLDN1, EIF4E3 and ZG16 are associated with the OS time 
of patients with CRC. Therefore, these genes may serve as 
prognostic tumor marker genes.

The current study had a number of limitations. Firstly, the 
results obtained were not verified by in vitro and in vivo exper-
iments. Secondly, the number of CRC and adjacent normal 

Table V. Univariable and multivariable Cox regression analysis for prognostic clinical factors.

 Univariable cox regression Multivariable cox regression
 -------------------------------------------------------------------- ----------------------------------------------------------------------
Clinical characteristic P‑value HR (95% CI) P‑value HR (95% CI)

Age, years (≤65/>65) 0.137 1.501 (0.875‑2.573) ‑ ‑
Sex (male/female) 0.085 1.583 (0.935-2.683) - -
History of colon polyps (yes/no/-) 0.312 0.616 (0.239-1.589) - -
Pathologic M (M0/M1/-) <0.001 4.189 (2.238-7.839) 0.8242 1.143 (0.352-3.710)
Pathologic N (N0/N1/N2) <0.001 1.777 (1.317-2.399) 0.8034 1.149 (0.385-3.428)
Pathologic T (T1/T2/T3/T4/-) <0.001 3.375 (1.918-5.939) 0.6650 1.593 (0.194-4.081)
Histological differentiation (I/II/III/IV/‑) <0.001 1.919 (1.414‑2.603) 0.7191 1.438 (0.199‑3.412)
Lymphatic invasion (yes/no/-) 0.004 2.217 (1.282-3.833) 0.8923 1.074 (0.386-2.991)
New tumor (yes/no/‑) <0.001 2.426 (1.444‑4.076) 0.0011 4.599 (1.837‑11.520)

‑, no information unavailable; HR, hazard ratio; CI, confidence interval; M, metastasis; N, node; T, tumor.
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Figure 5. Risk prediction model construction for tumor marker genes and prognostic clinical factors. (A) Kaplan‑Meier survival curve analysis for the asso-
ciation of the risk prediction model and overall survival times. (B) ROC curve for the tumor marker genes in the TCGA training set. (C) Kaplan‑Meier 
survival curve (left) and ROC curve (right) for the samples in the validation dataset GSE17536. (D) Kaplan‑Meier survival curve (left) and ROC curve for the 
samples in the GSE17536 dataset. TCGA, The Cancer Genome Atlas; AUC, area under the curve; ROC, receiver operating characteristic; OS, overall survival; 
DFS, disease‑free survival.
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healthy samples was small. Additionally, since an independent 
validation dataset containing the six clinical factors is not 
available, the comprehensive risk prediction model cannot be 
verified. Future studies integrating more methylation data to 
study the mechanisms of gene methylation in CRC progression 
are required.

In summary, the present study identified eight methyl-
ated genes (ESM1, PBX4, ACAA2, CBX7, TEAD4, CLDN1, 
EIF4E3 and ZG16) that may serve as potential tumor marker 
genes for prognosis prediction of patients with CRC in a 
clinical setting.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets generated or analyzed during the current study 
are available from the TCGA and GEO repositories (accession 
nos. GSE GSE77955 and GSE17536).

Authors' contributions

FX conceived and designed the study. GH and WC performed 
the data analysis and wrote the manuscript. All authors read 
and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Figure 6. Kaplan‑Meier survival curve (left) and ROC curve (right) analysis. (A) Kaplan‑Meier survival curve (left) and ROC curve (right) analysis for the 
association between prognostic clinical factors and overall survival times. (B) Kaplan‑Meier survival curve (left) and ROC curve (right) analysis for the 
association between integrated clinical factors and tumor marker genes. ROC, receiver operating characteristic; AUC, area under the curve.



HUANG et al:  MECHANISM OF COLORECTAL CANCER4514

Competing interests

The authors declare that they have no competing interests.

References

 1. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A 
and Bray F: Global patterns and trends in colorectal cancer inci-
dence and mortality. Gut 66: 683‑691, 2017.

 2. Rougier P, Sahmoud T, Nitti D, Curran D, Doci R, De Waele B, 
Nakajima T, Rauschecker H, Labianca R, Pector JC, et al: 
Adjuvant portal‑vein infusion of fluorouracil and heparin in 
colorectal cancer: A randomised trial. European Organisation for 
Research and Treatment of Cancer Gastrointestinal Tract Cancer 
Cooperative Group, the Gruppo Interdisciplinare Valutazione 
Interventi in Oncologia, and the Japanese Foundation for Cancer 
Research. Lancet 351: 1677-1681, 1998.

 3. Wood LD, D Williams P, Sian J, Lin J, Sjöblom T, Leary RJ, Shen D, 
Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human 
breast and colorectal cancers. Science 318: 1108-1113, 2007.

 4. Van Es JH and Clevers H: Notch and Wnt inhibitors as potential 
new drugs for intestinal neoplastic disease. Trends Mol Med 11: 
496-502, 2005.

 5. Watt FM: Unexpected hedgehog‑Wnt interactions in epithelial 
differentiation. Trends Mol Med 10: 577-580, 2004.

 6. Pasparakis M: Role of NF‑κB in epithelial biology. Immunol 
Rev 246: 346-358, 2012.

 7. Xie B, Zhao R, Bai B, Wu Y, Xu Y, Lu S, Fang Y, Wang Z, 
Maswikiti EP, Zhou X, et al: Identification of key tumorigen-
esisrelated genes and their microRNAs in colon cancer. Oncol 
Rep 40: 3551-3560, 2018.

 8. Moore LD, Thuc L and Guoping F: DNA methylation and its 
basic function. Neuropsychopharmacology 38: 23‑38, 2013.

 9. Fellow DHKLDMCR and Genetics SRiC: DNA methylation: A 
form of epigenetic control of gene expression. Obstetrician & 
Gynaecologist 12: 37-42, 2011.

10. Gaudet F, Hodgson JG, Eden A, Jackson‑Grusby L, Dausman J, 
Gray JW, Leonhardt H and Jaenisch R: Induction of tumors in 
mice by genomic hypomethylation. Science 300: 489-492, 2003.

11. Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, 
Morales C, Moreno V, Esteller M, Capellà G, Ribas M and 
Peinado MA: Chromosomal instability correlates with 
genome‑wide DNA demethylation in human primary colorectal 
cancers. Cancer Res 66: 8462-9468, 2006.

12. McInnes T, Zou D, Rao DS, Munro FM, Phillips VL, McCall JL, 
Black MA, Reeve AE and Guilford PJ: Genome‑wide meth-
ylation analysis identifies a core set of hypermethylated genes in 
CIMP-H colorectal cancer. BMC Cancer 17: 228, 2017.

13. Xue W, Wu X, Wang F, Han P and Cui B: Genome‑wide meth-
ylation analysis identifies novel prognostic methylation markers in 
colon adenocarcinoma. Biomed Pharmacother 108: 288-296, 2018.

14. Qu X, Sandmann T, Frierson H Jr, Fu L, Fuentes E, Walter K, 
Okrah K, Rumpel C, Moskaluk C, Lu S, et al: Integrated 
genomic analysis of colorectal cancer progression reveals acti-
vation of EGFR through demethylation of the EREG promoter. 
Oncogene 35: 6403-6415, 2016.

15. Smith JJ, Deane NG, Fei WU, Merchant NB, Zhang B, Jiang A, Lu P, 
Johnson JC, Schmidt C, Bailey CE, et al: Experimentally derived 
metastasis gene expression profile predicts recurrence and death in 
patients with colon cancer. Gastroenterology 138: 958-968, 2010.

16. Freeman TJ, Smith JJ, Chen X, Washington MK, Roland JT, 
Means AL, Eschrich SA, Yeatman TJ, Deane NG and 
Beauchamp RD: Smad4‑mediated signal ing inhibits 
intestinal neoplasia by inhibiting expression of β-catenin. 
Gastroenterology 142: 562-571-e562, 2012.

17. Cortés-Ciriano I, Bender A and Malliavin T: Prediction of PARP 
inhibition with proteochemometric modelling and conformal 
prediction. Mol Inform 34: 357-366, 2015.

18. Lu X, Yang Y, Wu F, Gao M, Xu Y, Zhang Y, Yao Y, Du X, 
Li C, Wu L, et al: Discriminative analysis of schizophrenia using 
support vector machine and recursive feature elimination on 
structural MRI images. Medicine (Baltimore) 95: e3973, 2016.

19. Wang Q and Liu X: Screening of feature genes in distinguishing 
different types of breast cancer using support vector machine. 
Onco Targets Ther 8: 2311-2317, 2015.

20. Wang L, Cao C, Ma Q, Zeng Q, Wang H, Cheng Z, Zhu G, Qi J, 
Ma H, Nian H and Wang Y: RNA‑seq analyses of multiple meri-
stems of soybean: Novel and alternative transcripts, evolutionary 
and functional implications. BMC Plant Biol 14: 169, 2014.

21. Eisen MB, Spellman PT, Brown PO and Botstein D: Cluster 
analysis and display of genome-wide expression patterns. Proc 
Natl Acad Sci USA 95: 14863‑14868, 1998.

22. Wang P, Wang Y, Hang B, Zou X and Mao JH: A novel gene 
expression‑based prognostic scoring system to predict survival 
in gastric cancer. Oncotarget 7: 55343-55351, 2016.

23. Goel MK, Khanna P and Kishore J: Understanding survival analysis: 
Kaplan‑Meier estimate. Int J Ayurveda Res 1: 274‑278, 2010.

24. Young JN, Young‑Ho K, Jin JY, Kang YH, Lee CI, Kim JW, 
Yeom YI, Chun HK, Choi YH, Kim JH, et al: Identification of 
endothelial cell‑specific molecule‑1 as a potential serum marker 
for colorectal cancer. Cancer Sci 101: 2248-2253, 2010.

25. Lassalle P, Molet S, Janin A, Heyden JV, Tavernier J, Fiers W, 
Devos R and Tonnel AB: ESM‑1 is a novel human endothelial 
cell‑specific molecule expressed in lung and regulated by cyto-
kines. J Biol Chem 271: 20458‑20464, 1996.

26. Jiang H, Fu XG and Chen YT: Serum level of endothelial 
cell‑specific molecule‑1 and prognosis of colorectal cancer. 
Genet Mol Res 14: 5519-5526, 2015.

27. Kang YH, Ji Ny, Han SR, Lee CI, Kim JW, Yeom YI, Kim YH, 
Chun HK, Kim JW, Chung JW, et al: ESM‑1 regulates cell 
growth and metastatic process through activation of NF‑κB in 
colorectal cancer. Cell Signal 24: 1940-1949, 2012.

28. Tsukita S, Furuse M and Itoh M: Multifunctional strands in tight 
junctions. Nat Rev Mol Cell Biol 2: 285‑293, 2001.

29. Feigin ME and Muthuswamy SK: Polarity proteins regulate 
mammalian cell‑cell junctions and cancer pathogenesis. Curr 
Opin Cell Biol 21: 694-700, 2009.

30. Martin TA and Jiang WG: Tight junctions and their role in cancer 
metastasis. Histol Histopathol 16: 1183-1195, 2001.

31. Tzelepi VN, Tsamandas AC, Vlotinou HD, Vagianos CE and 
Scopa CD: Tight junctions in thyroid carcinogenesis: Diverse 
expression of claudin‑1, claudin‑4, claudin‑7 and occludin in 
thyroid neoplasms. Mod Pathol 21: 22-30, 2008.

32. Al Moustafa AE, Alaoui‑Jamali MA, Batist G, Hernandez‑
Perez M, Serruya C, Alpert L, Black MJ, Sladek R and 
Foulkes WD: Identification of genes associated with head and 
neck carcinogenesis by cDNA microarray comparison between 
matched primary normal epithelial and squamous carcinoma 
cells. Oncogene 21: 2634-2640, 2002.

33. Lioni M, Brafford P, Andl C, Rustgi A, El‑Deiry W, Herlyn M 
and Smalley KS: Dysregulation of claudin‑7 leads to loss of 
E-cadherin expression and the increased invasion of esophageal 
squamous cell carcinoma cells. Am J Pathol 170: 709‑721, 2007.

34. Shibutani M, Noda E, Maeda K, Nagahara H, Ohtani H and 
Hirakawa K: Low expression of claudin‑1 and presence of 
poorly‑differentiated tumor clusters correlate with poor prog-
nosis in colorectal cancer. Anticancer Res 33: 3301-3306, 2013.

35. Bujko M, Kober P, Mikula M, Ligaj M, Ostrowski J and 
Siedlecki JA: Expression changes of cell‑cell adhesion‑related 
genes in colorectal tumors. Oncol Lett 9: 2463-2470, 2015.

36. Hahn‑Strömberg V, Askari S, Ahmad A, Befekadu R and 
Nilsson TK: Expression of claudin 1, claudin 4, and claudin 7 in 
colorectal cancer and its relation with CLDN DNA methylation 
patterns. Tumour Biol 39: 1010428317697569, 2017.

37. Guan ZP, Gu LK, Xing BC, Ji JF, Gu J and Deng DJ: 
Downregulation of chromobox protein homolog 7 expression in 
multiple human cancer tissues. Zhonghua Yu Fang Yi Xue Za 
Zhi 45: 597‑600, 2011 (In Chinese).

38. Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, 
Bianco M, Ferraro A, Sacchetti S, Troncone G, et al: The loss of the 
CBX7 gene expression represents an adverse prognostic marker for 
survival of colon carcinoma patients. Eur J Cancer 46: 2304‑2313, 2010.

39. Tang JY, Yu CY, Bao YJ, Chen L, Chen J, Yang SL, Chen HY, 
Hong J and Fang JY: TEAD4 promotes colorectal tumorigenesis 
via transcriptionally targeting YAP1. Cell Cycle 17: 102-109, 2018.

40. Liu Y, Wang G, Yang Y, Mei Z, Liang Z, Cui A, Wu T, Liu CY and 
Cui L: Increased TEAD4 expression and nuclear localization in 
colorectal cancer promote epithelial mesenchymal transition and metas-
tasis in a YAP-independent manner. Oncogene 35: 2789-2800, 2016.

41. Mito A, Nakano Y, Saitoh T, Gouraud SSS, Yamaguchi Y, Sato T, 
Sasaki N and Kojima‑Aikawa K: Lectin ZG16p inhibits prolifera-
tion of human colorectal cancer cells via its carbohydrate‑binding 
sites. Glycobiology 28: 21-31, 2018.

42. Meng H, Li W, Boardman LA and Wang L: Loss of ZG16 is 
associated with molecular and clinicopathological phenotypes of 
colorectal cancer. BMC Cancer 18: 433, 2018.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


